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Abstract  Öz 

Accurate electricity load forecasting is crucial for power 

system planning, reliability, and sustainability, enabling 

more efficient markets and reduced greenhouse gas 

emissions. This study leverages deep learning algorithms, 

specifically bidirectional recurrent neural networks, to 

develop a unified model for predicting one day-ahead 

electricity demand for the entire year of 2023. The model's 

performance was evaluated on a monthly basis, allowing for 

a detailed assessment of its forecasting capabilities across 

different time periods. Four neural network algorithms were 

compared: Long Short-Term Memory (LSTM), 

Bidirectional LSTM, Gated Recurrent Unit (GRU), and 

Bidirectional GRU. The GRU model demonstrated superior 

performance, achieving an R-squared value of 0.8526 in 

October and a Mean Absolute Percentage Error (MAPE) of 

2.34% in March. These results highlight the potential of the 

proposed model as an effective tool for electricity demand 

forecasting, supporting the integration of renewable energy 

sources and enhancing grid resilience. 

 Doğru elektrik yük tahmini, elektrik sistemi planlaması, 

güvenilirliği ve sürdürülebilirliği için çok önemlidir ve daha 

verimli piyasalar ile azaltılmış sera gazı emisyonlarına 

olanak tanır. Bu çalışma, 2023 yılının tamamı için bir gün 

önceden elektrik talebini tahmin etmek üzere birleşik bir 

model geliştirmek amacıyla, özellikle çift yönlü tekrarlayan 

sinir ağları olmak üzere, derin öğrenme algoritmalarından 

yararlanmaktadır. Modelin performansı aylık bazda 

değerlendirilmiş olup, farklı zaman dilimleri boyunca tahmin 

yeteneklerinin ayrıntılı bir değerlendirmesine olanak 

sağlamıştır. Dört sinir ağı algoritması karşılaştırılmıştır: 

Uzun Kısa Süreli Bellek (LSTM), Çift Yönlü LSTM, Gated 

Recurrent Unit (GRU) ve Çift Yönlü GRU. GRU modeli 

üstün performans sergileyerek, Ekim ayında 0.8526 R-kare 

değeri ve Mart ayında %2.34 Ortalama Mutlak Yüzde Hatası 

(MAPE) elde etmiştir. Bu sonuçlar, önerilen modelin 

elektrik talep tahmini için etkili bir araç olma potansiyelini 

vurgulamakta, yenilenebilir enerji kaynaklarının 

entegrasyonunu desteklemekte ve şebeke dayanıklılığını 

artırmaktadır. 

Keywords: Load forecasting, Long short-term memory, 

Gated recurrent unit, Bidirectional recurrent neural networks  

 Anahtar kelimeler: Yük tahmini, Uzun kısa süreli bellek, 

Geçitli tekrarlayan birim, Çift yönlü tekrarlayan sinir ağları 

1 Introduction 

Electric energy plays a crucial role in every aspect of 

modern life, from everyday activities to the implementation 

of national strategies for sustainable development. As global 

electricity consumption continues to rise, unregulated 

growth may lead to excessive energy production and 

unnecessary resource usage. To address this challenge, 

accurate load forecasting becomes essential. By estimating 

future power demand, utility providers can avoid generating 

surplus electricity, thereby enhancing operational efficiency 

and reducing financial losses. Beyond minimizing waste, 

load forecasting is a fundamental component of power 

system planning and operation. It enables grid operators to 

balance supply and demand more effectively, schedule 

generation units optimally, and ensure system stability. 

Moreover, accurate load predictions contribute to the 

reliability of electricity delivery and help prevent potential 

blackouts. A clear understanding of future demand also 

supports infrastructure development and improves the 

integration of renewable energy sources into the grid. 

Additionally, accurate forecasting plays a pivotal role in 

electricity markets, where pricing and bidding strategies 

heavily depend on anticipated demand. Energy producers 

and distributors depend on these forecasts to guide strategic 

decisions related to trading volumes, contract management, 

and maintaining a competitive edge in the market. Therefore, 

in the face of rising demand and growing system complexity, 

the ability to forecast load with precision has become a 

strategic necessity not only for minimizing overproduction 

and preventing outages, but also for enhancing economic 

planning, mitigating environmental impact, and ensuring 

reliable service delivery to consumers. 

The estimate of energy consumption can be calculated 

using a number of methods, including regression analysis 

processes, exponential smoothing forecast method, straight 

line basis depreciation calculator, and artificial intelligence 

technologies. The multiplicity of methods for predicting 
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electrical loads is because electrical loads are non-linear and 

may be influenced by numerous factors such as weather and 

economic factors. Because of this, the prediction accuracy of 

traditional nonlinear models is unable to meet the accuracy 

requirements of modern energy management systems. 

The power industry has developed rapidly over the past 

few years due to the fast economic expansion. The electric 

power industry relies heavily on power load forecasting, 

which forms the foundation for various operations such as 

energy storage management, strategies for economic 

dispatching, facility upkeep plans, and future energy 

contracts [1]. 

Approaches to estimating electricity consumption have 

been categorized into two categories: conventional and 

artificial intelligence techniques. Conventional power load 

forecasting techniques such as regression analysis used to 

estimate and detect how the predicted and actual values 

relate to one another [2]. Moreover, conventional methods 

are easy to understand and apply, their limitations include 

low prediction accuracy, high sample data stationarity 

requirements, and limited ability to handle datasets with 

many features. Artificial intelligence techniques, on the other 

hand, is capable of handling several characteristics and many 

types of data structures. with great prediction accuracy and 

controllable generalization errors. 

There has been a noticeable shift in the world's electrical 

supply networks within the past several years. These shifts 

included a trend towards smart grids, cloud computing for 

data management, and storing clean energy for resilience. 

Approaches to estimating electricity consumption that start 

with conventional methods and end with deep learning 

techniques play a crucial role in this change. 

Deep learning technology is based on stacking several 

layers of neural networks with the use of enormous amounts 

of well-annotated datasets, such as inventory, financial, and 

climatic data. It is also applied in enormous fields, such as 

automated driving, natural language processing, game 

strategies, and image recognition, and thus, a wide variety of 

training algorithms of neural networks like backpropagation 

might be used to adjust the weights during the training 

models [3]. Activation function can also be used in hidden 

layers like ReLU [4] or GeLU [5]. Furthermore, by taking 

advantage of regularization techniques, the dropout 

technique prevents neural networks from overfitting. 

A Recurrent Neural Network (RNN) is a type of very 

efficient deep learning variation network that has been 

extensively developed to perform temporal analysis and 

modeling and has already generated a great deal of interest 

due to its remarkable versatility in uncovering underlying 

sequential and non-linear correlations [6]. Because of their 

unique structural design, RNNs have received a lot of 

attention lately for their outstanding performance in many 

fields of prediction approaches. 

The vanishing gradient issue that the RNN model ran into 

made it unable to produce good results and exposed a 

significant flaw. The reason is that using the similar weights 

to assess yield at every phase of the data preparation process 

may produce unreliable results. However, the gradient can 

decline over layers as a result of using the sigmoid and 

hyperbolic tangent functions as the activation function in 

these variations. Another solution has come for the vanishing 

gradient issue through proposed several RNN variations 

models with the ability to selectively forget or remember the 

relevant information such as the Long Short-Term Memory 

(LSTM) or the Gated Recurrent Unit (GRU) [7]. 

Bidirectional models are another sort of RNN that analyses 

sequential data in both forward and backward orientations, 

they combine the capabilities of a model with bidirectional 

processing, enabling the model to capture the input 

sequences' past and future context [8]. 

This study aims to address the problem of short-term 

electricity load forecasting by developing and evaluating 

four advanced deep learning models: LSTM, bidirectional 

LSTM, GRU, and bidirectional GRU. The main objective is 

to perform one-day-ahead power demand prediction for each 

day of the year 2023, using historical hourly consumption 

data spanning over nine years. Such a long training period 

allows the models to capture both short and long-term 

temporal dependencies, including daily, weekly, and 

seasonal cycles. 

A major contribution of this work is the comparative 

performance analysis between unidirectional and 

bidirectional architectures. Bidirectional models are 

designed to process data in both forward and backward 

directions during training, potentially enhancing learning 

from complex sequences and improving forecast accuracy. 

By including these architectures, the study examines whether 

incorporating future context improves prediction quality for 

power demand data.  

Another key aspect of this work is the application of a 

rolling a day-ahead forecasting approach across the entire 

year of 2023. This approach involves generating a prediction 

for each day based on all prior real data, allowing for a more 

realistic evaluation that mirrors operational conditions. The 

use of this method provides a comprehensive view of model 

performance across the year, enabling the identification of 

trends and shifts in prediction accuracy over time. It also 

helps in distinguishing specific periods, particularly those 

marked by abrupt changes in demand or external factors, 

where forecast reliability may decline. Furthermore, this 

study provides valuable insights for energy planners by 

presenting monthly evaluations and visual comparisons 

between actual and predicted loads. The results highlight 

improved accuracy during stable weather periods, 

underscoring the influence of environmental conditions on 

model performance. Thus, indicates the potential need to 

incorporate additional data, in addition to the power demand, 

for weather factors such as temperature or humidity into 

future models. 

This section in this paper provides an overview of 

electricity power forecasting, and the sections that follow are 

organized as follows: Section 2 introduces the algorithms 

used and earlier researches. Section 3 describes the dataset, 

tuning the hyperparameters, and the experiments conducted 

to assess the effectiveness of the suggested approach. Section 

4 illustrates the experimental results and compares the 

outcomes of the used models. Section 5 concludes the study. 
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2 Neural networks framework for load forecasting 

A key tool used by power companies to estimate the 

power required to balance supply and load demand in the 

power system is load forecasting. Forecasting techniques 

such as artificial neural networks are predicated on 

elementary mathematical models of the human brain, they 

permit intricate nonlinear correlations between the predictors 

and the dependent variables. Over the last years, there has 

been a massive increase in research activity due to the 

growing interest in employing Artificial Neural Networks 

(ANNs) for predicting. Although ANNs have a lot of 

potential, there is also a lot of ambiguity around them. 

Researchers are still unsure about how important elements 

affect ANN predicting performance [9]. Although it might 

seem like a novel notion, the term Deep Learning (DL) dates 

back to the 1940s and has undergone around three waves of 

developments. DL was first popularized as cybernetics 

during the first wave, which lasted from 1940 to 1960. Later, 

in the 1980s and 1990s, it became known as connectionism 

[10]. The most recent revival of this concept was initiated by 

Goodfellow et al. [11]. Attempting to address the many 

limitations that ANNs have, such as handling large amounts 

of data that result in the vanishing gradient issue or handling 

complicated nonlinear data that causes the prediction to 

perform poorly. Consequently, its benefit over other RNNs, 

hidden Markov model, and other sequence learning 

techniques is its relative insensitivity to gap length. 

There are now new models available that come to light to 

attempt to address these limitations of ANNs by offering 

features like a LSTM model -which is one of tens of other 

models- that may span thousands of timesteps [12]. These 

models will be highlighted in the following section. 

2.1 Long short-term memory model 

LSTM networks are renowned for their remarkable 

capacity to learn and understand the nuances of order 

dependency in sequence prediction tasks. Mozer [13] has 

initially proposed this concept in 1989, his primary area of 

study was backpropagation algorithms. At that moment, he 

focused on solving a mathematical problem related to the 

activation context unit, considering how the residual 

connection in the constant error loop should correct the 

actual value to one. Afterwards in 1997, Hochreiter and 

Schmidhuber [12] cited Mozer's work and presented an 

effective gradient-based technique called long short-term 

memory. They have worked on solving the problem of 

vanishing or exploding gradients that occur in long term 

dependencies that may cause the forget gate to reset the 

existing weight, by defining the Constant Error Carousel 

(CEC) which maintains the state to a fixed weight. The 

addition of this approach to the initial version of the LSTM, 

which consisted of only cells with input and output gates, 

was considered a great success in the RNN architecture and 

has been very popular in many subsequent applications. 

Kong et al. [14] assessed actual data from home smart meters 

and contrasted their findings with many standards, such as 

the most recent technology in load forecasting using LSTM, 

the model yields superior short-term load forecasts for 

individual residential families when compared to competing 

algorithms. Motepe et al. [15] conducted experiments and 

found that using both LSTM and neural fuzzy logic for a 

power distribution network produced better outcomes than 

alternative methods. 

Traditional feedforward neural networks are 

fundamentally different from RNNs. Since no hidden unit in 

an RNN is autonomous, the temporal relationships between 

historical and present data are established through 

sequences. The fundamental structure of a single RNN unit 

is depicted in Figure 1. Module (A) of the neural network 

gets xi as input, while hi as the output. In the sequence, the 

neural network is replicated several times, with each neural 

network module transmitting data to the next in the queue. 

The information flows from one step to the next in this 

manner. Every stage of the RNN procedure was repeated 

starting from the stage next to the input. This type of 

methodology significantly reduces the number of parameters 

the networks must learn and shortens the training period by 

repeating the product of the training process, which assures 

precision. 

 

 

Figure 1. Schematic of the folded (left) and unfolded 

RNN cell (right) 

 

Time series analysis prerequisites shows that an RNN's 

decision at time t-1 may be impacted by time t. Because of 

this particular property, RNNs are ideally suited to handle 

load prediction problems that arise in the setting of 

individual short-term residential load forecasting [14]. The 

problem of vanishing gradients, where the long-term 

components' gradient norm experiences an exponential 

decline, has been observed to make it difficult to acquire 

long-term dependencies using RNNs. The solution to this 

problem was to engineer an LSTM network with an added 

forget gate. 

Structure of the input, output, and forget gate make up an 

LSTM unit in general. The three gates are linked in such a 

way that the cell state is linked to them, which is responsible 

for storing information over time, while the hidden state 

leads to the transfer of information to the next step. Figure 2 

shows the three control gates of a LSTM cell: input, output, 

and forget gates. The network's output will be impacted by 

this input continuously and continuously starting at the 

beginning of the input processing phase. As an example, let 

us use the normal input sequence for an LSTM is xt = {x1, x2, 

x3, ..., xT}, where xt represents each real vector value. The 

LSTM cell maintains an internal memory state throughout its 

operation to capture temporal dependencies. Using the 

current input xt, the previous hidden state ht-1, and the 

previous internal cell state ct, the network determines which 

parts of the memory should be updated, retained, or erased. 
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This process allows the LSTM to effectively incorporate 

both current and past information when managing its internal 

state. 

 

 

Figure 2. LSTM cell 

 

The LSTM structure consists of the internal state vector 

as well as the input gate it, the output ht, forget get gate ft, and 

output gate ot. Starting with the forget gate, the LSTM is 

updating its state with each step according Equation 1: 

 

𝑓𝑡 =  𝜎 (𝑊𝑓𝑥  𝑥𝑡 + 𝑈𝑓ℎ  ℎ𝑡−1 + 𝑏𝑓) (1) 

 

Here, σ denotes the activation function sigmoid, 𝑊𝑓𝑥 

denotes the input weight matrix of the forget gate, 𝑥𝑡 denotes 

the current input vector, 𝑈𝑓ℎ denotes the recurrent weight 

matrix of the forget gate, ℎ𝑡−1 denotes the previous output, 

and 𝑏𝑓 denotes the bias of the forget gate. The input gate 

itself updated by Equation 2:  

 

 𝑖𝑡 =  𝜎 (𝑊𝑖𝑥  𝑥𝑡 +  𝑈𝑖ℎ  ℎ𝑡−1 +  𝑏𝑖) (2) 

 

In this context, 𝑊𝑖𝑥 refers to the input weight matrix of 

the input gate, 𝑈𝑖ℎ refers to the recurrent weight matrix of the 

input gate, and 𝑏𝑖 refers to bias of the forget gate. The output 

gate 𝑜𝑡 is just similar to the forget gate and input gate it, all 

of them are using the sigmoid 𝜎 as an activation function. 

The output gate 𝑜𝑡 can be expressed by Equation 3: 

 

𝑜𝑡 =  𝜎 (𝑊𝑜𝑥𝑥𝑡 + 𝑈𝑜ℎℎ𝑡−1 + 𝑏𝑜) (3) 

 

Where 𝑊𝑜𝑥 denotes the input weight matrix of the output 

gate, 𝑈𝑜ℎ denotes the recurrent weight matrix of the output 

gate, and 𝑏𝑜 denotes the bias of the output gate. The internal 

state is updating by its self-loop by Equation 4: 

 

𝑐𝑡 = 𝑓𝑡  𝑐𝑡−1 + 𝑖𝑡  𝜎 (𝑊𝑐𝑥𝑥𝑡 +  𝑈𝑐ℎℎ𝑡−1 + 𝑏𝑐) (4) 

 

Where 𝑊𝑐𝑥 denotes the input weight matrix of the 

internal state, 𝑈𝑐ℎ denotes the recurrent weight matrix of 

internal state, and 𝑏𝑐 is the bias of the internal state. The 

output ht is regulated by the output gate 𝑜𝑡 and the internal 

state 𝑐𝑡, enabling the LSTM cell to control the flow of 

information to the next time step. This relationship is 

mathematically defined in Equation 5: 

 

ℎ𝑡 =  𝑡𝑎𝑛ℎ (𝑐𝑡) 𝑜𝑡  (5) 

 

Here, 𝑡𝑎𝑛ℎ represents the hyperbolic tangent activation 

function. The sigmoid activation function σ, is given by 

Equation 6: 

 

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 (6) 

 

Equation 7 can be used to express the hyperbolic tangent 

function, or tanh: 

 

𝑡𝑎𝑛ℎ (𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (7) 

 

The output ℎ𝑡 at the current time 𝑡 can be calculated by 

Equation 5, while, ht-1 in Equations 1-4 refers to the output 

at prior time t-1. 

Referring to Figure 2, each × inside the tiny circles 

represents the Hadamard product (also known as the 

entrywise product) carried out between each of its inputs 

separately [16]. Large circular forms with an S-shaped curve 

within represent applying a differentiable function to a 

weighted sum, such as the sigmoid function. In addition, 

every LSTM layer has a dropout layer added to it to prevent 

overfitting in neural network modeling, this will be covered 

in more detail in hyperparameters tuning and optimizers 

section. 

2.2 Gated recurrent unit model 

In RNNs, the GRUs are a gating mechanism that first 

introduced by Cho et al. [17]. GRU network has fewer 

parameters than an LSTM network because it lacks an output 

gate, and it merges the input and forget gate into a single 

update gate, additionally, it has a reset gate. However, both 

models share a gating mechanism for inputting or forgetting 

particular features. It has been demonstrated that smaller and 

less frequent datasets get superior results from GRUs [18]. 

Figure 3 graphically and structurally illustrates the fully 

gated version of GRU. Reset, update, and a temporary output 

gate makes up a GRU in general [19]. 

 

 

Figure 3. Basic structure of GRU 

 

As an example, let us use the normal input sequence for 

a GRU model as xt = {x1, x2, x3, ……., xT}, where xt 

represents each real vector value. The full gated unit of the 

GRU cell comes with many variations, where gating can be 

done in different ways utilizing the previous hidden and the 

biased state. The GRU structure consists of input vector xt, 
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the output ℎ𝑡, update gate  𝑢𝑡 , and reset gate vector rt. The 

GRU mechanism utilizes the previous hidden state ht-1 and a 

bias term to regulate the flow of information. Given input 

sequence will result the output ℎ𝑡 is defined by Equation 8 

[11]: 

 

ℎ𝑡  =  𝑢𝑡−1 ℎ𝑡−1  +  𝜎 (1 −  𝑢𝑡−1) (𝑊ℎ𝑥  𝑥𝑡−1 

+  𝑈ℎℎ ℎ𝑡−1 𝑟𝑡−1 + 𝑏ℎ) 
(8) 

 

In this context, 𝑊ℎ𝑥 refers to the input weight matrix of 

the output, 𝑈ℎℎ  refers to the recurrent weight matrix of the 

output, and 𝑏ℎ is the bias of the output. The update gate  𝑢𝑡  

controls how much of the past information is retained or 

updated. Acting like a dimension-wise filter, it allows the 

state vector to either preserve previous values or incorporate 

new ones, depending on the input. This controlled 

integration enables the model to adaptively adjust its internal 

state. The update gate  𝑢𝑡  is defined in Equation 9: 

 

𝑢𝑡 =  𝜎 (𝑊𝑢𝑥  𝑥𝑡 + 𝑈𝑢ℎ ℎ𝑡 +  𝑏𝑢) (9) 

 

Here, 𝑊𝑢𝑥 denotes the input weight matrix of the update 

gate, 𝑈𝑢ℎ denotes the recurrent weight matrix of the update 

gate, and 𝑏𝑢 denotes the bias of the update gate. Similar to 

the update gate, the reset gate selectively filters components 

of the previous state when computing the next state. This 

adds nonlinearity, enabling the model to emphasize or 

suppress specific information, allowing for more flexible and 

context-aware transitions. The reset gate 𝑟𝑡  is defined in 

Equation 10: 

 

𝑟𝑡 =  𝜎 (𝑊𝑟𝑥 𝑥𝑡 + 𝑈𝑟ℎ ℎ𝑡 + 𝑏𝑟) (10) 

 

Where 𝑊𝑟𝑥 denotes the input weight matrix of the reset 

gate, 𝑈𝑟ℎ denotes the recurrent weight matrix of the reset 

gate, and 𝑏𝑟 denotes the bias of the reset gate. 

The sigmoid function is denoted by σ, which is given by 

Equation 6. Hyperbolic tangent function is denoted by tanh 

which is given by Equation 7. When rt approaches zero, the 

reset gate allows the unit to forget the previously computed 

state by essentially making it behave like it is reading the first 

symbol of the input sequence. 

2.3 Bidirectional recurrent neural networks 

Bidirectional Recurrent Neural Networks (BRNNs) are 

neural network architectures designed to process sequential 

input. Both forward and backward processing of the input 

sequences is done by BRNNs so that the network may 

employ both past and future contexts in its predictions. This 

is the primary difference that BRNNs and traditional RNNs 

differ from one another. The input sequence is processed 

forward by one of a BRNN's two distinguishing recurrent 

hidden layers, and backward by the other. The outcomes of 

these hidden layers are then gathered and sent into the last 

layer, which makes predictions. The BRNN can predict each 

individual output element by using the data from the 

complete input sequence because of its bidirectional 

construction [20]. Every time step, BRNNs update the 

hidden state based on the input that is now being received 

and the prior hidden state, operating in a manner akin to 

traditional recurrent neural networks in the forward 

direction. In contrast, the backward hidden layer analyses the 

input sequence oppositely, updating the hidden state 

according to the current input as well as the hidden state of 

the subsequent time step. Due to BRNNs ability to handle 

data in both ways and account for both past and future states, 

the BRNN has better accuracy when compared to traditional 

unidirectional RNNs, employing two different hidden layers 

also provides a kind of model regularization, since the two 

can enhance each other and provide the final prediction layer 

with more information. 

The gradients are calculated for both the forward and 

backward passes of the backpropagation using the time 

approach, which is commonly used to train BRNNs, in order 

to update the model parameters. During inference, the 

BRNN processes the input sequence in a single forward pass, 

and predictions are based on the sum of the outputs from the 

two hidden layers. The fact that the element of traditional 

RNNs in each gate vector can only receive input from the 

element of the cell vector so it considered as one of their 

limitations. However, BRNNs analyze the data in both ways 

using two distinct hidden layers fed into same output layer. 

It is possible to construct the recurring hidden layers 

utilizing various kinds of recurrent neural network cells, 

notably including the LSTM and GRU, providing a myriad 

of choices for customization in the architectural planning. 

2.3.1 Bidirectional LSTM neural network 

The bidirectional LSTM neural network consists of dual 

LSTM layers, each dedicated to calculating the hidden vector 

in a different direction, with one layer calculating the hidden 

vector in a forward direction and the other in a backward 

direction. These two layers regulate the bidirectional LSTM 

neural network's output [21]. The mechanism of the 

bidirectional LSTM neural network and the conventional 

feedforward neural network are not the same. Inside each 

layer of a bidirectional LSTM, there is no connection 

between the internal nodes. Moreover, results are committed 

to memory and kept in the memory unit, which can enhance 

the correlation between individual data points in various time 

series, thus, a directed loop is incorporated in the linkage of 

hidden layers, and preceding data. Combining earlier output 

and the current input yields a new output in neural network. 

Nevertheless, when the amount of input data in the time 

series rises, problems with gradient expansion and 

disappearance will arise. In contrast, some structures only 

provide a portion of the input data because of the limitation 

of the small input windows, the bidirectional structure may 

adjust during training to make the greatest use of the input 

information [22]. 

As seen in Figure 4, the forward layer stores the output 

of the forward hidden layer at each instant and computes the 

forward direction from one to t, whilst the backward layer 

stores the output of the backward hidden layer and reversely 

computes the forward direction. Ultimately, the bidirectional 

long short-term memory neural network's output is 

computed by aggregating the corresponding forward and 

backward layer output values at each time period. 
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Figure 4. Basic structure of bidirectional LSTM 

 

For a normal input sequence of a bidirectional LSTM 

neural network model, xt represents each real vector value. 

The bidirectional LSTM cell acts like an LSTM cell by 

generating and maintaining the internal memory cell state 

across its lifespan in order to make temporal connections, 

together with the memory cell state St-1, the subsequent input 

xt and intermediate output ht-1 discover which internal state 

vector components are required to update, erase, or 

maintaining. However, in addition to the standard forward 

output in traditional LSTM networks, the bidirectional 

LSTM also incorporates a backward output is considered as 

ℎ̿𝑡. These two outputs capture information from both past 

and future contexts. The forward output of bidirectional 

LSTM which considered as ℎ̅𝑡 can be expressed by Equation 

11 [23]: 

 

ℎ̅𝑡 =  𝐻 (𝑊𝑥ℎ̅ 𝑥𝑡 +  𝑊ℎ̅ℎ̅   ℎ̅𝑡−1  +  𝑏ℎ̅) (11) 

 

Where H denotes the hidden layer function, 𝑊𝑥ℎ̅  denotes 

the input-forward output weight matrix, 𝑊ℎ̅ℎ̅ denotes the 

forward output weight matrix, and 𝑏ℎ̅ is the bias vector of the 

forward output. While the backward output of the 

bidirectional LSTM  ℎ̿𝑡, can be expressed by Equation 12: 

 

ℎ̿𝑡 =  𝐻 (𝑊𝑥ℎ̿ 𝑥𝑡 +  𝑊ℎ̿ℎ̿   ℎ̿𝑡−1  +  𝑏ℎ̿) (12) 

 

Where 𝑊𝑥ℎ̿   denotes the input-backward output weight 

matrix, 𝑊ℎ̿ℎ̿  denotes the backward output weight matrix, 

and 𝑏ℎ̿ is the bias vector of the backward output. With the 

iterating the forward layer from t=1 to T, and the backward 

layer from t=T to 1, the final output 𝑦𝑡  of the bidirectional 

LSTM can be expressed in Equation 13: 

 

𝑦𝑡 =  𝑊ℎ̅𝑦  ℎ̅𝑡 + 𝑊ℎ̿𝑦  ℎ̿𝑡 + 𝑏𝑦 (13) 

 

Here, 𝑊ℎ̅𝑦 denotes the forward of the final output weight 

matric, 𝑊ℎ̿𝑦  denotes the backward of the final output weight 

matric, and 𝑏𝑦 denotes the bias of the final output. The 

forward and backward layers in a bidirectional LSTM 

operate independently and do not share the state weight 

matrices. Each layer processes the input sequence separately, 

and their outputs are computed sequentially [24]. 

2.3.2 Bidirectional GRU neural network 

A sequence processing model with two GRUs is called a 

bidirectional GRU. One is processing the input forward, 

while the other is processing it backward. This neural 

network is bidirectional and recurrent, simply utilizing input 

and forget gates. Bidirectional GRUs are just the result of 

combining two separate GRUs. For one GRU, the input 

sequence is fed in forward order for the other, it is fed in 

reverse order. Every time step, the outputs from the two 

networks are typically concatenated. Context is better 

understood when information from the past and future is 

preserved. A bidirectional GRU and a GRU are different in 

that a bidirectional GRU contains two distinct hidden states, 

one for each direction, and before making its final prediction, 

it concatenates the hidden states from both directions. 

Because of this, the bidirectional GRU is able to obtain 

information from the input sequence's past as well as its 

future, while a conventional GRU can only access data from 

the past [25-26]. One-way state transfer occurs from front to 

rear in a conventional recurrent neural network. That being 

said, there are some issues where the present output is 

connected to both the prior and subsequent states. The 

development of the BRNN, for instance, addresses the issue 

of anticipating the missing words in a phrase, which 

necessitates the prior judgment for the next state [27]. The 

bidirectional GRU is a variation of the unidirectional GRU 

that resolves the unidirectional GRU's issue and produces a 

more accurate result by depending on the dual impacts of the 

forward and backward states. Figure 5 depicts the basic 

structure of bidirectional GRU model [28]. 

 

 

Figure 5. Basic structure of bidirectional GRU 

 

The state information of the bidirectional GRU ℎ𝑡 can be 

calculated by Equation 14 [29]: 

 

ℎ𝑡 =  ℎ̅𝑡  ⊕  ℎ̿𝑡 (14) 

 

Where ℎ̅𝑡 is the state information of the forward GRU 

and it can be defined as a function of the conventional GRU 

of the previous state, as shown in Equation 15: 

 

ℎ̅𝑡 =  𝐺𝑅𝑈̅̅ ̅̅ ̅̅  ( 𝑥𝑡  , ℎ̅𝑡−1) (15) 

 

While ℎ̿𝑡 is the state information of the backward GRU 

and it can be defined as a function of the conventional GRU 

of the next state, as Equation 16: 

  

ℎ̿𝑡 =  𝐺𝑅𝑈̿̿ ̿̿ ̿̿  ( 𝑥𝑡  , ℎ̿𝑡−1) (16) 
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It is important to highlight that the traditional 

functionality of the GRU components is fundamentally 

based on the mathematical formulations previously 

presented in Equations (8), (9), and (10). 

3 Experimental setup and evaluation 

The approach suggested in this paper uses four enhanced 

deep learning models to forecast future load in accordance 

with an index of time series for individual months of the year 

on a daily basis for an entire year. These models include 

LSTM, bidirectional LSTM, GRU, and bidirectional GRU. 

The training and testing set of the dataset are divided into 

periods of nine years and one year, accordingly. Certain 

parameters, such as the number of layers or type of the 

optimizer, need to be selected. In general, they could be 

acceptable depending on the dataset and the model that the 

algorithm is meant to be created in. The precision of the 

predictions has been evaluated by assessing the errors 

through the use of several metrics once the regression models 

have been constructed. 

3.1 Data collection and description 

One of the greatest challenges for researchers developing 

forecasting models is obtaining a high-quality dataset—free 

from typos, missing values, and inconsistencies. Therefore, 

a preliminary statistical analysis is essential to determine 

whether the dataset is suitable for accurate forecasting. 

Various statistical tests may be applied, such as assessing the 

p-value (probability value), which indicates the likelihood 

that the observed data could have occurred under the null 

hypothesis [30]. A reliable dataset is the foundation of any 

successful prediction process. For example, without a 

temporal component, time series forecasting would not be 

possible. 

The hourly power demand data, measured in megawatts 

(MW), utilized in this study was obtained directly from the 

official website of the PJM Interconnection. PJM is a 

regional transmission organization (RTO) responsible for 

coordinating the movement of wholesale electricity across 

several states in the United States. It encompasses numerous 

electric utilities involved in electricity generation, 

transmission, and distribution. Due to historical and 

administrative changes in regional boundaries, data 

availability may vary across areas covered by sub-utilities. 

Accordingly, the dataset used in this work specifically 

pertains to the region served by Commonwealth Edison 

(ComEd), the largest electric utility in the state of Illinois. 

ComEd supplies electricity to the city of Chicago and most 

of Northern Illinois. The dataset is publicly available online 

[31]. 

The dataset, consisting of 87,648 rows, spans the time 

period from January 1, 2014, at 00:00 to December 31, 2023, 

at 23:00. The average power demand over this period is 

11,021.65 MW. The lowest recorded demand was 6,775.822 

MW on March 5, 2020, at 07:00, while the highest recorded 

demand was 22,467.01 MW on August 24, 2023, at 17:00 

Figure 6 presents a graphical representation of the entire 

dataset, where a slight upward trend can be observed. 

However, such graphs can sometimes give a misleading 

impression or fail to convey the complete picture. 

 

Figure 6. Graphical representation of the dataset [31] 

 

Figure 7 shows the histogram of the power data 

distribution over time. At first look, it is obvious that the data 

are not normally distributed; rather, they appear to be skewed 

(not symmetric). The histogram is said to be balanced when 

the mean and median are roughly equal in both the left and 

right tails, thus making a better data distribution. 

Furthermore, it should be noted that the histogram serves as 

a visual aid to demonstrate how the data points are spread out 

in correlation to the vertical red line, serving as a visual 

marker for the central tendency of the data, which 

symbolizes the statistical average of the dataset. 

 

 

Figure 7. Data distribution 

 

The probability value, or p-value that the observed 

difference would occur by chance, has been used to assess 

the significance of the null hypothesis (H0). A statistical 

hypothesis known as the null hypothesis (H0) states that a 

group of particular observations has no statistical 

significance and can be accepted or rejected based on the p-

value. An optimal dataset with a p-value of less than 0.05 

indicates that the data is stationary and does not have a unit 

root [32]. Within the dataset that was scrutinized in this 

study, the p-value was computed to be 7.46×10-10. 

3.2 Hyperparameters tuning and optimizers 

For a deep learning model to be successful and reliable, 

it must satisfy all necessary conditions that enable the system 

to learn complex, non-obvious patterns and produce optimal 

outcomes with minimal error. The dataset used in this study 

was originally recorded on an hourly basis, as previously 

mentioned. To reduce the frequency of observations, the data 

was resampled to a daily resolution using the mean of each 

day's hourly values. This transformation resulted in a dataset 

representing the average daily power demand, with a total of 

3,287 rows. The training set comprises data from 2014 to 
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2022, while the test set includes data from the year 2023, 

consisting of 365 rows (2023 is a common year). 

For complicated tasks where machines must interpret 

unstructured data, deep learning (which is a subset of 

machine learning) that is based on artificial neural networks 

has been projected to be the most effective. The word "deep" 

indicates the network's utilization of many levels. Through 

deep learning, computational models with several processing 

layers may learn representations of data with various degrees 

of abstraction [33]. The basic concept of deep learning is to 

teach computers to process data in a way inspired by the 

human brain, where humans do not create feature layers, but 

rather the data is taught through a general learning process. 

Several layers have been used in this study to verify the 

forecasting procedure in order to get the best possible 

forecasts. The first step in building a deep learning algorithm 

is to stack multiple identical or different layers so that the 

output of one layer feeds into the input of another layer. A 

sequential approach is used to achieve this, which, by 

iteratively traversing through several neural layers, allows 

the exact and sequential building of a neural network from 

input layer to output one. 

Each model used in this work has four highest-level 

building block layers of the same particular structure 

architecture model. For each layer 100 memory units are 

used, this is done to ensure that sequences are passed to the 

next model layer instead of just randomly dispersed input 

layers. Neural network topologies include a layer known as 

the dropout layer to prevent overfitting. This process 

involves eliminating individual nodes using a probability 

over several training rounds, treating them as though they 

were not even a part of the network structure, every layer has 

the dropout layer included in it. 

Neural network topologies also include a layer of neurons 

called the Dense Layer. This layer is fundamental and fully 

interconnected, each neuron receives input from every other 

neuron in the previous layer, thus, each dense layer neuron's 

output is calculated as weighted sum of its inputs from every 

neuron in the layer before it, dense layer comes to be the 

neural network's last step. 

The proposed models employ a computationally efficient 

stochastic optimization algorithm called Adaptive Moment 

Estimation (Adam), which is used for gradient-based 

optimization of objective functions. Adam combined the 

advantages of two popular optimization methods: 

momentum and RMSprop, and added some additional 

improvements. Every iteration of the models' training 

process uses the Mean Absolute Error (MSE) as the loss 

function. Equation 17 is used to compute this metric: 

 

MSE =  
∑ ( 𝑦𝑖̂  − 𝑦𝑖)2 𝑛

𝑖=1

𝑛
 (17) 

 

Where 𝑦𝑖̂ is the expected amount of the electricity needed 

derived from the actual data, yi is the real value of the power 

demand taken from recorded data, and 𝑛 is the number of 

samples to fit the model. Efficient training and tuning of the 

models occurred over 88 epochs, with a batch size of 32 

utilized consistently. Eventually, after this many trainings, 

with every epoch, the model will yield findings that 

demonstrate a growing level of improvement. 

The optimal parameters used for the models are presented 

in Table 1. The same values were applied across all deep 

learning algorithms in this study to ensure consistency in 

comparison. 

 

Table 1. Optimal parameter selection 

Parameter Value Parameter Value 

No. of layers 4 No. of neurons 100 units each 

Optimizer Adam Loss function MSE 

Output size One dense layer Epochs 88 

Batch size 32 Dropout 0.25 

 

3.3 Performance evaluation metrics 

Given the actual data, the results obtained for each 

prediction model can be evaluated to determine how well it 

performs. R-squared and MAPE were used in paper as 

evaluation metrics. Equation 18 can be used to calculate R-

squared value. 

 

R − squared = 1 − 
𝑆𝑆res

𝑆𝑆𝑡𝑜𝑡𝑎𝑙

 (18) 

 

Here, 𝑆𝑆res denotes the residuals summation of squares, 

and it can be calculated via Equation 19: 

 

𝑆𝑆res = ∑  (𝑦𝑖 −  𝑦𝑖̂)2

𝑖

 (19) 

 

While 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  denotes the total summation of squares, it 

can be calculated via Equation 20: 

 

𝑆𝑆total =  ∑  (𝑦𝑖 − 𝑦̂)2

𝑖

 (20) 

 

Furthermore, yi is the real value of the power demand 

taken from recorded dataset, 𝑦𝑖̂ is the predicted values of the 

electricity needed derived from the actual data, 𝑦̂ is the 

average of the observed data, and it can be calculated by 

Equation 21:  

 

𝑦̂ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 (21) 

 

Where n is the number of predicted samples. For second 

metric used MAPE, it can be calculated by Equation 22: 

 

MAPE = ( 
1

𝑛
∑

|𝑦𝑖 −  𝑦𝑖̂|

𝑦𝑖
 ) ∗ 100

𝑛

𝑖=1
 (22) 

 

The coefficient of determination, or (R-squared) in 

statistical terms is the percentage of dependent variable 

variations that can be expected from the independent 

variable(s) that is accounted for by a linear or nonlinear 

model. The coefficient of determination normally ranges 
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from zero to one. A value of zero signifies a model that fails 

to capture any of the variance in the response variable 

relative to its average. Likewise, a value of one signifies a 

model that captures all of the variance in the response 

variable relative to its average. In some cases, this coefficient 

may provide a negative value, this may occur if the model is 

predicting worse than using the average of the observed data 

(𝑦̂) as the average of the prediction [34]. 

MAPE is frequently employed as a loss function in 

regression tasks and model assessment, owing to its easily 

understandable representation of relative error. It is also a 

scale-independent and readily applicable to both high and 

low values. However, differential frequently results biased 

forecasting. For traditional load forecasting problems, the 

drawbacks of MAPE, such as its inability to handle tiny and 

zero denominators, are not especially significant because the 

aggregated load is rarely zero or extremely close to a 

minimal value [35]. 

4 Results and discussions 

In this paper, the power needs for every month of the year 

2023 were thoughtfully predicted by applying the various 

models that have been presented in detail. When aiming to 

convert time series data from an hourly basis to a daily 

framework, a particularly useful technique for frequency 

adjustment and resampling requires the thorough calculation 

of the mean function value, which is based on 24 separate 

observations that take place over the duration of one day. The 

process of assessing the performance of the used deep 

learning algorithms is carried out in terms of coverage and 

prediction accuracy after the optimum operating parameters 

have been set. 

Time series models represent a highly effective and 

powerful methodology for predicting future values based on 

the analysis of historical data trends. It is of utmost 

importance to thoroughly evaluate the effectiveness and 

accuracy of these forecasting models, whether one is 

employing advanced deep learning techniques or opting for 

simpler statistical approaches. It may evaluate the precision 

and dependability of the projections using a variety of 

assessment indicators that are mentioned in the last section. 

This section examines and discusses the advantages and 

disadvantages of several of the most often used metrics for 

load forecasting. The findings obtained are examined for 

each model and each month in 2023, separately in order to 

acquire insight into the influence of the choice of algorithm 

primarily on the prediction accuracy and insight for at which 

month the has the highest prediction. To carry out these tests, 

we employed the metrics that are detailed in the following. 

4.1 Experiments using the coefficient of determination 

R-squared is a statistical metric that represents the 

percentage of dependent variable variations that can be 

expected from the independent variable(s) of the model. 

Regression analysis frequently uses the R-squared metric to 

evaluate a model's quality of fitting. However, because it 

ignores the temporal correlation between the observations, it 

is limited in its use of time series forecasting. Therefore, in 

forecasting processes, more than one metric is used to 

evaluate the forecast and compare the results of other 

forecasts. 

Table 2 shows the evaluation results as a forecast 

comparison after applying each model over an individual 

month of 2023 by using R-squared as a metric. The GRU 

model performs better than the other models, in particular, it 

excels in October when it achieved 0.8526, thus the 

percentage value of the coefficient of determination is 

0.8526 × 100% = 85.26%, and so on with other results. This 

value is a percent of variance explained by such a model, 

moreover, it considers a proportion by which the errors' 

variance is lower than the dependent variable's variance. 

 

Table 2. Monthly evaluation results of different models 

using R-squared (2023) 

Months of 

2023 

Coefficient of determination 

(R-squared) 

 LSTM Bi-LSTM GRU Bi-GRU 

Jan 0.4221 0.4059 0.6863 -0.0462 

Feb 0.7296 0.6968 0.7955 -0.0341 

Mar 0.4617 0.3740 0.5577 -0.8237 

Apr 0.6483 0.7188 0.6664 -0.6193 

May 0.5488 0.5298 0.5541  0.3368 

Jun 0.7557 0.7307 0.7525  0.6357 

Jul 0.5519 0.4850 0.5200  0.2581 

Aug 0.6052 0.6201 0.5809  0.5646 

Sep 0.7440 0.8037 0.8202  0.6999 

Oct 0.8420 0.8324 0.8526  0.4238 

Nov 0.7680 0.7019 0.7950  0.2508 

Dec 0.7028 0.6776 0.7132  0.5111 

 

The best result of R-squared with using the LSTM model 

was 0.842 in October. The bidirectional LSTM model 

obtains best R-squared at 0.8324 in October as well. While 

it is clear that the bidirectional GRU model has the worst 

results even it has negative values which explains the model 

fits the data less well than a horizontal line since it does not 

follow the data's trend. In other words, when the coefficient 

of determination is less than zero, there is a negative 

(inverse) correlation. This suggests that the two variables 

(the actual and predicted values) are moving against one 

another. 

Figure 8 shows the actual and forecasted demand for the 

power in MW in October 2023 using the LSTM, 

bidirectional LSTM, GRU, and bidirectional GRU models. 

October was chosen because the best R-squared results 

appeared in this month. The difference between the real and 

the predicted values obtained from applying the different 

models can be seen in this figure. LSTM, bidirectional 

LSTM, and GRU models are making a good prediction as it 

is clear. When applying the bidirectional GRU model, many 

extreme values led to a decrease in the R-squared value when 

it achieved 0.6999 as best result in September. 

The evaluation results are presented in Figure 9, with 

particular emphasis on the R-squared values as a basis for 

comparing the forecasting performance of each model for 

every month of the year 2023. To ensure clarity in the visual 

representation, negative R-squared values were deliberately 

excluded from the analysis. 
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Figure 8. Actual vs. forecasted electricity demand by the models in October 2023 

4.2 Experiments using MAPE metric

Expression of the accuracy of the regression model as a 

ratio of the loss function can be done using MAPE. It is 

commonly used due to its very intuitive interpretation in the 

context of relative error. In practical settings, the MAPE is 

commonly used for predicting values that are consistently 

above zero. For instance, MAPE was used as a performance 

benchmark in an electricity consumption forecasting 

competition organized by GDF Ecometering on 

DataScience.net [36]. In a larger context, it has been 

contended that the MAPE is very suitable for predicting 

purposes, particularly when sufficient data are accessible. 

Table 3 presents the evaluation results for each model’s 

monthly forecasting performance in 2023 using MAPE as 

the evaluation metric. Once again, the GRU model 

outperforms the others, particularly in March, where it 

achieved the lowest MAPE of 2.34%. 

A MAPE of 2.34% indicates that, on average, the 

model’s predictions deviate from the actual values by 2.34%. 

In other words, the predicted values are, on average, 2.34% 

different from the observed data. The same interpretation 

applies to the other MAPE results. 

The LSTM model achieved its best MAPE result of 

2.7887% in April. Similarly, the Bidirectional LSTM model 

also recorded its lowest MAPE in April. While the 

Bidirectional GRU model performed worse than the other 

models overall, its best MAPE result was observed in 

December. 

 

Table 3. Monthly evaluation results of different models 

using MAPE (2023) 

Months of 

2023 

MAPE 

(%) 

 LSTM Bi-LSTM GRU Bi-GRU 

Jan 4.2769 4.6480 4.0577 6.0642 

Feb 2.9722 4.6623 2.6223 6.8404 

Mar 2.8239 4.1553 2.3400 5.3256 

Apr 2.7887 3.8033 2.6669 5.4996 

May 4.6031 6.0017 4.4882 6.0366 

Jun 5.5684 4.9782 5.3433 6.3848 

Jul 6.2598 7.0162 5.8463 9.3820 

Aug 6.8618 6.9236 6.5636 6.9269 

Sep 4.7947 5.5765 5.1261 6.0614 

Oct 3.2237 4.4820 3.2335 5.9923 

Nov 2.9189 4.2818 2.7561 5.4809 

Dec 2.8418 3.9583 2.8427 4.1882 

 

Figure 9. Monthly MAPE scores achieved by the forecasting models in 2023 
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Figure 10. Actual vs. forecasted electricity demand by the models in March 2023 

Figure 10 illustrates the discrepancy between the actual 

and forecasted demand for the power in MW in March 2023 

which was achieved by using various models. March was 

chosen because the best MAPE results appeared in this 

month. LSTM and GRU models are making a good 

prediction. When applying both the bidirectional LSTM and 

bidirectional GRU model, many extreme values increased 

the MAPE value when their best values achieved 3.8033 in 

April and 4.1882 in December for bidirectional LSTM and 

bidirectional GRU, respectively. 

Figure 11 shows the evaluation results of MAPE as a 

forecast comparison after applying each model for 2023.  

4.3 Forecasting performance analysis 

Based on the results presented in Table 2 and Table 3, the 

GRU model consistently outperformed the other models 

across most months. It achieved the highest R-squared value 

of 0.8526 in October, reflecting a strong fit between the 

predicted and actual values. Moreover, GRU obtained the 

lowest MAPE value of 2.34% in March, indicating a high 

level of prediction accuracy. The LSTM model also 

demonstrated reliable performance, showing competitive 

results in several months, although it was generally 

outperformed by GRU. The bidirectional LSTM model 

performed reasonably well, particularly in months such as 

April and September, but lacked the consistency exhibited 

by GRU. In contrast, the bidirectional GRU model exhibited 

the weakest performance among the four. It recorded 

negative R-squared values in multiple months (e.g., March 

and April), which suggests that its predictions were less 

accurate than simply using the mean of the observed data. 

Additionally, bidirectional GRU produced the highest 

MAPE values, reaching 9.38% in July, further confirming its 

limited predictive capability. These findings underscore the 

robustness and effectiveness of the GRU model for short-

term electricity demand forecasting, particularly when 

evaluated on a monthly scale. The results also highlight the 

potential limitations of bidirectional architectures, especially 

in the context of highly variable or seasonal time series data 

A detailed examination of the analyzed data reveals 

subtle yet consistent discrepancies between the actual power 

load values and the forecasts, particularly in the GRU and 

LSTM models. These two models demonstrate not only high 

reliability but also notable accuracy in their predictions. In 

contrast, the Bidirectional LSTM and Bidirectional GRU 

models exhibit significant outliers, with several extreme 

deviations between predicted and actual values. Such 

variability poses a potential risk to grid stability and 

operational reliability. Notably, the R-squared values for 

these bidirectional models are negative in several months, 

indicating that the residual sum of squares (SSres) exceeds the 

total sum of squares (SStotal). Based on the R-squared 

definition, this outcome implies that the models fail to 

explain the variability in the data, and that the mean of their 

predictions performs worse than simply using the mean of 

the observed values. This highlights a substantial limitation 

in the effectiveness of bidirectional recurrent neural 

networks for this forecasting task. 

 

 

Figure 11. Monthly R-squared scores achieved by the forecasting models in 2023 
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5 Conclusion 

Accurate electricity power demand forecasting is 

advantageous for calculating electricity generation costs and 

utility company profits as well. It has also a positive impact 

on the reliability and performance of power plants. In this 

paper, four deep learning algorithms (LSTM, bidirectional 

LSTM, GRU, bidirectional GRU) were utilized to predict the 

electricity power demand based on the data collected that 

were taken from PJM Interconnection LLC organization. 

The dataset used in this study comes from ComEd company 

which is the largest electric utility in Illinois, United States 

[31]. 

A lot of advancements were made when creating the 

models by tuning the right hyperparameter that allows 

tweaking model performance for optimal results. Forecasting 

performances of the used models are compared in terms of 

R-squared and MAPE metrics. The forecast was conducted 

on a daily basis for each separate month of the year 2003. To 

study and compare the best results that will appear based on 

the data for the particular month. 

The GRU model demonstrated a deeper comprehension 

of the context by employing an update and reset gate 

mechanism to learn future time steps. Additionally, this 

model shows that gating is generally beneficial and more 

efficient than the other models when turned out it gave the 

most effective results when the R-squared was 0.8526 in 

October, and the MAPE was 2.34% in March. 

According to the experimental findings, the model 

yielded high regression accuracy by deploying the gating 

mechanism to input and forget certain features which 

enabled the best and easier to run and train. It appears from 

the results of the separate months that March and October are 

the best months for forecasting. This is due to the mild 

weather and the lack of electrical energy consumption being 

affected by weather fluctuations. Here, it is inferred that it is 

necessary to add a more feature to the dataset that may 

contain additional data, such as the weather. In contrast, a 

one-day forecast generally provides only an estimate of the 

maximum power demand expected over the course of a day, 

which does not reflect the instantaneous fluctuations in 

demand that the grid must handle. Furthermore, a limitation 

of the proposed bidirectional neural network models lies in 

their computational complexity. While effective in capturing 

long-range dependencies, these models significantly 

increase training time for long sequences, making them less 

suitable for real-time applications particularly when dealing 

with complex, nonlinear data influenced by diverse factors 

such as weather conditions, socioeconomic variables, and 

seasonal variations in daylight hours. 

Regarding the applicability of the proposed method to 

data from different time periods or countries, the deep 

learning models demonstrated strong performance using 

datasets from the United States. However, their effectiveness 

in other regions depends on several factors, including data 

quality and frequency, demand variability, seasonal patterns, 

socio-economic influences, and energy consumption 

behavior—all of which can vary significantly across 

countries. Nevertheless, since the architectures used in this 

study are data-driven and designed to capture temporal 

patterns, they can be generally adaptable to other regions, 

provided sufficient historical data is available. To support 

broader generalization, future work may involve testing the 

models on datasets from different countries to assess their 

transferability and adaptability to local grid conditions. Our 

study also emphasizes evaluating different algorithms across 

various times of the year and highlights the need for 

adjusting multiple hyperparameters for each dataset. This 

motivates the development of a more general model 

configuration capable of adapting to new datasets, which is 

why multiple forecasting algorithms were proposed in 

this work. 
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