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 This study conducts a comprehensive benchmarking analysis to evaluate the effectiveness of 

transfer learning-based feature engineering in Automated Machine Learning (AutoML) 

systems. The research compares traditional manual feature engineering, standard AutoML 

approaches, and transfer learning-enhanced AutoML across diverse data modalities, including 

images, text, and tabular data. Experimental evaluations were carried out using CIFAR-10, 

IMDB Reviews, and Adult Census Income datasets, focusing on assessing each approach in 

terms of model performance, training time, and resource utilization. The findings reveal that 

transfer learning-enhanced AutoML significantly reduces training time by up to 45% while 

improving model accuracy by up to 20%, particularly for image and text datasets. Furthermore, 

scenarios with high feature reuse rates demonstrated memory utilization improvements of up to 

30%. These results underscore the substantial advantages of integrating transfer learning (TL) 

into AutoML systems for optimizing feature engineering processes. 

Keywords:  
AutoML 
Transfer Learning  
Feature Engineering  
Machine Learning 
Optimization 

 

Corresponding author:Merve SIRT 

 merve.sirt@kocsistem.com.tr 
  

 +90 542 312 64 34 
  

ISSN: 2548-0650                                                                      

DOI: 
https://doi.org/10.52876/jcs.1604889 

 

1. INTRODUCTION 
 

he evolution of Machine Learning (ML) systems has 

led to the development of powerful tools capable of 

automating data-driven decision-making processes, 

now integrated into nearly all domains of modern 

technology. However, building and optimizing these systems 

remain complex and labor-intensive tasks, often requiring 

domain-specific expertise in feature engineering. This is 

where the field of Automated Machine Learning (AutoML) 

emerges, aiming to mitigate these challenges and streamline 

modeling processes independent of data scientists. AutoML 

automates various stages of the ML pipeline, including data 

preprocessing, model selection, hyperparameter optimization, 

and model evaluation, facilitating the creation of user-friendly 

systems.  

In addition to simplifying complex modeling workflows, 

AutoML offers the advantage of efficiently handling large-

scale datasets. Following data preparation and preprocessing 

steps in ML projects, tasks such as selecting the most suitable 

model, managing training time, and optimizing model 

performance demand substantial expertise. Errors in these 

processes can lead to significant performance degradation or 

excessive resource consumption. AutoML systems address 

these challenges by employing sophisticated optimization 

algorithms to ensure consistently high model performance. 

One of AutoML’s most significant advantages is its ability to 

enable users with limited knowledge of data engineering, data 

science, or statistics to develop effective models [1]. 

The development of ML systems has enabled the creation of 

powerful tools that automate data-driven decision-making 

processes, integrating seamlessly into nearly all domains of 

modern technology. However, building and optimizing these 

systems involve complex, labor-intensive processes, 

particularly in feature engineering, which often requires 

domain-specific expertise. To address these challenges, the 

field of AutoML has emerged, aiming to streamline modeling 

processes and reduce dependence on data scientists. AutoML 

automates multiple stages of the ML pipeline, including data 

cleaning, model selection, hyperparameter optimization, and 

model evaluation, thereby facilitating the creation of user-

friendly systems. The core components of AutoML include 

automated model selection, hyperparameter optimization, 

feature engineering, and model evaluation. Automated model 

T 
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selection involves testing various model types and identifying 

the one that delivers optimal performance for a given dataset. 

This process allows the system to select the most suitable 

model without requiring users to understand which algorithm 

performs best for specific data types. Hyperparameter 

optimization seeks to enhance a model’s performance by 

identifying the optimal configuration of its parameters. Since 

this process typically involves navigating a complex 

hyperparameter search space, techniques such as grid search, 

random search, or Bayesian optimization are employed to 

identify the best-performing combinations [2]. 

Beyond simplifying complex modeling workflows, AutoML 

also offers the advantage of efficiently handling large-scale 

datasets. In ML projects, tasks such as selecting the most 

suitable model, managing training time, and optimizing model 

performance require considerable expertise. Mistakes in these 

processes can lead to significant performance degradation or 

unnecessary resource consumption. AutoML systems address 

these challenges by employing sophisticated optimization 

algorithms to ensure consistently high model performance. 

One of the most significant advantages of AutoML is its 

ability to enable users with limited knowledge in data 

engineering, data science, or statistics to build effective 

models. 

Key components of AutoML include automated model 

selection, hyperparameter optimization, feature engineering, 

and model evaluation. Automated model selection involves 

testing various model types and identifying the one that 

delivers optimal performance for a given dataset. This process 

allows the system to choose the best model without requiring 

users to understand which algorithm is most suitable for 

specific data types. Hyperparameter optimization focuses on 

enhancing a model’s performance by identifying the best 

configuration of its parameters. Given the complexity of the 

hyperparameter search space, techniques such as grid search, 

random search, and Bayesian optimization are commonly 

employed to identify the best-performing combinations. 

Feature engineering plays a crucial role in the success of 

AutoML. A model’s performance is often directly tied to the 

quality of the features used. However, manual feature 

engineering requires significant expertise and can be time-

consuming when identifying the most relevant features for 

each dataset. AutoML systems automate this process, 

performing feature extraction, selection, and transformation to 

identify features most suitable for the model. To further 

enhance this process, methods such as TL can be integrated 

into AutoML systems, enabling the transfer of knowledge 

from pre-trained models to new datasets. This is particularly 

beneficial in domains such as image and Natural Language 

Processing (NLP), where large volumes of data are required, 

as it can enhance model performance while reducing training 

time. 

The application domains of AutoML systems span a wide 

range, including business analytics, healthcare, financial 

modeling, and NLP. The increasing use of big data and 

complex data types (e.g., images and text) has expanded the 

effectiveness of AutoML systems, leading to new areas of 

application. Traditionally, achieving high performance in 

image and text processing required specialized deep learning 

architectures and significant computational resources. 

However, the integration of TL into AutoML has reduced 

these requirements, providing faster and more effective 

solutions. In this context, transfer learning-based feature 

engineering introduces a new dimension to AutoML systems, 

facilitating the reuse of features and yielding significant 

improvements in memory and resource efficiency [3]. 

Today, the development and optimization of AutoML systems 

have become critical for enhancing efficiency in data science 

workflows. However, feature engineering remains a limited 

component of existing AutoML systems, often relying on 

manual or semi-automated processes. There is a pressing need 

for methods that can effectively extract features and improve 

model performance across different data types (e.g., images, 

text, and tabular data). While TL has been widely applied in 

deep learning to reduce data and computational costs, its 

integration into the feature engineering stage of AutoML 

systems remains underexplored. Developing methods that 

leverage TL to optimize memory and computational 

resources, shorten training time, and enhance model accuracy 

represents a critical gap in the literature. This study 

systematically examines the impact of transfer learning-based 

feature engineering on AutoML systems, contributing to the 

growing body of research in this domain.  

AutoML not only makes complex modeling processes more 

accessible but also offers the advantage of efficiently handling 

large-scale datasets. In ML projects, tasks such as selecting 

the most appropriate model, managing training time, and 

optimizing model performance require detailed expertise after 

data preparation and preprocessing stages. Errors in these 

processes can lead to significant performance degradation or 

excessive resource consumption. To eliminate such 

dependencies on expertise, AutoML systems utilize 

sophisticated optimization algorithms to maintain high and 

consistent model performance. One of the most significant 

benefits of AutoML is its ability to enable users with limited 

knowledge in data engineering, data science, or statistics to 

build effective models. 

The core components of AutoML include automated model 

selection, hyperparameter optimization, feature engineering, 

and model evaluation. Automated model selection involves 

testing various model types and identifying the one that 

delivers the best performance for a given dataset. This step 

allows the system to select the optimal model without 

requiring users to understand which algorithm works best for 

specific data types. Hyperparameter optimization enhances a 

model’s performance by identifying the most suitable 

configurations. Since this process typically involves 

navigating a complex hyperparameter search space, methods 

such as grid search, random search, and Bayesian optimization 

are employed to identify the most effective parameter 

combinations [3]. 

Feature engineering, in particular, plays a crucial role in the 

success of AutoML systems. The performance of a model is 

often directly linked to the quality of the features used. 

However, manual feature engineering requires domain 

expertise and can be time-consuming when identifying the 

most relevant features for each dataset. AutoML systems 

automate this process by performing feature extraction, 

selection, and transformation, ensuring that the most suitable 

features are identified for the model. To further advance this 

process, techniques such as transfer learning can be integrated 

into AutoML systems. TL leverages the knowledge from pre-
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trained models and applies it to new datasets. This approach 

is particularly advantageous in fields like image processing 

and NLP, where large amounts of data are required, as it 

improves model performance while significantly reducing 

training time. 

The application domains of AutoML systems span a wide 

spectrum, including business analytics, healthcare, financial 

modeling, and NLP. The increasing prevalence of big data and 

complex data types (e.g., images and text) has enhanced the 

utility of AutoML systems, leading to new application areas. 

Traditionally, achieving high performance in image and text 

processing required specialized deep learning architectures 

and extensive computational resources. However, the 

integration of transfer learning into AutoML reduces these 

requirements, offering faster and more effective solutions. In 

this context, transfer learning-based feature engineering 

introduces a new dimension to AutoML systems, enabling the 

reuse of features and achieving significant memory and 

resource savings [4]. 

Today, the development and optimization of AutoML systems 

have become critical for improving efficiency in data science 

workflows. However, feature engineering remains a limited 

aspect of current AutoML systems, often relying on manual or 

semi-automated processes. There is an increasing need for 

methods that can effectively extract features and improve 

model performance across diverse data types (e.g., images, 

text, and tabular data). While transfer learning has been 

extensively applied in deep learning to reduce data and 

computational costs, its integration into the feature 

engineering process within AutoML systems has yet to be 

sufficiently explored. Developing methods that leverage 

transfer learning to optimize memory and computational 

resource usage, reduce training time, and enhance model 

accuracy represents a critical gap in the literature. Fig. 1 

illustrates the intersection of subjects explored in this study, 

providing a visual representation of the connections and 

overlaps among key areas. This study aims to systematically 

examine the impact of transfer learning-based feature 

engineering on AutoML systems, contributing to the existing 

body of knowledge in this area. 

 

Fig. 1. Intersection diagram of subjects. 

 

 

2. RELATED WORK 
ML can leverage transfer learning, where knowledge acquired 

from one problem domain is transferred to a related domain. 

Pre-trained models, such as those built on large-scale datasets, 

capture general patterns and provide a strong starting point for 

problem formulation. Fine-tuning these models for specific 

problem areas can save time and resources, thereby 

accelerating the problem-solving process. 

The NASNet model, trained on retinal images to predict 

diabetic retinopathy, utilized the Neural Architecture Search 

(NAS) technique to identify the optimal architecture. Transfer 

learning was applied during the training process, with pre-

trained weights assigned as the model’s initial weights. The 

model was trained on 3,113 images and validated on 549 

images, achieving an accuracy of 85% and a test accuracy of 

82%, demonstrating its effectiveness [5]. 

In another study introducing a novel dataset called TabRepo 

[6], evaluations and predictions on tabular data were 

presented. The dataset enables cost-effective analyses, such as 

hyperparameter optimization and ensemble methods, by 

leveraging precomputed model predictions for existing 

AutoML systems. It was also demonstrated that the dataset 

could be used for transfer learning. Specifically, the 

application of standard transfer learning techniques was 

claimed to outperform state-of-the-art tabular systems in 

terms of accuracy, runtime, and latency. 

Malakar et al. [7] discusses the use of ML methods for 

performance modeling in high-performance computing. It 

mentions that bagging, boosting, and deep neural network ML 

methods are promising approaches that do not require feature 

engineering. The study also demonstrates that cross-platform 

performance prediction can be significantly improved using 

TL with deep neural networks. 

In contrast, Anand et al. [8] emphasizes the importance of 

optimal descriptors and feature engineering in ML models for 

materials discovery. It introduces persistent functions (PFs) as 

an advanced geometrical and topological approach for feature 

engineering, which offers significant accuracy advantages 

over traditional descriptor-based models. 

While the papers do not provide a comprehensive 

benchmarking analysis of transfer learning-based feature 

engineering in AutoML systems, they highlight the 

importance of feature engineering and TL in different 

domains. Zöller and Huber [9] mentions that AutoML aims to 

enable domain experts to build ML applications automatically 

without extensive knowledge of statistics and ML, which 

could potentially include automated feature engineering 

techniques. However, the specific role of transfer learning-

based feature engineering in AutoML systems is not explicitly 

addressed in the given context. 

The experiments conducted using CIFAR-10, IMDB 

Reviews, and Adult Census Income datasets yielded diverse 

insights into model performance and training time across 

various approaches. 

For the CIFAR-10 dataset, several studies reported high 

classification accuracies using different techniques. An 

ensemble of K-Nearest Neighbors (KNN) and Convolutional 

Neural Network (CNN) improved accuracy from 93.33% to 

94.03% [10]. A modified VGG model achieved 95.06% 
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accuracy using the CQ+ training algorithm for Spiking Neural 

Networks (SNNs) [11]. Another study discovered networks 

reaching 93.67% accuracy through a novel deep neural 

network accuracy predictor, significantly reducing search 

time to just 400 seconds on a single GPU [12]. Regarding 

training time, one implementation reduced the training 

duration for CIFAR-10 from 8.2 hours to approximately 1 

minute using auto-tuning techniques [13]. 

Interestingly, contradictory findings were reported regarding 

batch size impact on CNN performance. While one study 

suggested that larger batch sizes lead to higher recognition 

accuracy [14], as well as You and Demmel [13] emphasized 

that only small batches of data could be processed at each 

iteration due to algorithm limitations. 

In conclusion, the experiments demonstrate that various 

approaches, including ensemble methods, SNNs, and auto-

tuning techniques, can achieve high accuracies on the CIFAR-

10 dataset while significantly reducing training time. For the 

IMDB Reviews dataset, a deep learning-based model using 

Word2Vec and a combination of Bidirectional Gated 

Recurrent Units and Convolution layers achieved 95.34% 

accuracy, outperforming previous studies [15]. However, 

limited information was provided about experiments on the 

Adult Census Income dataset in the given context. 
 

3. METHODS 
The research employed three diverse datasets—CIFAR-10 for 

image classification, IMDB Reviews for sentiment analysis, 

and Adult Census Income for predictive modeling on tabular 

data—to ensure broad applicability of the findings. Each 

dataset was preprocessed and augmented to enhance model 

robustness and generalizability. For CIFAR-10, data 

augmentation involved applying random rotations, horizontal 

flips, and cropping techniques to diversify the training images. 

IMDB Reviews utilized back-translation to generate 

syntactically varied yet semantically consistent examples, 

enriching the linguistic diversity of the dataset. Meanwhile, 

the Adult Census Income dataset employed the Synthetic 

Minority Oversampling Technique (SMOTE) to balance class 

distributions, addressing issues of class imbalance common in 

tabular datasets. 

To evaluate performance, several metrics were considered, 

including accuracy, F1-score, training time, and memory 

utilization. Transfer learning was implemented using pre-

trained models—CNNs for CIFAR-10, transformer-based 

models like BERT for IMDB Reviews, and domain-specific 

embeddings for Adult Census Income. These models were 

fine-tuned on the respective datasets to assess their 

effectiveness in improving feature engineering outcomes 

within the AutoML framework. Experimental setups were 

designed to compare traditional manual feature engineering, 

standard AutoML, and transfer learning-enhanced AutoML 

approaches under identical conditions. 

3.1. Datasets and Related Factors 
The CIFAR-10 dataset [16], comprising the classes Airplane, 

Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and 

Truck, possesses the attributes listed in Table I. Widely 

utilized in computer vision research, the CIFAR-10 dataset is 

a benchmark for developing and comparing image 

classification algorithms. Consisting of 60,000 RGB images 

categorized into 10 distinct classes, this dataset provides 

researchers with a balanced and diverse dataset for solving 

multi-class classification problems. It facilitates the 

evaluation of the effectiveness of deep learning architectures, 

such as CNNs. Its relatively small size and standardized 

format make it particularly suitable for testing novel network 

architectures, hyperparameter tuning, and TL approaches, 

especially in tasks where computational efficiency and 

reproducibility are critical. 

TABLE I  

LIST OF VARIABLES IN CIFAR-10 DATASET 

Feature Description Type 

Image RGB image Continuous 

Label Image category Categorical 

 

The IMDB Reviews dataset [17] listed in Table II, serves as a 

critical resource in NLP, particularly for sentiment analysis 

research. This dataset comprises 50,000 movie reviews 

labeled as either positive or negative, enabling researchers to 

develop and evaluate ML models for sentiment analysis. Its 

balanced class distribution and real-world linguistic diversity 

make it a robust benchmark for text classification tasks, 

including the evaluation of Recurrent Neural Networks 

(RNNs), transformers, and embedding-based architectures. 

Furthermore, it facilitates advancements in understanding the 

linguistic nuances and challenges associated with NLP. 

TABLE II 

LIST OF VARIABLES IN IMDB REVIEWS DATASET 
Feature Description Type 

Review Text User review text Continuous 

Sentiment 
Sentiment analysis 

(0=Negative, 

1=Positive) 

Categorical 

 
TABLE III  

LIST OF VARIABLES IN ADULT CENSUS INCOME DATASET 
Feature Description Type 

Age Person’s age Continuous 

Workclass 

Type of employer 

(e.g., Private, Self-
emp) 

Categorical 

Education 
Level of education 

(e.g., Bachelors) 
Categorical 

Education-num Years of education Continuous 

Marital-status 
Marital status (e.g., 

Married, Divorced) 
Categorical 

Occupation 
Type of occupation 

(e.g., Tech-support) 
Categorical 

Relationship 

Family role (e.g., 

Husband, Not-in-

family) 

Categorical 

Race 
Race (e.g., White, 

Black) 
Categorical 

Sex 
Gender (0=Female, 

1=Male) 
Categorical 

Capital-gain Capital gain Continuous 

Capital-loss Capital loss Continuous 

Hours-per-week 
Weekly working 

hours 
Continuous 

Native-country 
Country of origin 

(e.g., United States) 
Categorical 

Income 
Income category 

(<=50K, >50K) 
Categorical 

 

The Adult Census Income dataset [18] listed in Table III, is 

widely utilized in applied ML research for predictive 

modeling and socio-economic analysis. Featuring 
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demographic and employment-related attributes such as age, 

education, occupation, and income, it is well-suited for tasks 

such as binary classification, feature selection, and fairness 

analysis. Frequently used to investigate the impact of socio-

economic factors on income prediction, this dataset provides 

a rich context for the development and validation of 

classification models, including decision trees, ensemble 

methods, and logistic regression. Additionally, it serves as an 

effective resource for examining algorithmic bias and ethical 

implications in ML. 

 
3.2. Synthetic Data Augmentation 
Enhancing datasets in AutoML processes is a critical topic, 

particularly for supporting fundamental tasks such as NAS, 

hyperparameter optimization, and feature engineering. 

Synthetic data generation and augmentation are proposed as 

effective methods to strengthen datasets in these contexts. 

This section details the main components and implementation 

steps of the proposed hybrid approach. 

In CIFAR-10 dataset, data augmentation techniques were 

employed to improve the performance of image classification 

models and mitigate overfitting. Geometric transformations 

were applied, including random rotations within a specified 

angle range, horizontal flipping, and cropping. These 

transformations were implemented using the 

torchvision.transforms library. By introducing diversity into 

the dataset, this method aimed to enhance the model’s 

generalization capability. The anticipated benefits include 

reducing inter-class performance disparities and enabling the 

model to produce more consistent results for images presented 

from different angles or scales. 

For IMDB Reviews dataset, back-translation was used to 

increase the diversity of text data and balance class 

distributions. In this approach, reviews were translated into an 

intermediate language and then back to the original language, 

creating semantically consistent yet syntactically distinct new 

examples. The googletrans library was employed for the 

translation tasks. This method aimed to introduce linguistic 

variation into the training dataset, enhancing the model's 

sensitivity to different expressions of the same meaning. The 

expected outcomes include improved classification of 

semantically similar yet structurally diverse language 

constructs and better representation of minority classes. 

As for Adult Census Income dataset, the SMOTE was applied 

to address class imbalance. This method analyzed similarities 

among minority-class instances and generated new synthetic 

samples via interpolation. The imblearn library was used to 

perform this process. By increasing observations in the low-

income class, SMOTE balanced the class distribution while 

improving the model’s ability to learn from minority-class 

examples. The expected benefits include reducing 

performance discrepancies across classes and producing less 

biased, more consistent predictions. 

The steps followed in the synthetic data augmentation process 

are outlined as follows: 

• Model Selection and Training: Based on the complexity 

of the dataset and the targeted application, Generative 

Adversarial Networks (GANs) or Variational 

Autoencoders (VAEs) models are selected and trained. 

• Data Generation: The trained model generates new data 

samples that align with the original data distribution and 

augment rare instances. 

• Data Integration: The synthetic data is integrated with the 

original dataset to create a balanced and more diverse 

training dataset. 

 

3.3. Neural Architecture Search and Data Diversity 

In AutoML processes, NAS is a critical step aimed at 

identifying the optimal model architecture for a given dataset. 

A diverse and balanced training dataset enables the NAS 

process to explore a broader search space and discover more 

robust models. This study investigates how synthetic data can 

be effectively utilized to enhance diversity within the NAS 

process. 

By incorporating diverse synthetic datasets into the NAS 

process, models are trained not only on common examples but 

also on edge cases, improving their resilience to rare and 

extreme scenarios. However, based on weaknesses identified 

during the NAS process, such as misclassification tendencies 

or specific limitations, Generative AI algorithms can 

dynamically produce data tailored to these needs. This 

adaptive approach allows the NAS process to iteratively refine 

itself and achieve optimal results more efficiently. 

3.4. Hyperparameter Optimization  

In AutoML processes, hyperparameter optimization is a 

fundamental step in enhancing model performance. During 

the optimization process, data generated by Generative AI can 

be tested across a broader range of hyperparameters, offering 

the potential to improve model performance under varying 

data conditions. Synthetic data, particularly in data-scarce 

domains, enhances the model’s generalization capabilities and 

enables precise tuning of parameters. 

A more comprehensive search space is established by testing 

diverse hyperparameter combinations using various data 

types. However, hyperparameter combinations that maximize 

model performance are identified through testing on synthetic 

datasets.  

3.5. Experimental Setup 

The experiments were designed to evaluate the impact of TL 

on AutoML systems across three distinct data modalities: 

images, text, and tabular data. Each experiment involved a 

comparative analysis of three approaches: traditional manual 

feature engineering, standard AutoML, and transfer learning-

enhanced AutoML. The experiments were conducted on a 

controlled computing environment with the following 

specifications: 16-core CPUs, NVIDIA Titan V GPUs, and 64 

GB of RAM to ensure computational consistency. Python was 

used as the primary programming language for 

implementation, and experiments were conducted within the 

Jupyter Notebook environment, leveraging TensorFlow and 

Scikit-learn for modeling and evaluation. TensorFlow was 

employed for TL and fine-tuning pre-trained models, while 

Scikit-learn was used for traditional machine learning 

workflows and hyperparameter optimization. 

Experimental procedure is held specified below. Also 

memory utilization was monitored to assess the computational 

efficiency of each approach. 
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• Each dataset was subjected to the three feature 

engineering approaches. 

• Hyperparameter optimization was conducted using grid 

search for manual and standard AutoML approaches, 

while pre-trained model fine-tuning was employed for the 

transfer learning-enhanced pipeline. 

• The experiments were repeated five times with different 

random seeds to ensure statistical significance. 
 

3.6. Performance Assessment  

Performance metrics such as F1-score, specificity, sensitivity, 

positive and negative predictive values, accuracy, and 

balanced accuracy are commonly used to evaluate and 

compare classification models. Accuracy measures the 

proportion of correct predictions out of all predictions made.  

Balanced accuracy adjusts for class imbalances by calculating 

the accuracy for each class separately and averaging the 

results. Specificity quantifies the proportion of true negatives 

among all negative samples, while sensitivity (or recall) 

measures the proportion of true positives among all positive 

samples. 

Positive predictive value (often referred to as precision) 

indicates the percentage of true positives among all positive 

predictions, whereas negative predictive value represents the 

proportion of true negatives among all negative predictions. 

The F1-score combines precision and recall into a single 

metric by calculating their harmonic mean, offering a 

balanced perspective on model performance, especially for 

imbalanced datasets.  

These metrics enable a comprehensive comparison of 

classification systems across various datasets. The confusion 

matrix summarizing these performance criteria is shown in 

Table IV. 

TABLE IV 

CONFUSION MATRIX FOR PERFORMANCE  

 
Actual 

Positive Negative Total 

P
r
e
d

ic
te

d
 

Positive True Positive (TP) False Negative (FN) TP+FN 

Negative False Positive (FP) True Negative (TN) FP+TN 

Total TP+FP FN+TN 
TP+TN+ 

FP+FN 

 

• Accuracy is the proportion of correctly classified 

samples (true positives and true negatives) to the 

total number of samples ((TP + TN) / (TP + TN + FP 

+ FN)). 

• Sensitivity is the ratio of true positives to the sum of 

true positives and false negatives (TP / (TP + FN)). 

• Specificity is the ratio of true negatives to the sum of 

true negatives and false positives (TN / (TN + FP)). 

• Positive Predictive Value is the proportion of true 

positives among all positive predictions (TP / (TP + 

FP)). 

• Negative Predictive Value is the proportion of true 

negatives among all negative predictions (TN / (TN 

+ FN)). 

• F1-Score is the harmonic mean of precision and 

recall, calculated as (2 × TP) / (2 × TP + FP + FN). 

 

4. RESULTS  

The integration of TL into AutoML demonstrated significant 

improvements in both model performance and computational 

efficiency. For CIFAR-10, the accuracy increased by 20%, 

while training times were reduced by 50%. IMDB Reviews 

showed a notable improvement in F1-score, rising from 0.81 

to 0.93, alongside a 40% reduction in memory utilization. In 

the case of Adult Census Income, the balanced accuracy 

improved by 10%, with a corresponding reduction in 

computational resource usage. 

The quantitative comparisons between the three approaches—

manual feature engineering, standard AutoML, and transfer 

learning-enhanced AutoML—highlighted the clear 

advantages of incorporating TL. These results are summarized 

in Table V. 

TABLE V  
QUANTITATIVE COMPARISONS AMONG THREE APPROACHES 

Metric 
Manual Feature 

Engineering 

Standard 

AutoML 

Transfer 

Learning-

AutoML 

Accuracy 0.78 0.84 0.92 

F1-Score 0.72 0.81 0.93 

Training Time 

Reduction 
- 25% 45% 

Memory 

Utilization (%) 
98 85 70 

 

The dataset-specific insights reveal how TL adapts effectively 

to different modalities. Table VI provides an overview of the 

accuracy improvements and computational gains achieved for 

each dataset: 

TABLE VI 

ACCURACY IMPROVEMENTS AND COMPUTATIONAL GAINS 

ACHIEVED FOR EACH DATASET 

Dataset 
Accuracy 

Improvement (%) 

Training 

Time 

Reduction 

(%) 

Memory 

Reduction 

(%) 

CIFAR-10 20 50 35 

IMDB 

Reviews 
15 40 40 

Adult 

Census 
10 30 25 

 

Table VII showcases the classification matrix for the IMDB 

Reviews dataset, distinguishing between “Occurrence” 

(positive sentiment) and “Non-Occurrence” (negative 

sentiment): 

TABLE VII 

CLASSIFICATION MATRIX FOR IMDB REVIEWS DATASET 

Prediction Non-Occurrence Occurrence Total 

Non-Occurrence 2300 200 2500 

Occurrence 150 2350 2500 

Total 2450 2550 5000 
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As shown in Table VIII, The performance evaluation of the 

three datasets—CIFAR-10, IMDB Reviews, and Adult 

Census Income—demonstrates the effectiveness of 

integrating TL into AutoML workflows. 

 

TABLE VIII 

PERFORMANCE METRICS FOR ALL THREE MODELS 

Metric/ Dataset CIFAR-10 IMDB Reviews 

Adult 

Census 

Income 

Accuracy 0.88 0.93 0.85 

Balanced 

Accuracy 
0.86 0.92 0.84 

Sensitivity 0.89 0.94 0.83 

Specificity 0.83 0.91 0.87 

Positive 

Predictive Value 
0.85 0.92 0.84 

Negative 

Predictive Value 
0.87 0.93 0.86 

F1-Score 0.86 0.93 0.85 

 

For CIFAR-10, which focuses on image classification, the 

model achieved an accuracy of 88% and a balanced accuracy 

of 86%, indicating strong generalization capabilities across its 

diverse image categories. The high sensitivity of 89% 

suggests that the model effectively detects true positives, 

while the specificity of 83% reflects a slightly lower but still 

commendable ability to identify true negatives. These results 

showcase the suitability of transfer learning for high-

dimensional visual data, where pre-trained CNNs contribute 

significantly to both feature extraction and classification 

accuracy. The moderate improvement in F1-score (0.86) 

further highlights the balanced performance across precision 

and recall metrics, critical for robust image classification. 

For IMDB Reviews, which represents an NLP use case, the 

transfer learning-enhanced AutoML system achieved the 

highest performance among the datasets, with an accuracy of 

93% and a balanced accuracy of 92%. The high sensitivity 

(94%) and specificity (91%) indicate that the model reliably 

identifies both positive and negative sentiments, making it 

particularly effective for binary text classification. This 

performance underscores the power of leveraging pre-trained 

transformer models such as BERT, which capture semantic 

and syntactic nuances in textual data. In comparison, the Adult 

Census dataset, a tabular data problem, demonstrated 

competitive performance with an accuracy of 85% and a 

balanced accuracy of 84%. The sensitivity (83%) and 

specificity (87%) metrics reveal that the model performs well 

in detecting income classes, albeit with slightly less precision 

compared to the other datasets. These results indicate that 

while transfer learning is highly effective across modalities, 

the degree of improvement is influenced by the complexity 

and dimensionality of the data type, with text and image 

datasets benefiting the most. 
 

5. DISCUSSION AND CONCLUSION 

The findings underscore the transformative potential of 

integrating transfer learning into AutoML systems. By 

leveraging pre-trained models, transfer learning reduces the 

dependency on domain expertise for feature engineering, 

enabling faster and more accurate model development. This 

approach is particularly advantageous for datasets with 

complex or high-dimensional features, where traditional 

manual methods often fall short. The results validate the 

hypothesis that transfer learning enhances the overall 

efficiency of AutoML, both in terms of computational 

resources and model performance. 

The benefits of this integration are manifold. First, it 

significantly reduces the computational overhead associated 

with feature engineering, as demonstrated by the substantial 

reductions in memory utilization and training times. Second, 

it improves the generalizability of models across unseen 

datasets, as evidenced by the higher accuracy and F1-scores 

achieved in the experiments. Third, the adaptability of transfer 

learning to diverse data modalities ensures its scalability for 

various real-world applications. 

Future research directions should focus on the development of 

adaptive transfer learning techniques tailored to specific 

domains. For instance, creating modular frameworks that can 

dynamically adjust pre-trained model parameters based on 

dataset characteristics could further enhance performance. 

Another potential avenue is the exploration of meta-learning 

approaches within AutoML systems, where transfer learning 

could be integrated with automated model evaluation to create 

highly efficient pipelines. Additionally, incorporating 

explainability into transfer learning-enhanced AutoML 

systems could help stakeholders better understand and trust 

the decision-making process, especially in sensitive domains 

like healthcare and finance. The intersection of transfer 

learning with federated learning also represents an exciting 

frontier, enabling privacy-preserving yet efficient feature 

engineering across distributed datasets. 
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