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Abstract
The article aims to reduce the effect of data noise or outliers and estimate the optimal
bandwidth parameter used in nonparametric regression models using a proposed method
based on wavelet analysis, specifically Dmey and Coiflet wavelets with fixed-form threshold
and apply the soft threshold, particularly when the data have long-tailed and multimodal
distributions (abnormal distribution). The fixed-form threshold level value estimates the
bandwidth instead of the classical method (geometric, arithmetic mean, range, and me-
dian). A simulation study was used to examine the suggested method, comparing it with
four other Nadaraya-Watson kernel estimators (classical techniques), using a MATLAB
language created especially for this purpose with actual data. The findings show that the
suggested method outperforms classical methods for all cases of simulations and real data
in accurately estimating the bandwidth parameter of the non-parametric regression kernel
function based on the mean square error criterion.
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1. Introduction
The statistical technique of non-parametric regression is used to estimate the connection

between variables without making assumptions about the relationship’s functional form.
It enables flexible modeling of complicated relationships and is frequently employed when
the underlying data do not correspond to a particular parametric model. The accurate
analysis of the unknown response function f is the objective of the regression analysis,
given n data points {(xi, yi)}n

i=1. The following is an appropriate model for the relationship
[3]:

yi = f(xi) + εi; i = 1, 2, . . . , n. (1.1)
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Here, f(xi) represents an unidentified regression function, εi are random errors with con-
stant variance σ2

ε and a mean of zero. The weighted average of the dependent variable
is used in non-parametric regression, with the weights representing the distance between
the independent variable data as specified by a smoothing parameter. The Nadaraya-
Watson (NW) estimator of kernel function is a method employed for the estimation of
non-parametric regression. By using a weighting technique, Nearby data points are given
weights based on how near the predicted place they are. It determines the form and range
of the influence of the data points on the calculated function. Kernel functions that are
commonly utilized include Gaussian, Epanechnikov, and uniform kernels. The NW esti-
mator was introduced by [19] and [24] as a non-linear approximation to a non-parametric
regression model (NRM) that is dependent on empirical data. Observations at xi close to
x should provide information about the value of f at x if f(.) is thought to be smooth
[12]. Consequently, an estimate f(x) should be able to be created using something similar
to a local average of the data close to x.

The smoothing bandwidth parameter (h), which regulates how smooth the predicted
function is, is a need for the NW kernel estimator. A smoother estimate is produced by
a bigger bandwidth; a more detailed estimate, which may be constant or changeable, is
produced by a lower bandwidth [21,23].

The ideal bandwidth h of the NW kernel estimator is the value at which the mean
integrated squared error (MISE) is minimized. Several methods are used to calculate
the bandwidth value. When the bandwidth is unknown, Friedman and Stuetzle [13] em-
ployed robust reparability to determine the NRM’s parts. Furthermore, a consistent and
asymptotically normal estimator based on kernels was presented. Since non-parametric
estimating relies on the geometric mean, Läuter [17] proposed a modification for the ker-
nel function estimator that varied the bandwidth and decreased the bias more than the
fixed h estimator. More information on bandwidth estimation techniques was provided by
[23], while Härdle and Kelly [15] examined several techniques for estimating bandwidth
that use least-squares cross-validation as an unbiased estimator. As an alternative to the
geometric mean in the NW kernel estimator, the arithmetic mean (x̄) was suggested by
[11] as an improvement to the Adaptive Nadaraya-Watson (ANW) approach. According
to [18], the ANW method should be modified based on smoothing parameter selection
in kernel non-parametric regression using a bat optimization algorithm. Aljuhani and Al
turk [7] proposed a new modification that relies on a range of the density function of the
kernel for the ANW method instead of using the arithmetic mean. The findings supported
earlier research and showed that the variable bandwidth NW kernel estimator performs
better than the fixed NW kernel estimator. To alter the ANW approach, Ali and Qadir
[5] proposed employing the robust mean (R-M), median (Me), and harmonic mean (H-M)
of the kernel estimator. Using a universal threshold level value for the Daubechies wavelet
coefficients of the kernel density function in the kernel estimator, Ali et al. [4] proposed
to modify the ANW technique.

Dhafir et al. [20] discussed the NW estimator, which is crucial in smoothing techniques
to estimate regression functions. It provides a foundation for understanding fixed and
variable bandwidth methods in nonparametric regression, which is relevant to your study.
Hassan and Hmood [14] introduced work that applies kernel smoothers and wavelets in
the context of financial data, specifically to estimate stock return rates. The methodology
of this study could be aligned with your approach to examining variable bandwidths in
nonparametric smoothing, providing additional insights into practical applications.

Wavelets are highly regarded in signal processing and statistical estimation due to their
ability to capture local features in data at various scales, making them ideal for nonpara-
metric regression and density estimation. In this context, wavelets can provide a robust
mechanism for bandwidth selection.
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The non-parametric regression estimator known as the NW kernel is improved upon in
this study. With a soft threshold, this improvement efficiently reduces the influence of data
noise by determining the bandwidth based on the fixed-form threshold level value with
(Dmey and Coiflets) wavelets of the kernel function. A thresholding technique is used for
wavelet coefficients, and it is a value that determines which coefficients to keep or discard
during the de-noising or compression process. The fixed-form threshold is typically based
on a statistical property of the wavelet coefficients and aims to find a balance between
noise removal and preserving important signal features.

2. Kernel estimators with fixed and variable bandwidths
The sample of size n drawn from a random variable using the distribution function f(x)

is represented by the non-parametric estimate for the dataset x1, x2, . . . , xn. The kernel
density estimates at the point xi are expressed as follows [9]:

f̂h(xi) = 1
nh

n∑
i=1

K

(
x − xi

h

)
. (2.1)

With kernel functions serving as weights, K represents the kernel probability density
function (pdf) centered at each point (xi). The bandwidth, or smoothing parameter, h,
is known as the fixed value, h > 0. There are several varieties of kernel density functions
[10], with the standard normal distribution being one of the often-employed versions, as
demonstrated by the subsequent equation [17]:

K(z) = 1√
2π

e− 1
2 z2

. (2.2)

When the unknown regression model exhibits consistent behavior throughout the esti-
mate period, the bandwidth parameter h can have a constant value (fixed) over the range
of x. The fixed Nadaraya-Watson (FNW) kernel function estimator may be employed
in the following ways with a fixed bandwidth to estimate the non-parametric model in
equation (1.1):

f̂F NW (xi) =
∑n

i=1 yiK
(x−xi

h

)∑n
i=1 K

(x−xi
h

) , (2.3)

where K(.) is the kernel pdf (standard normal distribution), which may be obtained from
equation 2.2. There are several methods for selecting the fixed h, including cross-validation
and Läuter [17] recommendations, or using optimal methods for selecting the best smooth-
ing parameter, as is the case in this study.

Working with long-tailed and multi-modal distributions is not advised when using the
FNW kernel estimator [22]. It is better to choose to change the bandwidth instead.
The variable bandwidth estimator h(xi) for the Variable Nadaraya-Watson (VNW) kernel
function may be used as follows to estimate a non-parametric model in Eq. (1.1)

f̂V NW (xi) =
∑n

i=1
yi

h(xi)K
(

x−xi
h(xi)

)
∑n

i=1
1

h(xi)K
(x−xi

h

) . (2.4)

Abramson [1] suggested an equation to estimate h(xi)

h(xi) = h√
f(xi)

(2.5)

Eq. (2.5) presents the equation for the Abramson estimator, which Läuter [17] refers to
as an adaptive kernel function estimator, where f(xi) is the pdf of xi that can be calculated
using the kernel function estimator. The first stage [16] included using the initial Kernel
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function estimator with a fixed bandwidth, which is indicated by the local h factor gi as
follows:

gi =
[

f̃(xi)
g

]−α

, (2.6)

where a is the sensitivity parameter, meaning that (0 ≤ α ≤ 1), and g is the geometric
mean, meaning that g = 0. Abramson [1] selected the value (α = 0.5) because it produces
strong predicted results. Läuter [17] suggested an adaptable h in the following manner for
the second step

h(xi) = hgi. (2.7)
To calculate the h factor in the NW kernel estimator, Demir and Toktamı�ş [11] proposed

a variation to the (ANW) technique that relies on the arithmetic mean (x̄) of f̃(xi) rather
than g. This is equivalent to

x̄i =
[

f̃(xi)
x̄

]−α

. (2.8)

Subsequently, the ANW kernel function estimator can be expressed as

f̂MNW(xi) =
∑n

i=1
yi

hx̄i
K

(
x−xi
hx̄i

)
∑n

i=1
1

hx̄i
K

(
x−xi
hx̄i

) . (2.9)

Using the range (R) of f̃(xi), or the difference between the highest and smallest values,
as opposed to g or x̄ to calculate the bandwidth parameter in the NW kernel estima-
tor, Aljuhani and Al-Turk [7] presented a modification for the Nadaraya-Watson (MNW)
technique, that is,

f̂RNW(xi) =
∑n

i=1
yi

hRi
K

(
x−xi
hRi

)
∑n

i=1
1

hRi
K

(
x−xi
hRi

) . (2.10)

To increase the predictive power of the NW kernel function estimator, Ali [3] suggested
a modification to the Nadaraya-Watson (MNW) approach that bases the bandwidth pa-
rameter on the median of f̃(xi) rather than g, x̄ or R. The estimation of the procedure is
as follows:

f̂MeNW(xi) =
∑n

i=1
yi

hMei
K

(
x−xi
hMei

)
∑n

i=1
1

hMei
K

(
x−xi
hMei

) . (2.11)

3. Proposed ANW Kernel function estimator based on Dmey and Coiflet
wavelets

In this article, we employ two specific types of wavelets, Dmey and Coiflets, for the
smoothing and estimation process. Both wavelets are widely used in signal processing;
Dmey wavelets are known for their compact support and smoothness, while Coiflets are
preferred for their orthogonality and near symmetry, making them appropriate for certain
forms of non-parametric regression analysis.

Using wavelet shrinkage (Dmey and Coiflets), a unique method for de-noising non-
parametric regression data is provided in this paper. This method proves effective in
handling contaminated data and data with long-tailed and multi-modal distributions.
The procedure could be summarized into the following main steps: To discover the best
goodness fit of the NW kernel function estimator, the bandwidth is then calculated using
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the NW method, which relies on the fixed-form threshold methodology, which is regarded
as f̃(xi) rather than using G, x̄, R, orMe. The following key steps might be used to sum-
marize the process:

(1) Use Dmey and Coiflet’s wavelets to compute the discrete wavelet transform (DWT)
on the data.

(2) Estimating median detail coefficients at the first level (Median Absolute Deviation
(MAD)):

MAD = median
[

|W1,0|, |W1,1|, · · · |W1,( N
2 )−1|

]
, j = 1, 2, · · · , (N

2 ) − 1 (3.1)

Where (W(1,j), j = 1, 2, · · · , N
2 − 1, are the components that symbolize the initial

scale of the DWT.
(3) Use the following equation to estimate the universal threshold level

δi = σ̂(MAD)
√

2 log(N), (3.2)

where N represents how many wavelet coefficients there are in a certain level, and
the sample size must equal 2j , j = 1, 2, · · · , N − 1 and σ̂(MAD) is an estimate of
the standard deviation of the noise, which can be found by dividing the N

2 wavelet
coefficients at the first level of decomposition by 0.6745 and applying the MAD
estimator to the result [8].

(4) A smooth de-noising can be achieved by using Donoho’s algorithm (soft threshold-
ing). The following expression may be used to express the soft threshold de-noising
function

W(J,k) =
{

W(J,k), |W(J,k)| ≥ δ

0, |W(J,k)| < δ
(3.3)

where WJ,k is the transformation coefficient and δ is the threshold. Soft thresh-
olding has a smaller variance than hard thresholding; hence, the primary focus lies
in utilizing soft thresholding for modeling and forecasting in this paper.

(5) Calculate the inverse of the DWT

x∗ = W −1x (3.4)
Donoho’s algorithm has some fascinating qualities. Soft thresholding ensures that
|x∗

i | < |xi| holds and that x∗ has the same smoothness as x. Soft thresholding
might be described as the best estimate.

(6) The NW kernel function estimator for de-noised data x∗ and fixed-form threshold
δi will be written as

f̂FNW(xi) =
∑n

i=1
yi
hδi

K
(

x∗−xi
hδi

)
∑n

i=1
1

hδi
K

(
x∗−xi

hδi

) . (3.5)

4. Dmey and coiflets wavelets
The Dmey wavelet (often referred to as Daubechies’ wavelet) is a family of wavelets

introduced by Ingrid Daubechies, which is commonly used for multi-resolution analysis
in signal processing. The Dmey wavelet has compact support, which means it is local-
ized in both time and frequency, making it an excellent choice for analyzing signals with
localized features or sharp transitions. The Dmey or ”DMeyer” wavelet, also known as
the ”Daubechies-Meyer” wavelet, is a specific type of wavelet used in wavelet analysis and
signal processing. The Daubechies-Meyer wavelet is a member of the Daubechies wavelet
family, which is named after Ingrid Daubechies, a prominent mathematician in the field of
wavelets. The Daubechies-Meyer wavelet is designed to have compact support and good
time-frequency localization properties [5].
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The Dmey wavelet is characterized by its smoothness and is particularly useful for
representing signals with smooth components or analyzing signals with gradual changes.
Numerous applications have used it, including feature extraction, denoising, and picture
and audio compression. The exact mathematical equation and properties of the Dmey
wavelet depend on the specific order or length of the wavelet, which establishes the number
of disappearing moments and the degree of approximation it can attain. Commonly used
lengths for the Dmey wavelet include 2, 4, 6, 8, and higher. In this study, we applied
the Dmey wavelet decomposition to the data set to capture both low- and high-frequency
information. Using the Dmey wavelet at multiple resolution levels, we can isolate and
analyze different data components, which are subsequently used for kernel smoothing in
the regression process. The compact support of Dmey wavelets ensures that the local
features of the signal are well represented without introducing artifacts, making them
ideal for our bandwidth estimation approach.

Coiflets are a family of wavelets introduced by [10] as an extension of the Daubechies
wavelets, designed to have both compact support and higher regularity. The Coiflets
wavelet is known for its orthogonality and near-symmetry, making it ideal for applica-
tions requiring precise, high-quality reconstruction of signals. Compared to Daubechies
wavelets, Coiflets offer additional vanishing moments, which provide better smoothness
while preserving more detail in the signal decomposition. They derive their name from
Christopher A. Coifman, a collaborator of mathematician Stéphane G. Mallat, and for-
mer student of Ingrid Daubechies. Coiflets wavelets are designed to strike a favorable
balance between time and frequency localization, rendering them valuable in a wide range
of applications.

Coiflets wavelets are similar to Daubechies wavelets but have slightly different properties
[6]. They have a higher number of vanishing moments, allowing them to represent more
complex signal features and capture sharper transitions in the signal. Coiflet wavelets also
have a smoother scaling function compared to other wavelet families, which makes them
suitable for analyzing signals with a high degree of smoothness. The Coiflets family in-
cludes different wavelets with varying lengths or orders, such as Coiflet1, Coiflet2, Coiflet3,
and so on. Each wavelet in the Coiflets family is associated with a specific scaling function
and wavelet function, which determine the characteristics of the wavelet transformation.
It is important to remember that the wavelet selection is based on the needs of the ap-
plication and the properties of the signal being examined. Coiflet wavelets, with their
specific properties, provide an alternative to other wavelet families, and can be beneficial
in scenarios where their characteristics align with the desired analysis goals.

5. Evaluation criteria
The MSE will be used as an evaluation criterion to evaluate the classical and suggested

NW kernel estimators. Its foundation lies in calculating the difference between the ob-
served values yi and anticipated f̂(xi) using the suggested and traditional NW kernel
estimators. The estimator with the lowest MSE value is the best. The following are some
possible applications for the MSE in non-parametric regression:

MSE = 1
tr(I − V )

n∑
i=1

(yi − f̂(xi))2, (5.1)

where I is the identity matrix and V = (I − αK)−1. In parametric regression, the con-
ventional procedure is to divide the sum of squared errors by the degrees of freedom. The
average MSE is calculated by repeating (m) times as [2]

AMSE =
∑m

j=1 MSEj

m
(5.2)
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6. Simulation results
Using MATLAB (R2021a) language software created especially for this purpose, the

performance of the estimators in the proposed method was compared using a simulation
analysis with the classical Nadaraya-Watson estimators. To demonstrate the procedure
for creating upper and lower locally weighted running line smoothers, synthetic data was
created throughout the simulation. A sine wave was given noise, as shown in the following
non-linear regression function, to get this data

yi = sin(xi) + 0.75 ∗ εi ∼ N(0, 1) ; i = 1, 2, . . . , n. (6.1)
in which xi was selected using a MATLAB ”linspace” algorithm based on a uniform dis-
tribution over the interval [0, 4 × π]. Thus, sample sizes of 32, 64, 128, and 256 were
generated. The preset h values were 1, 0.75, and 0.5. Using the usual normal kernel
function, the kernel estimates for the variables NW-geometric, ANW-mean, ANW-range,
ANW-median and suggested approaches (ANW-Dmey and Coiflets) were computed. The
average MSE for each approach, derived from 1000 repeated simulations, is displayed in
Table 1. The generated data and the estimates of the conventional and recommended non-
parametric regression approaches for samples of sizes of 32, 64, 128 and 256 are shown in
Figures 1, 2, 3, and 4 (at h = 0.5).

Table 1. The mean MSE for the suggested Dmey and Coiflets and conventional
methods

n H Geometric Mean Range Median Dmey Coiflets
32 0.50 0.4988 0.4491 0.3141 0.4591 0.1870 0.1848
64 0.50 0.6573 0.6301 0.5524 0.6304 0.2077 0.2051
128 0.50 0.7416 0.7267 0.6874 0.7241 0.2858 0.2843
256 0.50 0.7841 0.7750 0.7542 0.7720 0.3428 0.3426
32 0.75 0.6284 0.5785 0.4602 0.5855 0.2261 0.2225
64 0.75 0.7434 0.7123 0.6425 0.7114 0.2832 0.2790
128 0.75 0.8024 0.7803 0.7375 0.7763 0.3483 0.3459
256 0.75 0.8314 0.8136 0.7837 0.8085 0.3876 0.3870
32 1.00 0.7362 0.6746 0.5460 0.6842 0.2949 0.2912
64 1.00 0.8279 0.7834 0.6969 0.7847 0.3508 0.3459
128 1.00 0.8726 0.8361 0.7719 0.8332 0.4015 0.3987
256 1.00 0.8950 0.8622 0.8087 0.8570 0.4290 0.4283

Table 1 presents the simulation results that show how adaptive nonparametric tech-
niques of the NW kernel (for geometric, arithmetic mean, range, and median) may be
used for the estimation of nonlinear regression models. These are flexible approaches that
have been shown to produce precise prediction outcomes in the past. A novel NW kernel
function estimator has been proposed as an enhancement of the adaptive NW kernel es-
timator. This estimator is based on enhancing the predictive power of the ANW kernel
estimator by utilizing the universal threshold level to increase the local factor of the band-
width instead of the arithmetic mean, range, geometric, and median when calculating the
bandwidths, and Dmey and Coiflets wavelet to de-noise the data. In this simulation study,
various sample sizes and initial bandwidth values were utilized to compare the estimators
of the proposed method with those of the classical methods, based on the average MSE
criterion.

The results revealed that the proposed Coiflets method outperformed the Dmey wavelet
method. In practice, the mean MSE increases with sample size due to the application of
nonparametric regression and the data’s tendency to resemble a normal distribution as
the sample size increases, or in certain cases, increasing the sample size could result in
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overfitting, particularly if the estimator is too complex for the data, leading to a rise in
MSE.

Figure 1. Traditional and suggested techniques at h = 0.5, n = 32

Figure 2. Traditional and suggested techniques at h = 0.5, n = 64
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Figure 3. Traditional and suggested techniques at h = 0.5, n = 128

Figure 4. Traditional and suggested techniques at h = 0.5, n = 256

7. Application
Data on the daylight outbursts of Old Faithful Geyser in Yellowstone National Park

during August 1 to 4, 1978 (for the first 32 observations from 52) [25]. The variables are
y = interval till the next eruption and x = duration of an eruption. A non-parametric
regression may be used to effectively predict variable y by applying variable x. Due to
its inadequate circumstances, simple regression cannot be used. Using non-parametric
regression techniques is one way to solve the problem; as such, Figures 5, 6, and 7 (at
h = 0.2, 0.3, and0.5) show the classical and suggested ways, respectively.
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Figure 5. Traditional and suggested methods at h = 0.2 for real data

Figure 6. Traditional and suggested methods at h = 0.3 for real data

Figure 7. Traditional and suggested methods at h = 0.5 for real data
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The suggested new NW kernel function estimator, which incorporates an adjustment to
the ANW kernel estimator, shows better predictive ability than the ANW kernel estimator
based on the findings of the real data shown in Table 2. This improvement is made possible
by utilizing the Dmey and Coiflets wavelets for data de-noising and increasing the local
factor of the bandwidth while computing the bandwidths using the universal threshold
level. A detailed study was carried out using different values of the starting bandwidth,
and the estimators of the suggested method were contrasted with estimators of classical
techniques using MSE criteria. The results unequivocally show that the suggested strategy
is more effective and efficient than conventional methods since it produces minimal MSE
values.

Table 2. MSE of the traditional and suggested methods with actual data

h Geometric Mean Range Median Dmey Coiflets
0.2 39.2524 39.1132 44.0098 37.9888 34.3570 34.2965
0.3 43.8581 43.8068 44.0522 43.3072 41.9333 34.9105
0.5 43.9936 44.0010 52.8263 44.1126 42.8884 39.0000
1.0 66.9735 66.7205 134.703 64.1597 62.8748 58.0701
1.5 110.093 110.013 168.476 108.545 83.8393 74.0854
2.0 136.517 136.497 176.323 135.893 97.7812 89.0199

8. Conclusion
The proposed method estimator, which uses the universal threshold level with Coiflets

and Dmey wavelets, outperformed all classical methods for both simulated and actual
data, as assessed by the MSE criterion. Among the estimators of the proposed method,
the one that used the universal threshold level with the Coiflets wavelet outperformed the
Dmey wavelet method. Reducing the starting bandwidth values improved the predictive
performance of the estimators. More accurate predictions were obtained by optimizing
the estimators using smaller sample sizes.

Implement the proposed method for estimating bandwidth in the NW kernel of non-
parametric regression estimators, using the universal threshold level with Coiflets and
Dmey wavelets for data de-noising instead of relying on variable bandwidths such as geo-
metric, arithmetic mean, range, and median. Future research should be done to esti-
mate the bandwidth using alternative wavelets or varying degrees of universal threshold.
Conduct further studies to explore the effectiveness of using different levels of universal
threshold or other wavelet functions for bandwidth estimation to identify the most suitable
approach for specific datasets and applications.

It is recommended to consider using the Maximal Overlap Discrete Wavelet Transfor-
mation (MODWT) instead of DWT for bandwidth estimation. This method may offer
advantages when dealing with sample sizes that are not always equal to (2j). Finally, inves-
tigate the estimation of bandwidth using different thresholding methods such as Minimax,
Stein’s Unbiased Risk Estimate (SURE), or Bayesian approaches in combination with
wavelets. These methods may provide useful information for improving the accuracy of
the bandwidth estimate.
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