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ABSTRACT Ischemic stroke, a widespread neurological condition with a substantial mortality rate, necessitates accurate delineation
of affected regions to enable proper evaluation of patient outcomes. However, such precision is complicated by factors like variable
lesion sizes, noise interference, and the overlapping intensity characteristics of different tissue structures. This research addresses these
issues by focusing on the segmentation of Diffusion Weighted Imaging (DWI) scans from the ISLES 2022 dataset and conducting a
comparative assessment of three advanced deep learning models: the U-Net framework, its U-Net++ extension, and the Attention U-Net.
Applying consistent evaluation criteria specifically, Intersection over Union (IoU), Dice Similarity Coefficient (DSC), and recall the Attention
U-Net emerged as the superior choice, establishing record high values for IoU (0.8223) and DSC (0.9021). Although U-Net achieved
commendable recall, its performance lagged behind that of U-Net++ in other critical measures. These findings underscore the value of
integrating attention mechanisms to achieve more precise segmentation. Moreover, they highlight that the Attention U-Net model is a
reliable candidate for medical imaging tasks where both accuracy and efficiency hold paramount importance, while U Net and U Net++
may still prove suitable in certain niche scenarios.
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INTRODUCTION

Stroke is an acute brain vascular disease that occurs as a result of
interruption of the blood supply due to blockage of the various
arteries or veins supplied to the brain. The phrase “time is brain”
just implies that there is a need to spend more time in the diag-
nosis and treatment of such illnesses (Saver 2006). Fortunately,
stroke is a preventable condition and is ranked among the leading
causes of mortality and disability globally because the prevalence
of the condition is high and the number of people with chronic
diseases is rising (Lee et al. 2023). It is broadly classified into two
main types: ischemic stroke (IS), with a global prevalence of 87%,
and hemorrhagic stroke (Clèrigues et al. 2020; Roth et al. 2018).
Ischemic stroke is characterized by hypoxic tissue injury due to
arterial obstruction and leads to necrosis of the affected neuronal
cells (The GBD 2018). While ischemic strokes are more prevalent
and occur when blood clots block flow in the brain, hemorrhagic
strokes are caused by conditions resulting in high blood pressure,
aneurysms, or bleeding within and around the brain (Chen et al.
2017).
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Currently, accurate diagnosis plays an essential role in stroke
management, as interventions performed during the initial hours
can significantly influence patient outcomes (Huang et al. 2022).
Imaging modalities such as CT-scan (Computed Tomography) and
MRI (Magnetic Resonance Imaging) form crucial constituents of
the work in stages for stroke typing. Care was taken to select
diagnostic tests that were popular with patients and referring
clinicians owing to rapid throughput and lower costs compared
to CT imaging; however, MRI provided a more detailed definition
of the structural topography of the scans, and for differentiating
the most recent acute ischaemic injury (Tursynova and Omarov
2021; Zhuang and Shen 2016). Among all MRI techniques, DWI
(Diffusion Weighted Imaging) has been reported to be particularly
important for the early diagnosis of ischemic strokes due to DWI’s
high sensitivity and quantitative reliability (Edlow et al. 2017; Jauch
et al. 2013).

Moreover, the use of DWI in combination with ADC (Apparent
Diffusion Coefficient) information helps the next step of lesion
characterization and the final classification of the disease (Kim et al.
2019; Wong et al. 2022). Although the gold standard in manual seg-
mentation of stroke lesions has been utilized in the present study,
the process is still slow and surprisingly subjective due to the com-
plexity of the human brain (Kumar et al. 2021). To overcome these
limitations methods based on deep-learning-based automated seg-
mentation methods give the solution to reduce the load and out-
come of the diagnostic time (Nielsen et al. 2018). For example, the
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U-net and all of its derived structures with the encoder-decoder
have been solely applied broadly to achieve the right segmentation
of stroke lesions (Ronneberger et al. 2015). These methods are most
appropriate in the analysis of stroke because they are less sensitive
to global signal changes and are more precise in voxel and lesion
level extraction (Hernandez Petzsche et al. 2022).

Deep learning models have been widely used in many areas in
recent years thanks to their high accuracy and automation capa-
bilities; these areas include disease diagnosis and crop efficiency
analysis in the agriculture and farming sectors (Paçal and Kun-
duracıoğlu 2024), image processing and threat detection in the
defense industry (Wang et al. 2023), cancer diagnosis in the medi-
cal field (Ozdemir and Pacal 2025), analysis of brain diseases and
prediction of genetic mutations (Pacal 2025), as well as many dif-
ferent applications such as education, social analysis (Celik et al.
2025), financial data analytics (Alkan et al. 2023), natural language
processing and even space exploration. There may also exist sev-
eral issues in applying conventional CNNs (Convolutional Neural
Networks) for the learning of both local and global features that
are crucial to enhancing the understanding of different lesions (Bal
et al. 2019; Kunduracioglu 2024a; Schlemper et al. 2019).

The above limitations have however in recent years been ad-
dressed by blends of CNNs and Transformative models (Kundura-
cioglu and Pacal 2024). These models take the top-level global
contextual information because of the self-attention mechanism of
Transformers which boosts the segmentation process (Dosovitskiy
et al. 2020; Paçal and Kunduracıoğlu 2024). Additionally, two-path
3D CNNs provide a proper means of addressing the MRI slices
with localized and generalized features to erase imbalances in data
and improve the equalization of the segmentation process (Çiçek
et al. 2016; Kench and Cooper 2021). Incorporation of data from
different MRI options with DWI and ADC accessories provides
better outcomes in terms of specificity and sensitivity (Sarvaman-
gala and Kulkarni 2022). These approaches cooperate in aligning
data across multiple modalities and thereby improve the ability
of the model to properly disentangle the location of stroke lesions
regardless of whether they are ill-defined (Ding et al. 2022). For
example, the 3D ResU-Net and GAN-based methods can maintain
the structures, and address the issue of the blurred features of
lesions for the multispectral images, which can be very helpful in
the diagnosis of complex neuronal diseases (Hossain et al. 2021).

The present segmentations have also been improved in other
ways, and another successful attempt made was to enforce the
use of transfer learning techniques. The models trained on the
dataset like ISLES, which contain the brain tumor’s images, can
be returned as a special model to boost the result of the stroke seg-
mentation job (Liu et al. 2021). There is also a desire to work with
attention mechanisms and with pyramid-atrous convolutional net-
works to improve both, the segmentation and the classification
models (Ansari et al. 2022). These innovations make it possible to
detect not only the large-scale lesions but also the smaller lesion
regions. The current deep learning-based models’ performances
are assessed with metrics that estimate lesion mask matching with
the ground truth (Hernandez Petzsche et al. 2022). However, le-
sion size, location, and shape are being incorporated more and
more into more detailed evaluation of clinically relevant perfor-
mance metrics (Hernandez Petzsche et al. 2022; Maier et al. 2017).
This is particularly the case in instances where the lesion is large,
and lesion-load contrasts contribute significantly toward accurate
lesion margin delineation.

Advanced imaging techniques and the application of artificial
intelligence (AI) hold great promise for the detection and segmenta-

tion of acute ischemic stroke (AIS) lesions. However, clinical stud-
ies in this area remain limited in number and are often hindered by
small sample sizes and methodological constraints. Despite these
challenges, these studies bridge the gap between experimental
methodologies and real-world medical applications, highlighting
both the potential and the difficulties of implementing AI-driven
solutions in stroke care. In a study explored AIS lesion detection
using 2D and 3D U-Net models with multimodal MRI data. The
2D multimodal U-Net model, which combined DWI and FLAIR
data, achieved a Dice score of 73.7%, outperforming other methods
(Moon et al. 2022).

However, the small and homogenous dataset limited the gen-
eralizability of the results. The study also identified a lack of
longitudinal data to track lesion progression and the absence of
integrated clinical-demographic information as key limitations.
Another study developed an ultrafast MRI protocol using DWI,
FLAIR, and SWI/T2 modalities to compare its performance with
traditional AIS detection protocols (Verclytte et al. 2023). While
the ultrafast protocol showed excellent agreement with traditional
methods in detecting AIS, its performance in detecting thrombus
and hemorrhagic transformation was limited. The study suggested
that future research with larger patient groups and more diverse
clinical scenarios could enhance the accuracy of the protocol. Fo-
cused on machine learning models that utilized radiomic features
from MRI data to classify stroke onset time (Zhang et al. 2022).

The DWI/ADC radiomic model demonstrated the best perfor-
mance, with high sensitivity (95.2%) and positive predictive value
(76.9%). However, the small sample size and data from a single
medical center limited the model’s applicability. Study on segment
AIS lesions, developed a model using U-Net architecture and pre-
dict functional outcomes (Wong et al. 2022). This model achieved
a Dice score of 85% on a test set of 875 AIS patients and demon-
strated high accuracy in predicting 90-day Modified Rankin Scale
(mRS) outcomes. The study emphasized the need for validation
with larger, more diverse populations, as the dataset was sourced
from a single center.

These studies demonstrate the effectiveness of U-Net architec-
tures, radiomic-based machine learning models, and innovative
imaging protocols in detecting and segmenting AIS lesions. How-
ever, common limitations such as small sample sizes, limited data
diversity, and the need for validation across different clinical set-
tings remain. Collectively, these findings underscore the signifi-
cant potential of AI-driven techniques in improving AIS diagnosis
and clinical decision support systems. Aslan and Ozupak (2025)
demonstrates the effectiveness of the Edge U-Net architecture in
road extraction from satellite images, showing remarkable perfor-
mance with a global accuracy of 98.1% and an mIoU of 96.53%.
These results surpass other existing methods and highlight the
advantages of deep learning techniques in this domain. Aslan
(2024) found that the proposed LSTM-ESA model outperformed
the standard ESA model, achieving an accuracy rate of 98.1%. This
result demonstrates higher success compared to similar studies in
the literature.

This research significantly advances the domain of ischemic
stroke segmentation by systematically evaluating three cutting-
edge deep learning models; U-Net, U-Net++, and Attention U-
Net, using consistent performance measures (IoU (Intersection
over Union), DSC (Dice Similarity Coefficient), and Recall) and
a carefully curated subset of 998 DWI scans from the ISLES 2022
dataset. The results highlight the Attention U-Net’s exceptional
performance in achieving high-precision segmentation, thereby
emphasizing the critical importance of attention mechanisms in
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refining model accuracy. By employing a more targeted image
selection strategy, this work not only yields more robust outcomes
but also establishes a dependable methodological framework for
precise lesion delineation in clinical stroke imaging.

RELATED WORKS

Stroke lesion segmentation has garnered substantial attention due
to its clinical significance. Earlier on, segmentation techniques
were based on manual feature extraction, where features are ex-
tracted before being classified by machine learning approaches
(Kamnitsas et al. 2017). However, the limitation of the generaliza-
tion capability of hand-crafted features due to which there is a
variation in performance across datasets has paved the way for
deep learning-based methods (Kamnitsas et al. 2017; Salvi et al.
2021). These approaches seem to learn features by themselves as
they perform high-level image processing tasks for medical images
which include tumor and stroke lesion segmentation (Goel et al.
2023; Salvi et al. 2021). On account of their capability of learning
hierarchical features, Convolution Neural Networks (CNNs) have
proved efficient for the segmentation of stroke lesions. U-Net and
its derivatives have been developed especially (Chen et al. 2023;
Xiao et al. 2018). For instance, Clèrigues et al. (2020) suggested a
3D U-Net for segmenting stroke lesions from MRI data, to solve
the class imbalance issue, weight reduction was applied dynami-
cally, and overlapping patches were used. However, because of the
single-type, larger patches, the local features were not extracted
optimally, and the analysis was majorly confined to the global
characteristics. Similarly, another study expanded the U-Net struc-
ture without using 3D kernels; therefore, the inter-slice connection
and segmentation of minute lesions were limited (Tursynova and
Omarov 2021).

To overcome the architectural constraints, Zhao et al. (2019)
proposed a multi-feature map fusion network for dealing with
features coming from different paths. Even though they used
fully and weakly labeled data, their model had a higher time
complexity than the other two approaches. Zhang et al. (2020)
used FPN-ResNet101 for the fusion of multi-plane information
and encountered difficulties in integrating multiple manners of
MRI data and thereby were constrained in overall performance.
One major advancement in stroke lesion segmentation has come
from the use of attention mechanisms, they help to bring priority
to the right inputs (Woo et al. 2018; Yang et al. 2019).Yang et al.
(2019) designed the framework as a CLCI-Net that uses hierarchical
feature fusion and LSTM for improving plaque info location in
gray-scale.

Likewise, Alshawi et al. (2023) integrated spatial and channel at-
tention into a dual-attention U-Net to enhance feature dependency
modeling and acquire higher accuracy of semantic segmentation.
Moreover, for CNN-based methods, to overcome the drawback
of CNN cross-attention mechanisms have been included in the
hybrid architecture. For example, Wang et al. (2020) employed at-
tention to obtain lesion similarities across the modalities. However,
most attention-based methods are still confined to the region of
interest, or local context, and hence may not capture the global
context effectively (Woo et al. 2018). The transformers that were
first incorporated for natural language processing applications
have shown great promise in medical image segmentation (Pacal
et al. 2024). Unifications of CNNs with transformer architectures
are present in the Vision Transformer (ViT) and Swin-Unet, which
exploits both local and global information (Yuan et al. 2023). Chen
et al. (2021) introduced TransUNet which employs CNN for cap-
turing local features and transformers for capturing global context

information and reported impressive performance of organ seg-
mentation. In stroke lesion segmentation, Wu et al. (2023) use
multi-scale transformers to localize boundary area and improve
the feature completeness.

Encoder-decoder architecture has also received massive im-
provement in its development. Liu et al. (2021) proposed a new
hybrid contextual semantic module that can produce enhanced
contextual features within such frameworks. Apart from CNNs,
transformers were used in vision tasks, which were originally in-
troduced for language modeling (Bayram et al. 2025; Burukanli
and Yumuşak 2024). Dosovitskiy et al. (2020) Vision Transformer
received great attention in image recognition by efficiently cap-
turing global context by replacing convolutions with linear trans-
formations. Other recent works in stroke segmentation using a
transformer-based approach have produced state-of-the-art perfor-
mance but still pose issues because of the missing inductive bias
like locality that is already incorporated into CNNs (Li et al. 2022;
Xie et al. 2021; Yuan et al. 2023). To overcome this, architectures that
combine both CNNs and transformers have been discussed. These
models are still based on the strengths of the CNNs in the local fea-
ture extraction and transformers for the global context modeling
where a balance between the two is improved to pave the way for
better segmentation (Wu et al. 2023, 2024; Yuan et al. 2023). Such
approaches show how it is possible to use the strength of other
paradigms to improve medical image segmentation beyond what
is traditionally achieved.

The study of combining CNN and transformer architecture
hybrids is quite encouraging. For example, Wu et al. (2024); Yuan
et al. (2023), have designs of nets that will combine local and global
features that do not have inductive bias of transformers. All the
above-mentioned methods highlight the need to integrate two
complementary skills to achieve strong results in segmentation.
Several problems persist, however, even with the development
of deep learning-based approaches. Previous approaches face
difficulties in achieving stability between computational time and
considering all the features (Yalçın and Vural 2022; Zhao et al. 2019).
It is found that several architectures are unable to address local
and global features together and as a result, there is a performance
gap for small lesion segmentation (Alshawi et al. 2023; Tomita et al.
2020).

METHODOLOGY

ISLES2022 dataset
Data quality plays a pivotal role in deep learning success, as the
dataset itself significantly influences model performance (Kundura-
cioglu 2024b). High-quality, balanced, and accurately annotated
data minimize the likelihood of misclassification, thereby enabling
the model to comprehensively learn its environment and operate
as intended through iterative training. In this research, the ISLES
2022 dataset was employed, and its specific characteristics were
thoroughly examined and discussed (Hernandez Petzsche et al.
2022; Maier et al. 2017). The datasets of the ISLES are available
under an open database license for scientific purposes in the field
of medical image processing and can be visualized in axial, coro-
nal, and sagittal planes in the NIfTI (Neuroimaging Informatics
Technology Initiative) format.

ISLES 2022 is particularly based on the segmentation of stroke
lesions in multimodal MRI images (Li et al. 2024; Maier et al. 2017).
ISLES 2022 has multimodal MRI scans of 250 patients with high
variability in lesions in size and location because images from
multiple centers are used (Li et al. (2024)). The distribution within
these datasets leads to a problem such as class imbalance but the
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model is fair when evaluated in clinical conditions (Hernandez Pet-
zsche et al. 2022; Maier et al. 2017). In the preprocessing steps, the
obtained ISLES datasets were transformed into MNI (Montreal
Neurological Institute) space by registering DWI, FLAIR, and ADC
images. Among them, DWI modalities seem to be most effective
for stroke lesion detection and therefore were addressed in the
experiments. DWI images and masks are shown in Figure (1).

Figure 1 ISLES 2022 samples of DWI images and masks

To perform the experiments the resolution of each sample was
reduced to 128x128x128 and then divided into three splits: training,
validation, and test splits; 80% of samples were used for training,
and the remaining 20% for testing (Kilicarslan and Pacal 2023). In
conclusion, the ISLES datasets are useful in the benchmarking of
automated approaches aimed at segmenting stroke lesions. The va-
riety of sources for the data guarantees that the textures of datasets
are genuine clinical circumstances and that the environment is ap-
propriate for evaluating capabilities for generalization of models
(Maier et al. 2017).

U-Net
The U-Net architecture is a perfect neural network often applied in
the processes of image segmentation. This model consists of two
main components: a contracting path encoder and an expansive
path decoder. The encoder extracts the low-level feature vectors
from the input image and the decoder utilizes these features to
come up with real segmentation maps (Abdmouleh et al. 2022;
Sacco et al. 2013). Because the decoding and encoding processes
of the network are quite similar, it has a form of a "U" (Ashburner
and Friston 2005). The U-Net architecture extends the "fully convo-
lutional network" model. It optimizes it to perform well even with
comparatively small sets of training data and, at the same time,
provides better means of segmenting images (Figure (2)). Unlike
the FCN (Fully Convolutional Network), for example, U-Net has
layers in which ashamed of the polluted function will be utilized
to increase the resolution of the output. Detailed features found
at the contracting path are concatenated to assist in localization
with the up-sampled outputs. A convolutional layer then takes
this merged data to produce even more accurate outcomes.

The encoder is organized from 3 x 3 convolutions layered with
rectified linear units (ReLU) and 2 x 2 max-pooling layers that
are repeated. The number of feature channels increases at each
pooling step, and doubles (Sacco et al. 2013). The decoder, on the

Figure 2 U-Net architecture. Figure from (Ronneberger et al.
2015).

other hand, has 2 x 2 up-convolutions to up-sample the feature
maps but the number of channels is also reduced. Further, it also
concatenates the feature map with the cropped version of the sim-
ilar feature map from the encoder (Ashburner and Friston 2005;
Sacco et al. 2013). U-Net is particularly applicable for handling
large amounts of medical images. The data in medical images
might have to be partitioned into several patches to be accepted by
the network. Nevertheless, through the overlapping tile strategies,
U-Net is in a position to accept images of any size in the network.
These strategies allow attaining the higher resolution segmenta-
tion since the GPU memory-bound problem is solved (Karani et al.
2021). The energy function E serves as a loss function, evaluating
the difference between the predicted probability distribution of
each pixel and its corresponding true label. To enhance the train-
ing process, this function incorporates a weight map that assigns
varying levels of importance to different pixels. The function is
defined mathematically as:

E = ∑
x∈Ω

w(x) log pl(x)(x) (1)

Where Ω is the set of vectors that can define a generic position
in the image. The weight map w(x) enables certain pixels to be
prioritized during training, l(x) signifies the true class of a pixel x,
and pl(x)(x) refers to the probability, as estimated by the computer,
that a certain pixel x belongs to its actual class. This loss function
strengthens pl(x)(x) with an aim of increasing the model’ s accu-
racy in its predictions by penalizing deviations of the value from 1
(Ronneberger et al. 2015).

In calculating separation boundaries, the family of morpholog-
ical operations is used while for the formulation of the weight
map, the family takes into consideration class imbalance and ge-
ometrical characteristics. The weight map contains variables for
distributing class frequencies and will contain exponential terms
to the first and second nearest cell border. Specifically, the map is
expressed as:

w(x) = wc(x) + w0 exp

(
− (d1(x) + d2(x))2

2σ2

)
(2)

Where wc : Ω → R as class frequencies are measuring,
d1 : Ω → R and d2 : Ω → R represent the distances to the
nearest border of the cell and the second nearest. This formulation
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makes certain that the points the model uses to focus while train-
ing consider both the spatial aspects and class concerns. Weight
initialization is a critical factor for deep neural networks, particu-
larly convolutional architectures with many layers and the U-Net
is one of such complex pathways. Some authors pointed out that
due to poor initialization, some parts of the network compute large
activity whereas others compute very small activity during the
training phase. To avoid this, the initial weights must be generated
from a Gaussian distribution of mean zero and standard deviation
of
√

2
N for N, the number of input neurons per each neuron. This

approach that incorporated Moment’s normalization guarantees
that every feature map within the network has a variance of nearly
one; making the learning process balanced in the network.

U-Net is a modified version of the fully convolutional network
model that can work with considerably fewer training images
and give more precise segmentation. This structure eliminates the
overall contraction network and uses one layer after another, so
down-sampling is interconnected with up-sampling to increase
the stability of output resolution. Another important aspect, that
is implemented in the suggested architecture, is the possibility
of having many more feature channels in the up-sampling sec-
tion than in the corresponding down-sampling section, providing
contextual data to the higher-resolution layers. This mechanism
helps to get an accurate segmentation with the help of pixel-level
(Johnson et al. 2024).

U-Net++

The developed U-Net++ an extension of the U-Net architecture
with attention gives equally high accuracy and precision for tasks
that demand it, such as medical image segmentation (Zhou et al.
2018). This architecture refines the inter-dependencies of the en-
coder and decoder structures heavily, decreases the semantic gap,
and allows for efficient merging of multi-scale features. Here, the
skip connections are implemented with dense convolutional blocks
that sum feature maps of previous layers which improve seman-
tic similarity and ensure better gradients flow. Consequently, the
suggested model segments more accurately and efficiently while
learning. In the U-Net++ model, one of the most important forms
of modification is that of attention mechanisms, which would en-
able the model to pay heed only to a specific area. This affords
a significant improvement, especially for scenes where images
contain small or scattered structures such as body elements in
medical images. Moreover, deep supervision is introduced into the
architecture to provide the output of all the semantic levels. This
not only gives a very fine-grained segmentation but also allows
steps to be taken to minimize the network complexity where this
is necessary. Through the use of the hybrid loss function, difficult
issues like the imbalance of classes are sufficiently handled.

U-Net++ architecture is an extension of the U-Net model, which
involves connecting the decoders in a way that creates densely
connected skip connections. These connections facilitate the dense
propagation of features through the skip connections, allowing for
more flexible fusion of features at the decoder nodes. Consequently,
each decoder node in U-Net++, from a horizontal viewpoint, com-
bines multi-scale features from all its preceding nodes at the same
resolution, while from a vertical perspective, it integrates multi-
scale features from different resolutions across its preceding nodes
(Figure (3)).

This architecture has a very tight coupling between the encoder
and the decoder parts and it can use not only the feature maps
corresponding to the same scale but also the features at the lower
scales (Zhou et al. 2020). Consequently, this design helps to per-

Figure 3 U-Net++ architecture. Figure from (Zhou et al. 2020)

ceive richer and more meaningful features and bears superiority
over the U-Net and other of its versions in medical image process-
ing tasks, in terms of accuracy and time consumption. Experiments
have proved that U-net++ is helpful, especially for medical seg-
mentation problems.

Attention U-Net
Attention U-Net is a type of deep learning that is particularly
appropriate for difficult applications and is commonly used in
medical contexts for instance aged image segmentation. It is a
modification of the U-Net architecture where the focus mechanism
is made more task-specific we call it the ’Attention Gate’ (AG).
Another that U-Net has is its capability to obtain feature maps of
various resolutions preserving the global and local information.
But in the standard U-Net, there is a problem of unnecessary acti-
vations and false positives in background areas. Attention U-Net
complies with this problem because AGs are used to highlight
only those activations that are important for the task and leave
out all irrelevant ones (Oktay et al. 2018). In the encoder part of
the model, the input image is necessarily passed through a series
of filters and then down sampling by 2 at each scale level. Nc
represents the total number of classes. Coefficients transmitted
through the skip connections are passed through a number of AGs.
In these mechanisms, feature selection is done by using context
information derived from rougher resolution scales (Figure (4)).

Figure 4 Attention U-Net architecture. Figure from (Oktay et al.
2018).

The details of the computation of an attention coefficient are
that each pixel in the input feature maps are coupled with respec-
tive contextual information. These coefficients are used through
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element-wise multiplication with the feature maps which means
that the focus is placed only on significant areas. The use of the
described approach enables accurate division of tissue samples,
especially in cases when the specimens are small or contain mor-
phologically diverse structures (Oktay et al. 2018). Further, the
incorporation of the AGs helps to reduce the training of several
models, making training easier.

This research has shown that the proposed Attention U-Net
can resolve many of the limitations of other current medical image
segmentation techniques, including the challenging organ bound-
aries of the pancreas (Oktay et al. 2018). The presented architecture
seems to yield higher Dice scores and lower surface distances when
tested in comparison with the standard U-Net. In addition to this,
the model’s AGs guard against deviations from normal perfor-
mance even with limited training data. It helps the architecture to
learn only meaningful activations for given tasks and reduces the
impact of background regions during the process of updating its
parameters. Due to these features, Attention U-Net can become a
valuable tool for the analysis of medical images.

Performance metrics

In automated segmentation methods, both accuracy and repro-
ducibility aspects are crucial because they are the building blocks
of the validity of segmentation. The performance of an algorithm
is measured with its output against the ground truth dataset and
is compared using metrics like true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Key perfor-
mance metrics for assessing segmentation include:

Dice Similarity Coefficient (DSC): This measure represents the
similarity of the established segmentation and segmentation re-
ferred to as reference segmentation. The closer the value to 0, it
means there is no overlapping, a value of 1 means perfect overlap-
ping (Dice 1945).

DSC =
2 · TP

FP + FN + 2 · TP
(3)

Intersection over Union (IoU) metric is used to measure the
overlap ratio between the predicted segmentation area of a model
and the ground truth area (Everingham and et al. 2010).

IoU =
TP

TP + FP + FN
(4)

Recall (Sensitivity, R) determines the percentage of instances
that were identified as relevant and that are common to both the
computed segmentation and the reference segmentation (van Rijs-
bergen 1979).

Recall =
TP

TP + FN
(5)

Precision (P) indicates the degree of similarity between the ac-
tual computed segmentation solution and the reference segmenta-
tion that has a significant positive prediction value (van Rijsbergen
1979).

Precision =
TP

TP + FP
(6)

Together these metrics provide a rounded evaluation of an
automated segmentation algorithm as the measures of precision,
coverage, and reliability are compared.

RESULTS

Implementation details
A system with the Ubuntu 22.04 operating system, an NVIDIA RTX
4090 graphics card, and an Intel Core i9 processor was used for this
research. The experiments were conducted using the latest PyTorch
framework and NVIDIA CUDA, commonly used for evaluating
deep learning models. The optimization process was carried out
using the Stochastic Gradient Descent (SGD) algorithm with a
momentum of 0.9 and a learning rate of 0.01. Model updates were
made using a batch size of 32 and 5 warm-up epochs to prevent
large steps during training.

Data processing
Within the ISLES 2022 dataset, the initial and final images ob-
tained from the same patient cohort often lacked discernible le-
sions, thereby diminishing their clinical and diagnostic utility. To
refine the quality of dataset and ensure its clinical relevance, two
experienced radiologists were consulted. Guided by their exper-
tise, all non-informative images and those lacking appropriate
segmentation masks were systematically excluded, resulting in a
more diagnostically meaningful collection.

After this expert-driven curation, the dataset comprised 998
clinically and methodologically suitable images. For uniformity
in subsequent segmentation tasks, all selected images were resam-
pled to 256x256 resolution. To enhance the robustness and gener-
alizability of the models, data augmentation was applied online
during training, incorporating a diverse range of transformations;
namely rotation, elastic deformation, horizontal flipping, scaling,
random cropping, Gaussian blur, Gaussian noise, brightness and
contrast adjustments, and random gamma transformations. These
controlled augmentations aimed to simulate realistic variations
encountered in clinical practice, thereby enabling the models to
learn more generalizable features.

Following the augmentation and preparation steps, the dataset
was divided into training and testing subsets, with 80% allocated
for model training and the remaining 20% for performance evalua-
tion. This rigorous approach, combining expert image selection,
standardized preprocessing, and comprehensive online augmenta-
tion, was designed to improve the reliability, clinical applicability,
and overall interpretability of the resulting segmentation models.

Experimental results
The paper also compares the results of the different models in-
cluding U-Net, U-Net++, and Attention U-Net based on different
evaluation measures. The presented outcomes show that, except
for the number of parameters, Attention U-Net has higher scores
in all other evaluation criteria (Table 1). Unexpectedly, the evalua-
tion metrics, IoU, DSC, precision and F1-Score, which are closely
related to the segmentation quality, reveal that Attention U-Net out-
performs other methods. However, while U-Net achieves higher
scores in some metrics, the recall index proves that the stability of
this model is quite strong. However, in most cases, U-Net++ lags
behind the other two models. This shows that the unique design
of U-Net++ provides certain advantages, but it may fall short of its
counterparts in terms of overall accuracy and efficiency.

The loss metric which shows how much error built up during
training shows that U-Net has the least value of 0.3196 meaning
that it made the fewest errors. Altogether, U-Net++ contains a
higher loss value equal to 0.3671, but Attention U-Net and U-Net
are closer to each other with a loss value of 0.3353. This implies that
the attention mechanism in Attention U-Net does not disrupt the
learning process while U-Net++ significantly improves the error
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■ Table 1 Comparative performance metrics on U-Net architec-
tures

Metric U-Net U-Net++ Attention
U-Net

Loss 0.3196 0.3671 0.3353

IoU 0.8186 0.8004 0.8223

DSC 0.8999 0.8886 0.9021

Recall 0.9027 0.8919 0.8975

Precision 0.8974 0.8856 0.9072

rates. This is a representation of the IoU metric that measures how
much the predicted segmentation of MR images by the different
models corresponds to the ground truth an evaluation of the results
shows that, for the Attention U-Net model, the IoU benefit reaches
0.8223 while for the U-Net model reaches 0.8186. U-Net++ has
the lowest rate of 0.8004. This highlights that Attention U-Net
has a higher segmentation accuracy than U-Net which causes
the latter to seem to struggle in providing good segmentation.
Dice Similarity Coefficient (DSC) familiar to IoU, estimates the
overlap between the predicted and actual outputs. Attention U-
Net starts the comparison with an accuracy of 0.9021, while U-Net
receives slightly lower results with 0.8999. Here, only U-Net++
reaches a slightly lower score of 0.8886. Such outcomes support the
usefulness of Attention U-Net, especially for processing difficult
and small structures in segmentation Figure (5).

Figure 5 IoU, DSC, and Recall scores across models

Remember, that all calculates the sharpness of the model con-
cerning positively labeled data: thus, the highest value of 0.9027
belongs to the U-Net model. Attention U-Net achieved the sec-
ond highest recall with 0.8975 while U-Net++ has the lowest recall
metric with 0.8919. This suggests that in segmentation problems
U-Net is better suited for detecting positive samples in a precise
manner. Precision, which signifies the extent of positive instance
identification, placed Attention U-Net at the top bit with a measure
of 0.9072. U-Net is followed by 0.8974 and U-Net++ is the lowest

at 0.8856. This means that the predicted false positive regions are
reduced in Attention U-Net, which has a significant benefit for
capturing slim structures.

Figure (6) presents the segmentation results of the U-Net, U-
Net++, and Attention U-Net models on a representative DWI brain
image selected from the ISLES 2022 dataset. In addition, the Figure
(6) includes four panels for each model: the original image, the
ground-truth mask, the predicted mask, and an overlay combining
the predicted mask with the original image. This structured presen-
tation enables a clear, comprehensive, and academic comparison
of the models’ segmentation performances.

Figure 6 Comparative visualization of segmentation results for
U-Net, U-Net++, and Attention U-Net models on a sample DWI
brain image

For the purpose of comparison, the original image is presented
in the first column and the results are obtained using the corre-
sponding model. It is possible to distinguish a tumor region in the
image compared to the default areas, which allows us to assess
the segments used by the segmentation models. The real mask is
aligned with two radiologists’s annotation of the tumor location in
red areas and is the ground for all models being compared here.
The second image is the predicted mask panels where we see the
segmentation results of each model. The authors concluded that
the U-Net model has a high ability to detect the entire tumor area,
but there are slight deviations at the edges. On the other hand,
the U-Net++ model needs improvement in outlining the tumor re-
gion or boundary. It seems that the predicted mask for this model
seems relatively smaller compared to the actual region of the tu-
mor. Thus, through the aided assessment of the Attention U-Net
model, it is evident that the generated predicted mask accurately
targets more areas of the outlines compared with other findings
and better segments the tumor.

In the combined overlay, the current mask, green, and the future
mask, red are placed side by side on the working image. Yellow
areas represent the places where the predicted mask and ground
truth mask are the same, that is, there is agreement. When looking
at the density of the yellow areas, the model is reasonably signifi-
cant since large yellow areas of data points are observed but green
areas of over-prediction and red areas of under-prediction are also
noticeable. It is noticeable that red areas are present in greater num-
bers and the yellow regions are narrower in the U-Net++ model
and are not able to capture all the regions of the tumor. In contrast,
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the Attention U-Net model yields a large number of yellow zones
that conform to the actual mask and reduces mispredictions in red
or green fields.

These results provide visual representations of the segmen-
tation performance of the models. The prediction is especially
accurate when the Attention U-Net model is used, as the larger ar-
eas marked in yellow and fewer mistakes based on the actual mask
are demonstrated. The U-Net model is also high-performing but
ranks a little low than the Attention U-Net. On the other hand, the
U-Net++ has displayed poor performance in outlining the edges
of the tumor. This work establishes that Attention U-Net is the
best architecture for high precision and low loss rate tasks such
as medical image segmentation. However, they depend on the
specific application needs of a particular organization, company,
or researcher in addition to the available resources.

For instance, U-Net has benefits for aspects such as simplicity
while having higher sensitivity compared to other networks pro-
viding it with stability for specific operations. However, for those,
who might be interested in the model with different optimiza-
tion strategies, U-Net++ might be more suitable despite having
lower general performance. However, the study also has some
limitations. The dataset used contains a limited number of images,
and the accuracy of the model could be further improved with a
larger dataset. Additionally, integrating different deep learning
architectures and applying optimization techniques could enhance
the performance of models. Apart from the metrics considered in
the study, testing the model with more diverse and complex data
under real-world conditions could improve its generalizability.

DISCUSSION

In this study, the performances of three deep learning models
namely U-Net, U-Net++, and Attention U-Net were considered to
segment medical images using the ISLES 2022 dataset. The outputs
were then evaluated with several performance indicators such as
Loss, IoU, DSC, Recall, and Precision. These metrics give an overall
evaluation of each model on how correctly they segment the tumor
regions from medical images. Although the Loss and Recall metric
is higher in the U-Net model than that of Attention U-net, attention
U-Net performs slightly better in IoU, DSC, and Precision scores.
In U-Net++, a similar but slightly lower performance for most of
the proposed metrics. The key claim of the Attention U-Net is that
the exact attention will enable the model to pay more attention
to parts of the image that are essential for precise segmentation
maps. This makes Attention U-Net the best-performing model for
several tasks where high precision is essential in medical image
segmentation for diagnosis or treatment planning.

In particular, all the considered models show high performance
in terms of segmentation; however, based on the analysis of the
results and the time needed to train and make a prediction, the
Attention U-Net model can be officially recognized as the most
effective for implementing high-precision segmentation of tumors.
Nevertheless, the selection of the model might still be based on
certain application requirements or resources. For example, U-Net
is simpler and has higher recall; that is why it may be used in
situations where more particular focus on tumor regions’ detection
is needed, including potential false-positive regions. Likewise,
generalizing from this, there may be places where U-Net++ may
be useful because it will be necessary to work with more complex
models in such scenarios though the overall accuracy might be
slightly less.

CONCLUSION

In this work, we investigated the U-Net, U-Net++, and Atten-
tion U-Net in context to the segmentation of brain tumors and
achieved high accuracy scores with the DWI images of the ISLES
2022 dataset. These metrics show that the Attention U-Net method
outperforms the other in segmentation accuracy and is in line with
the results, especially for the IoU, DSC, and F1-Score essential mea-
sures of segmentation. Regarding computational costs, U-Net can
directly attend to salient regions through its attention mechanisms
the control of which is particularly beneficial when focusing on
small or complex structures in medical images. Despite its unique
approach to the architecture, U-Net++ was observed to be less
accurate in all the evaluated metrics apart from recall which makes
U-Net accurate in detecting positives. The analysis of loss values
also highlights the stability of Attention U-Net during training,
which ended with a loss that is almost as low as the one of U-Net,
and considerably lower than of U-Net++.

The integration of advanced imaging techniques and deep learn-
ing algorithms has revolutionized stroke diagnosis and manage-
ment. These innovations have not only streamlined the diagnostic
process but also enhanced the precision of lesion characteriza-
tion, contributing to improved clinical outcomes. Future research
should focus on refining these methodologies, expanding multi-
modal integration, and exploring novel architectures to further
advance the field of stroke diagnostics. Therefore, Attention U-Net
is the algorithm that performs the best in cases when segmentation
precision and the absence of errors are critical, and it should be
demanded for medical image analysis. Nevertheless, the selec-
tion of the model should correspond to the presence of particular
requirements and available resources. In general, U-Net is both
simple and reliable, which can be useful if nothing else is known;
however, U-Net++ may be more interesting to researchers who
wish to investigate other optimization methods even though an
evaluation showed it to be slightly less effective. Future work can
improve them or propose different approaches for medical image
segmentation since the presented models have some limitations.
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