GEOCHEMICAL PROXIMITY INDICATORS OF THE MURGUL VOLCANOGENIC COPPER DEPOSIT, EAST PONTIC METALLOTECT NE TURKEY

Nevzat ÖZGÜR* and Carlos M. PALACIOS**

ABSTRACT. - A study on the behaviour of F, Tİ, Mn, Cu, Au, and REE during hydrolhermal mineralization at the Murgul volcanogenic copper deposit reveals that Ti, Mn, and REE are strongly depleted in altered host rocks whereas F, Cu, and Au show remarkable positive anomalies in the altered mineralized areas. We propose the use of the elements F, Ti, and Mn as proximity indicators for exploration of concealed ore deposits of the same type in the East Pontic metallogenetic province of Turkey.

INTRODUCTION

The Murgul volcanogenic Cu-deposit comprises one of the principal copper ore districts of Turkey (Fig. 1). The open pits are located 7 km SE of the town Murgul. The area belongs to the East Pontic metallogenetic province in which a considerable number of base metal deposits are located (Çağatay and Boyle, 1977, 1980; Akın, 1979; Akıncı, 1980; Dieterle, 1986). This zone, however, has not been investigated intensively to find new ore deposits.

Fig. 1 - Geological sketch map of the Murgul deposit.

1 - Andesitic lava flows of the uppermost Cretaceous; 2- Hangingwall felsic volcanics; 3- Pyroclastic host rocks; 4- Main faults, generally vertical movements; 5- Limits of the open pits (1983); 6- Investigated area of Murgul.

Nevzat ÖZGÜR and Carlos M. PALACIOS

Detailed results of the geochemical investigations on the chemical solubility and depletion of Ti in the altered rocks under thermodynamic conditions will be reported in a separate paper. The aim of our paper is to discuss the geochemical behaviour of F, Ti, Mn, Cu, Au, and REE at the Murgul deposit during hydrothermal mineralization. We attempt to develop with these data an exploration model which could be applicable for practical use in this area. Previous geological investigations (Özgür, 1985; Dieterle, 1988; Schneider et al. 1988) of the deposits support the interpretations presented in this paper.

GEOLOGICAL SETTING

The East Pontic metallogenetic province represents a volcanic island arc system of Jurassic through Miocene age which hosts a great number of base metal deposits (Akın, 1979; Akıncı, 1980; Dieterle, 1986; Özgür and Schneider, 1988; Schneider et al., 1988). The East Pontides extend over an area of more than 350 km E-W and 60 km N-S and represent the mobile belt between the Pontic and Anatolian plate. The ratio of economically important base metal deposits changes along the general strike of the metallogenetic province from east (Cu >>Pb+Zn) to west (Pb+Zn >>Cu). The East Pontides consist of a 2,000 to 3,000 m thick sequence of volcanic rocks with minor intercalations and lenses of marine sediments (Fig. 2) which have been divided into three stratigraphic cycles (Maucher, 1960; Maucher et al., 1962):

Brast bo	Lithology	Rocke	S S Mineralization S S Mineralization S S S S S S S S S S S S S S S S S S S	Cycles_
1	<u>7+</u> +	Microoranite	- barred -	
TO ENTRY		Andesite Decitic end Andesitic Tuff Flysch-like Sediment	Base Metalau Base Metalau Deposit de e	
fich- tian		Limestone-Méri Rhydlite-Rhyo- dacite Andesite Tuff-Limestone Intercelation Volcanic Breccia	Eosrien 40 e 8 barren 40 e 9 daes 7 daes 7 daes	II
Upper Cretareous Senonian		Decite Tuff-Sandatone Limeetone Formation []]]] Alterstion Decitic Tuff Decite Quertz Kerstophyre-	Base Netel	
Jurasaic- Lover Cretacoous		Quertz Keretophyrtuff Spilite- Spilitic Tuff	N 20 C N	
PALAEO- 2010		Gümüşhənə- Granodiorite (300-340 m.a.) İn folded Mete morphic Series	-700-400m- 8344 - ment	

Fig. 2 - Schematic column of the stratigraphic sequence in the Murgul area.

1. The first cycle comprises a volcanic pile deposited between Jurassic and Upper Cretaceous. It is represented by initial basaltic activity (spilites) which changes progressively to felsic lava flows and thick pyroclastics in the middle and upper part.

2. The second cycle starts with volcanic breccias, tuffs and minor intercalations of marine sediments overlain by andesitic and rhyolitic lava flows, followed by limestones of uppermost Cretaceous age (Maastrichtian).

3. The last cycle consists of a basal sequence of marine sediments of Paleocene age which are overlain by andesitic and basaltic lava flows representing Tertiary volcanic activity.

The Murgul deposit is linked to the upper part of the first volcanic cycle and is associated with a 250 m thick felsic pyroclastic sequence. The top of the deposit is marked by a thin layer of marine sediments (Sawa and Sawamura, 1970; Mado, 1972; Buser and Cvetic, 1973) and is characterized by intense erosion and weathering (Özgür, 1985). This sequence is overlain by 200-500 m thick barren felsic volcanites. The age of mineralization in the pyroclastic sequence is pre-Maastrichtian according to paleontological observations (Buser and Cvetic, 1973).

THEMURGULOREDEPOSIT

The Murgul deposit consists of at least two primary orebodies (Anayatak and Çakmakkaya; Fig. 1) hosted in the same volcanic member, spanning a horizontal distance of about 500 m. According to former descriptions (e.g. Sawa and Sawamura, 1970; Mado, 1972) and our observations and interpretations of drilling profiles, the mineralization of both orebodies shows exactly the same feature. A third minor orebody, Bognari, came into production recently (Fig. 1) which has been interpreted by Mado (1972) as an erosional product of the upper part of the Anayatak orebody. The sulfide mineralization of both orebodies contains predominantly pyrite and lesser chalcopyrite. Minor quantities of galena, sphalerite, and fahlore occur locally only. Additionally, minor occurrence of aikinite, hessite, tetradymite, clausthalite, and free gold have also been determined by electron microprobe analysis (Willgallis et al., 1989).

The copper deposit consists of (1) widespread disseminated ore with varying Cu contents ranging from 0.2 to 0.7 percent, (2) stockwork ore with average Cu contents between 1.0 and 2.5 percent, and (3) small ore lodes with Cu contents from 5.0 to 10.0 percent (Schneider et al., 1988). The recoverable ore reserves are estimated at 40 million metric tonnes with an average content of 1.25 percent Cu, 0.1 percent Zn, 25 ppm Ag, and 0.2 ppm Au.

The ore mineralization may be divided into an early stage associated with a phyllic zone surrounded by a peripheral argillic zone, and a late stage related to a central pervasive silicification (Fig. 3). According to Schneider et al. (1988), the first stage of alteration led to destruction of the primary paragenesis of the pyroclastics and replacement of the host rock by quartz and pale greasy sericite. This stage reveals poor mineralization of disseminated pyrite and chalcopyrite (type one). The late stage of hydrothermal activity in this area of the deposit is represented by silicic alteration that appears as quartz replacement of the volcanic host rock, as cryptocrystalline varieties of jasper, and later on, as open-space fillings (quartz- ore veins). The sulfide mineralization of this stage represents the principal commercial ore (types two and three). The surrounding country rocks show pervasive argillization which characterized by an alteration assemblage containing quartz, montmorillonite, illite, dickite, and pyrite only.

SAMPLINGANDANALYTICALMETHODS

Various rock samples have been obtained from altered and mineralized zones; 53 samples from the surface (Tab. 1 and Fig. 4) and 87 from deep drilling holes (Tab. 2). For comparison, the less altered background rocks of the pyroclastic flows (18 samples) have been analyzed too (Tab. 1), which were taken between 500 and 700 m outside of the mineralized and altered area. The background pyroclastics include host member in which the alteration is on a regional scale generally weak.

Rare earth elements (La, Ce, Sm, Eu, Tb, Yb, and Lu) and gold were determined by instrumental neutron activation at the Hahn-Meitner Institut fur Kernforschung, Berlin, with a routine precision better than \pm 9 % for most elements (Dulski and Moller, 1975) using GSP-1 of the U.S. Geological Survey as the reference standard.

Ti, Mn, and Cu were determined by atomic absorption spectrometry, and F by ion-sensitive electrode at the Institut fur Geologie, Geophysik und Geoinformatik, Freie Universitat Berlin, with a precision better than \pm 5 %. For all analyses, BCR-1 and GSP-1 rock standards have used.

Element	F (ppm)	Ti (ppm)	Ma (ppm)	Cu (ppm)	Au (ppb)	DREE (ppm)	Element Samole	F (ppm)	Ti (ppm)	(mqq) nM	Cu (ppm)	Au (ppb)	IREE (ppm)	r
and there														-1
-	740	850	8	8	'nd	n.đ.	37	410	1250	150	01	ţ	33.8	-
6	5 53	8	8	8	ъ.d.	т.б.	38	430	1500	205	0	4	66.8	
¢	ŝ	3650	5 20	\$	n.d.	n.d.	39	57 1	8	\$	4500	n,d.	n,d.	
+	\$55	<u>8</u>	8	2600	n.d.	n.d.	Ş	575	00	\$	1650	n.d.	n.d.	
Ś	998 998	<u>6</u>	8	75	nd.	Ъ.d.	41	0011	0011	8	185	n.d.	n.d.	
vo	1035	9 3	8	z	n.d.	л.d.	42	<u>8</u>	3 3	8	8	n.đ.	n.d.	
-	\$	1300	8	8	ц.	n.d.	43	180	8	8	<u>8</u>	8	15.1	
•0	5 92	3	8	310	n.d.	n.d.	4	Ъ.d.	Ъ.d.	ħ.d.	Ъ.	8	37.9	
~	\$	ŝ	8	8	n.d.	щd.	45	卢교	р ф	n.d.	n.d.	2	35.0	
2	3	3	8	36 29	Ą	Đ.đ.	\$	ส	8	30	275	8	19.4	
=	s	125	8	<u>8</u>	n.d.	n.d.	47	135	8	<u>90</u>	8	8	16.0	
2	3	8	110	320	n.d.	n.d.	48	165	1150	0	\$	5	45.6	
13	1965	p.d.	8	4950	nd	nd.	49	Ъđ	Ъ.д	n.d.	n,à.	ନ୍ଧ	7.0	
Ξ	9691	80	8	6750	p.d.	Ъ.d.	50	1280	90 8	950	2	2	37.2	
2	3	ŝ	35	3700	₽,¢	n.d.	51	745	550	8	115	ø	28.7	
91	335	ŝ	8	13000	n.d.	n.d.	52	8	8	4	ส	8	1.9	
1	1650	8	8	8	nd	n.d.	53	415	550	ŝ	7250	4	20.0	
8	Ŧ	2	8	10000	n.d.	n.d.	54	540	3000	<u>8</u> 28	35	m	37.3	
2	ş	20	8	6	ŋ.d.	n.đ.	55	380	5750	810	5		31.2	-
ຊ	630 053	<u>100</u>	120	8	n.d.	n.d.	8	345	3550	1370	4	2	33.7	
21	930	õ	8	175	рq	n, đ,	57	285	3100	4800	6	7	45.6	
ព	3	90 21	Ş	Ŷ	nd.	л.d.	3	215	3750	0001	3	1	38.6	
ង	415	2600	9/C	8	n.d.	n.d.	2 9	365	4250	1700	ຊ	2	40.7	
న	1810	Ş	355	355	n.d.	д.е.	8	ନ୍ଥ	4250	1130	8	2	43.2	
ห	1030	ŝ	8	8	ad.	n.d.	61	ŝ	2400	550	2	•	49.4	
8	8	9 2	8	2300	nd.	nd.	62	<u>8</u>	ន	35	45	7	21.5	
2	315	350	8	4 65	ц.	n.d.	8	303	0001	35	370	6	22.4	
*	2515	700	8	385	n.d.	Ъ.d.	2	8	2000	009	45	۳ .	44.6	_
8	1370	957	5	110	Pu	n.d.	3	455	3000	545	3	4	58.9	
8	1235	1400	210	2	ц.	n.d.	\$	ଛ	1750	ŧ	15	6	26.5	
31	435	8	x	380	2	18.4	67	0 0	Ъ.	n.d.	ייק.	n.d.	n-d.	
2	1980	8	8	ŝ	nd.	ъ.d.	3	<u>8</u> 5	1000	4	ห	4	20.1	-
33	٤	100 11	35	ø	61	52.8	\$	153	ЪЧ	n.d.	n.d.	п.d.	n.đ.	
ž	\$	ส	8	210	п.d.	ŋ.d.	۶	176	3750	1700	15	7	34.9	
ñ	ลิ	902	8	2	7	16.7	71	38	2500	925	610	7	49.2	
36	535	1400	\$	120	7	31.9								
 for location n.d. not det 	an est Figure	e 1				-								

Nevzat ÖZGÜR and Carlos M. PALACIOS

56

٠
8
1 T
ä
H
2
-
ž
5
3
Ē
A
Ť
5
6
Ę
ž
Ĕ
₹
Ĩ
8
¥
Ĩ
1
ž
Ĩ
₽
ž
ž
Ĩ
3
4
ž
5
-
Ĩ
٤
Ĩ
3
Ŧ
1
7
đ
4
븰
Į
6
-
2
-

				•										
Blement Semule	F (ppm)	Ti (ppm)	Min (ppm)	Cu (ppm)	(qdd) wy	DREE (ppm)	Element Samula	(undd) J	Ti (ppm)	Ma (ppm)	Cu (ppm)	Au (ppb)	DREE (ppm)	
2	5	375	001	2	ų,	D.n	116	480	1250	P 4	11	t t	þ	
3		2		24400	430	1.5				12	: 2	j -	1	_
74	Ş	ş	551	\$		a d		32		37	2 9	įş	1.50	
7	į	1720		1		1		2	3	į	4	3 2	1.00	
2 %		Ş					,	ž X		R Ş	÷,	37	0.0	
2 F		1600	9	1580	061	212	35	2 1	197 197	នុទ	55	jt	įt	
5	415	5	P	15	, p. c.	0.d	į	5		s ș	2		 1	_
: g	8	24	8	5	þq	Ъđ	12	2 Ş	35	39	ŝ			
8	Ş	1340	Pe	12	- P-C	Ъđ	12	រុទ	3 =	3 -	2020	; - ; ;		
2	2	1300	18	1	-	29.5	12	2 4	2	į				
2	9	8		8	þ	- Pe	<u>i</u> ž	22	3 =		00017		÷ 1	
3 5	šĔ	5	9	058	ļ		85	3 3	2 2					
3 3		3		2		i •	171		071	9 . 170	00157	- -		_
5 2			19	3 5	j t j t	4 -	5	ç :	<u> </u>	5.5	0085	÷,		
3 2	3 8		37	33	į	101	ŝ	3 {	2	<u>8</u> (8	<u>8</u> .	ų.	
8 1	} :		- i	;	3 -		130	0/Z	99	8	380	'n.d.	n.d.	
5	<u>-</u>		e E	991	÷,	4 4	131	ิล	ŝ	n.d.	8400	ŋ,e	n.d.	
8	20		8	0004	9 9 9	6 2	132	ផ	8	8	22000	n.d.	n.d.	_
8	S13.	1150	350	73	5	31.8	133	210	380	n.d.	3400	Ъđ	n,d,	
8	2	8	Ъ.	\$	p.d.	nd.	134	3	2	n.d.	10000	800	n.d.	_
2	22 22	1350	8	335	- P- C	nd.	135	335	780	n.d.	1270	Ъđ	n.d.	_
8	4 35		P.G	13500	ŋ,q	n.d.	136	8	96 0	n.d.	0066	780	15.0	_
8	8	016	8 2	800	<u>8</u>	21.8	137	125	9 97	n.d.	13000	390	9.8	
3	1235	5200	D.G.	4	ų A	шđ	136	6	380	n.d.	8300	Ъđ	n.d.	
8	710	1100	0 52	23000	ų.	nd	139	2	500	n.d.	8100	þ	p.d.	
8	633	1180	<u>8</u>	1450	Ъ.	nd	140	270	99 99	n.đ.	6200	130	12.4	_
5	8	ş	Ą	152	b d	n.d.	1	5	8	, pur	11800	0009	150	
8	8	1620	ą	8	17	36.6	142	8	470	99	12000	360	11.2	
8	780	750	8	8	Ъ.	n.d.	143	2	270	650	1040	р-с	n d.	
8	990	9911	n.d.	31	þ.e	n.d.	4	420	4	150	675		n d	
₫	1100	1300	ส	8	ų.	n.d.	145	4	220	250	2300	n.d.	nd.	
ğ	635	2030	ŋ.d.	8	ų,	n.d.	146	50	305	8	39500	Ъ.a	'nd.	
8	22	3040	<u>8</u>	6	a.d.	29.8	11	981	170	D.d.	926	D.d.	'nd.	_
2	202	0681	n.d	01	ų.	n,d,	148	8	8	8	13500	nd	n.d.	
8		8	8	3	Ę.	ц	149	8	4	n.d.	1990	n.d.	n.d.	
8	473	1200	ġ	ສ:	-p-q-	л. Д	150	8	<u>8</u> 00	150	2200	n.d.	n.d.	
5	<u>8</u>	00/1	đ đ	9		7 g	151	33	1570	<u>8</u>	8	ŋ. L	16.1	
8	8	3390	3	8 2	=	39.7	152	z	1580	90	202	Ъđ	n.d.	
8	3	Ę	4		ų,	19 19	153	<u>8</u>	Ъd	8	3550	Ъđ	ъ.d.	
9	8	9	00	5	ť,	л.d.	154	8	Ş	8	13500	ъđ	ŋ.d.	
	<u>8</u>	\$	đ C	4	þ,	9 F	155	Ş	1320	350	\$	D.d.	19.6	
	8		4 . 4	នា	ب و ب	9.4 1	156	2	240	n.d.	34000	D.d.	n.d.	
83	91	0011	4	រ រ	4 4	4 C	157	ลิ	470	b,d.	8	n.d.	9.61	
1			R.	8	E.	31.1	158	8	70	n.d.	3200	n.d.	n.d.	
112	210	0021	n d	3700	9.9.	ŋ.d.	:	:	;		ļ	i		
far land														
		ri												

57

Fig. 3 - Map showing hydrothermal alteration zones and sample locations from the surface of both orebodies.

1- Hanging-wall felsic volcanics; 2- Silicic alteration; 3-Argillic alteration; 4- Phyllic alteration; 5- Pyroclastic bost rocks; 6- Limits of the open pits (state of mining: 1983); 7- Location of the samples for the analyses. 1

Element	3	•	10	3	Ş.,	100	. 2	6	1000	Ŧ	\$	10000	2	p 1000000
F (ppm)								uiiin.						
T Hppm)				~~~~	~~~~							J		
Mnleem						17.000			Ŵ.			-		
C u(ppm)		Ū												
Au(ppb)	huu					n		*****	~~~~	~~~~	~~~~	1		
ZREĖ (ppm)				u din							_			
				1	i i i i i i i i i i i i i i i i i i i	111 2		ά n	3					

Fig. 4 - Background and range of the content of the elements in 1- Less altered background rocks, 2- Host pyroclastics, and 3- Drill holes; ▼ - background value.

The less altered samples formed the basis for determinating regional backgrounds of each element For the statistical evaluation, a computer program "Geo-500" together with "Stasy" and "Easy" of Company PIC, Munich/West-Germany, was applied to determine geochemical parameters and anomalous values. Additionally, the method of Lepeltier (1969) was constituted to establish anomalous populations.

RESULTS

Data on the elements F, Ti, Mn, Cu, Au, and REE in the altered volcanic host rocks indicate extensive geochemical dispersion halos and anomalies within the area of both orebodies (Figs. 5 and 6). The contents of F, Cu, and Au increase in the altered areas remarkably whereas Ti, Mn, and REE exhibit a distinct depletion.

Cu is enriched in phyllic and silicic alteration areas with concentrations greater than 220 ppm. This element is present with a background of about 30 ppm in the less altered pyroclastics (Fig. 4) and shows a higher value of 60 ppm in argillie zones (Fig. 5 and 6).

The two and three dimensional distributions of fluorine in altered pyroclastic host rocks are shown in Figs. 5 and 6. Fluorine in less altered pyroclastics has a background value of 325 ppm (Fig. 4). Geochemical halos in the phyllic and silicic alteration zones exhibit values of 320 to 500 ppm and more than 500 ppm F are observable. Locally, the fluorine contents in both altered zones reach extreme values of up to 2515 ppm (Fig. 4).

Gold has a background value of 2 ppb in the less altered pyroclastic country rocks (Fig. 4). Gold distribution within the both orebodies displays anomalous areas (Fig. 7) represented by values between 2-80 and more locally values greater than 80 ppb (Fig. 4). Particularly remerkable is the distribution of higher Au values which are linked to parts of silicic alteration in a greater distance to the surface. Some sectors have shown local economic concentrations.

In contrast to the positive anomalies represented by F, Cu, and Au; Ti, Mn, and REE were intensely depleted in the altered and mineralized areas. The less altered pyroclastics show a Ti background value of 3000 ppm (Fig. 4). In the mineralized areas, Ti is obviously depleted (Figs. 5 and 6), especially in the areas of phyllic and silicic alteration which indicates a estimated background value of 650 ppm in the host rocks. Similar behaviour is shown by Mn (Figs. 5 and 6) which can reach concentrations of about 10 ppm whereas the regional background was estimated at 705 ppm (Fig. 4).

As reported by Schneider et al. (1988), the REE have been leached from altered host rocks. Fig. 8 shows the distributions of the REE values of the investigated areas. It is notable that the silicified host rocks display the more important negative REE anomalies.

DISCUSSION

The geochemical data from the Murgul deposit indicate that fluorine, titanium, and manganese are excellent indicators of volcanogenic sulphide deposits in the East Pontic metallogenetic province. The Murgul deposit has been genetically interpreted as a subvolcanic type associated with Upper Cretaceous island arc volcanic activity (Akın, 1979; Özgür, 1985; Özgür and Schneider, 1988; Schneider et al., 1988).

The dispersion halos of F, Ti, Mn, Au, and REE outline perfectly the presence of a hydrothermal mineralization and alteration pattern in altered host pyroclastics. This has-been corroborated additionally by Çağatay and Boyle (1977) and Die-tcrle (1986) in Madenköy, Sırtköy, and Kutlular ore deposits in the western part of the East pontic metallogenetic province which are linked to similar type of pyroclastic host rocks in nearly the same stratigraphic horizon. They belong genetically to the subvolcanic hydrothermal mineralization too.

The increase of fluorine during hydrothermal alteration is a well known phenomenon: the fluorine contents of the primary host rock are increasing within the mineralized area because the element is concentrated by the ascending hydrothermal fluids. Due to the similar radii of F and (OH), fluorine can replace (OH) in the lattice of micas and clay minerals. This is well documented at the Murgul deposit in which the greater F values are concentrated within the phyllic and parts of the argillic zones (Figs. 5 and 6). The size of the deposit in the pyroclastic host rock stratigraphy seems to dictate the magnitude of the elemental haloes as evidenced by the fluorine distribution around Anayatak orebody in contrast to that

Fig. 5 - The distributions of Ti, Mn, F, and Cu in the Murgul deposit. 1- Silicic alteration; 2- Argillic alteration; 3- Phyllic alteration; 4- Boundary of anomalies.

Fig. 6 - Cross sections showing the distributions of Ti, Mn, F, and Cu in the Murgul deposit. 1- Silicic alteration; 2- Argillic alteration; 3- Phyllic alteration; 4- Boundary of anomalies.

Nevzat ÖZGÜR and Carlos M. PALACIOS

around Çakmakkaya which is to led the lack of the rock samples from Çakmakkaya due to hanging wall volcanics and soils. In addition to above, the analyzed host pyroclastics are derived from the silicic alteration area of Çakmakkaya. Therefore, these rock samples indicate low fluorine contents in comparison to Anayatak orebody.

The two and three dimensional distributions of manganese (Figs. 5 and 6) show strong negative anomalies within both ore bodies. This could be generated by the breakdown of Mn-bearing minerals (biotite, feldspars, and possibly glass). Thus, manganese was released from the rocks during alteration.

In the original pyroclastics, titanium is present in sphene and rare rutile or anatase. These minerals are not stable under the thermodynamic conditions during hydrothermal alteration. Therefore, titanium is leached from the altered areas too. Gold was especially enriched in silicic alteration zones (Fig. 7) which could be attributed to a hydrothermal remobilization of the Au contents of the host rocks.

Fig. 7 - Gold distributions at the Murgul ore deposit. 1- Silicic alteration; 2- Argillic alteration; 3- Phyllic alteration; 4- Boundary of anomalies.

62

The mineralization of Murgul seems to be strata-bound observing the semistratigraphic position of all deposits in the East Pontic metallogenetic province which arc linked to the volcanic sequence of Senonian age. Therefore, manganese, titanium, and fluorine could be applied as proximity indicators for the concealed deposits of the same type throughout the entire East Pontides.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Hans-J.Schneider, Dr. Bernd Lehmann, Freie Universitat Berlin, and anonymous reviewers of MTA Dergisi for the critical reading of this paper.

Manuscript received November 4, 1989

REFERENCES

Akın, H., 1979, Geologie, Magmatismus und Lagerstatlenbildung im Ostponlischen Gebirge/Türkei aus der Sicht der Plattentektonik: Geol. Rundschau, 68,253-283.

- Akıncı, Ö.T., 1980, Major copper metallogenetic units and genetic igneous complexes of Turkey: Soc. Geology Applied to Mineral Deposits Spec Pub., 1.199-208.
- Buser, S. and Cvetic, S., 1973, Geologic der Umgebung der Kupfererzlagerstitle Murgul in der Turkei : MTA, Bull., 81, 1-26, Ankara-Turkey.
- Çağatay, M.N. and Boyle, *D.R.*, 1977, Geochemical prospecting for volcanogenic sulphide deposits in the eastern; Black Sea ore province: J. Geochem. Explor.. 8,49-71.
- ——and——. 1980, Geology, geochemistry, and hydrothermal alteration of the Madenköy massive-sulphide deposit, eastern Black Sea region, Turkey: Proceedings of the fifth Quadrennial IAGOD Symposium E. Schweizerbart'sche Verlagbuchhandl. (Nagele & Obermiller) Germany, p. 653-677.
- Dieterle, M., 1986, Zur Geochemie und Genese der schichtgebundenen Buntmetall-Vorkommen in der Ostpontischen Metallprovinz/NE Türkei: Ph.D. thesis. Freie Universiat Berlin, 112 p.
- Dulski, P. and Möller, P., 1975, Neutronenaktivierungs-spektronietrie und Neutronenaktivierungsanlayse in der geochemischen Analytik: Berlin, Hahn-Mtitner-Inst. Kemforsch. Berlin GmbH, rept HMI-B 117,117 p.
- Lepeltier, C., 1969. A simplified statistical treatment of geochemical data by graphical representation: Econ. Geol., 64. 583-550.
- Mado, H., 1972, Geology and mineralization of the copper ore deposits in the Murgul mine, northeastern Turkey: MTA Rep., 1103, 27 p. (unpublished), Ankara-Turkey.
- Maucher, A., 1960, Die Kieserze von Keltas. Ein Beispiel submariner Gleitfaden in exhalativ-sedimentiren Erzlagerstitten: Neues Jahrb, Mineralogie Monatsh.. 94. 495-505.
- —, Schultze-Westrum, H. and Zankl, H., 1962, Geologish-largerstittenkundliche Untersuchungen im Ostpontischen Gebirge: Bayerische Akad. Wiss., Mathematik-Naturw. KL, 107, 97 p.
- Özgür, N.,-1985, Zur Geochemie und Genese der Kupferlagerstitte, Murgul, E-Pontiden, Türkei: Ph.D. thesis, Freie Universital Berlin, 139 p.
- ——and Schneider, H.-J., 1988. New metallogenetic aspects concerning the copper deposit of Murgul, NE Turkey: Soc. Geology Applied to Mineral Deposits. Spec. Pub., 6. 229-239.
- PIC, 1982. a Computer Program for Graphic and Statistic "Geo-500" together with "Susy" and "Easy": The Company PIC, Munich/West-Germany.
- Sawa, T. and Sawamura, K., 1970, Murgul cevher yatağı ve çevresi hakkındaki rapor. Etibank Rep., 24/300, 24 p. (unpublished), Ankara-Turkey.
- Schneider, H.-J.: Özgür, N. and Palacios, C.M., 1988, Relationship between alteration, rare earth element distribution, and mineralization of the Murgul copper deposit, northeastern Turkey: Econ. Geol., 83:1238-1246.
- Willgallis, A.; N. and Siegmann, E., 1989, Microprobe study of Se-and Te-containing complex sulphide ore of the copper deposit Murgul, NE-Turkey: Eur. 3. Mineral. 2,145-148.