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Soil fertility is a critical determinant of agricultural productivity, yet traditional assessment methods 

often fall short in providing timely and precise recommendations. This study explores the potential of 

machine learning (ML) models to predict soil fertility, leveraging localized soil data and advanced 

feature engineering techniques. A comprehensive methodology was employed, involving data 

preprocessing, feature selection, and the implementation of six ML algorithms: Random Forest 

Regressor, Gradient Boosting Regressor, XGBoost Regressor, K-Nearest Neighbours Regressor, and 

Neural Network (MLP). The models were evaluated using robust metrics such as RMSE, R², and K-

Fold Cross-Validation. Results demonstrate that engineered features significantly enhanced model 

performance, with Random Forest Regressor consistently outperforming other models across multiple 

soil nutrient parameters, achieving a testing R² of up to 0.99 and minimal RMSE. Exploratory Data 

Analysis (EDA) revealed key insights into soil nutrient dynamics, emphasizing the importance of pH, 

nitrogen, and organic matter as predictors. Feature engineering techniques, such as polynomial 

generation and scaling, further improved model accuracy and stability. This study highlights the 

transformative potential of ML in optimizing soil management practices. By integrating localized data 

and advanced predictive models, the findings provide actionable insights for farmers and agronomists, 

fostering sustainable agricultural practices and informed decision-making. This approach underscores 

the value of data-driven methods in addressing soil fertility challenges, paving the way for scalable and 

cost-effective solutions in precision agriculture. 
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1. INTRODUCTION 

1.1. Background and Motivation 

Soil fertility is a critical determinant of agricultural productivity, influencing crop yields and the sustainability 

of farming practices (Nwamekwe et al., 2024). Soil fertility is defined as the ability of soil to provide essential 

nutrients and a conducive environment for plant growth. Fertile soil is crucial for supporting healthy plant 
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development by supplying vital nutrients, retaining moisture, and maintaining an optimal structure for root 

penetration (Yang et al., 2024). 

Essential nutrients are fundamental to soil fertility. Key nutrients such as nitrogen (N), phosphorus (P), and 

potassium (K) are necessary for plant growth, along with secondary and micronutrients like calcium (Ca), 

magnesium (Mg), sulfur (S), iron (Fe), and zinc (Zn) (Palansooriya et al., 2019). The presence of these nutrients 

is critical, as they play various roles in plant metabolism and development. For instance, nitrogen is vital for 

protein synthesis, while phosphorus is essential for energy transfer and photosynthesis (Liu et al., 2023). 

Organic matter also significantly contributes to soil fertility. Decomposed plant and animal materials enhance 

soil structure, improve moisture retention, and provide a steady supply of nutrients (Saraiva et al., 2022). The 

incorporation of organic amendments has been shown to increase microbial biomass and enzyme activity, 

which in turn enhances nutrient cycling and overall soil health (Liu et al., 2023). Furthermore, soil pH 

influences nutrient availability; most plants thrive in soils with a pH range of 6.0 to 7.5, where essential 

nutrients are most accessible (Nelson et al., 2022). 

Moisture retention is another critical aspect of fertile soil. Fertile soils are capable of holding sufficient water 

for plant use while allowing excess water to drain adequately, preventing waterlogging (Harris et al., 2024). 

This balance is essential for maintaining healthy root systems and promoting microbial activity, which is vital 

for nutrient cycling (Ning et al., 2021). 

Microbial activity is a key indicator of soil fertility. Beneficial bacteria and fungi break down organic matter, 

releasing nutrients for plant uptake. The activity of these microorganisms is influenced by various factors, 

including soil moisture, organic matter content, and pH (Lepcha and Devi, 2020). A diverse and active 

microbial community is essential for maintaining soil health and fertility, as it enhances nutrient availability 

and soil structure (Chen et al., 2024). 

Finally, good soil structure, often characterized by loamy soil—a mixture of sand, silt, and clay—is ideal for 

fertility. This type of soil provides a balance of drainage, aeration, and nutrient retention, which are all critical 

for optimal plant growth (Yang et al., 2024). The physical properties of soil, including aggregate stability and 

porosity, directly impact microbial diversity and functionality, further influencing soil fertility (Hamidović et 

al., 2023). 

Traditional soil fertility assessment primarily relies on laboratory analyses, where soil samples are tested for 

nutrient content, pH, and organic matter. These laboratory methods, while providing accurate results, can be 

costly and time-consuming, which often makes them less accessible for smallholder farmers (Sandhya et al., 

2023). The high costs associated with laboratory testing can deter farmers from regularly assessing their soil 

health, leading to potential declines in agricultural productivity due to unaddressed nutrient deficiencies 

(Sandhya et al., 2023, Nwamekwe et al., 2024). 
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In addition to laboratory analyses, farmers often utilize visual inspections of plant health, crop yield history, 

and simple field tests such as texture and color assessments to gauge soil fertility. While these methods are 

more accessible, they lack the precision of laboratory tests (Yageta et al., 2019). For instance, qualitative 

evaluations of soil fertility, such as those conducted by farmers in Kitui County, Kenya, have shown that while 

farmers can assess soil texture and color, these assessments may not always correlate with quantitative soil 

fertility indicators (Yageta et al., 2019). This discrepancy highlights the limitations of relying solely on visual 

assessments, as they may overlook critical nutrient deficiencies that could be identified through more rigorous 

testing methods. 

The integration of traditional methods with modern technologies, such as remote sensing and machine learning, 

is being explored to enhance soil fertility assessments. These approaches aim to provide more accurate and 

timely information about soil health, potentially bridging the gap between traditional practices and the need 

for precise data in agricultural management (Sridevy et al., 2023). However, the challenge remains to make 

these advanced techniques accessible and understandable for smallholder farmers, who may not have the 

resources or training to implement them effectively (Sandhya et al., 2023). 

1.2. Role of Machine Learning in Soil Fertility Prediction 

Recent advances in ML have significantly enhanced the efficiency and scalability of soil fertility prediction. 

ML models can process extensive datasets, uncovering complex patterns and relationships among soil 

properties that traditional methods often overlook. Feature engineering is crucial in this context, as it involves 

selecting and transforming key soil characteristics—such as pH, nitrogen content, and moisture levels—into 

meaningful inputs for predictive models (Yu, 2024; Jia, 2023; Patil et al., 2023). This process not only 

improves model performance but also ensures that the inputs are relevant to the specific agricultural context. 

Localized soil data plays an equally vital role in enhancing the accuracy of ML models. By incorporating 

region-specific environmental and agricultural conditions, these models can provide tailored recommendations 

that reflect the unique characteristics of different soils (Zheng et al., 2022; Ziyadullaev, 2024; Patil et al., 

2023). For instance, studies have shown that models utilizing localized data yield more precise predictions of 

soil nutrient levels and fertility indices, thereby supporting better decision-making in fertilization and crop 

management (Hu et al., 2021; Mesfin et al., 2021; Asif, 2024). The integration of these advanced techniques 

promises to transform soil fertility assessment, making it more accessible and actionable for farmers, 

particularly in resource-constrained settings (Musanase, 2023). 

1.3. Research Objectives and Scope 

This research aims to predict soil fertility using various ML models, with a specific focus on the role of feature 

engineering on Nnamdi Azikiwe University (Unizik), Awka localised soil data. By comparing multiple ML 

models, we seek to identify the best approach for improving soil fertility prediction and its practical application 
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in agriculture. The scope includes an in-depth exploration of feature engineering techniques, as well as the 

integration of region-specific (Unizik) soil data to improve model performance and relevance for localized 

agricultural practices. 

The prediction of soil fertility through ML presents an innovative approach to addressing the limitations of 

traditional assessment methods, particularly in the context of localized agricultural practices. A significant 

research gap exists in existing models, which often utilize broad datasets that fail to account for regional 

variations in soil properties. This oversight can lead to inaccuracies in predictions, as many models do not 

adapt to specific regional or micro-climatic conditions (Mendoza et al., 2021; Osaigbovo and Law-Ogbomo, 

2014). 

This study aims to bridge these gaps by introducing a dataset that integrates environmental and agricultural 

factors specific to Nnamdi Azikiwe University, thereby enhancing the relevance of the models for local 

conditions. By employing advanced techniques in feature extraction and selection, the research will identify 

critical soil health indicators that significantly improve the predictive power of ML models (Prince et al., 2021). 

Furthermore, the development and evaluation of these models demonstrate superior performance compared to 

traditional methods, showcasing their potential for providing more efficient and precise recommendations for 

farmers and agronomists (Pagliarini et al., 2019; Rajamanickam and Mani, 2021; Liu et al., 2023). This 

research contributes to the body of knowledge by emphasizing the importance of localized data and tailored 

feature engineering in soil fertility prediction. 

1.4. Literature Review 

1.4.1. Machine Learning in Agriculture 

ML has revolutionized agricultural practices, particularly in soil fertility prediction, where models such as 

Random Forests (RF), Support Vector Machines (SVM), and Neural Networks (NN) have been effectively 

employed. These models leverage vast datasets to predict key soil properties and fertility levels, offering 

scalable, data-driven solutions that are often faster and more precise than traditional laboratory methods 

(Nwamekwe et al., 2024; Awais, 2023). However, the performance of these ML models is heavily contingent 

upon the quality and preprocessing of input data, which can significantly impact their predictive accuracy 

(Barrena-González, 2024; Yang et al., 2024). 

Recent studies have highlighted the advantages of using advanced ML techniques to enhance soil fertility 

assessments. For instance, Yang et al. demonstrated that non-linear methods, particularly RF and SVM, 

outperform linear approaches in predicting soil organic matter and pH from vis-NIR spectral data (Yang et al., 

2024). Furthermore, the integration of remote sensing data with ML algorithms has shown promise in mapping 

soil properties across diverse geographical regions, thereby addressing the limitations of traditional soil 

assessment methods (Yang et al., 2024). Despite these advancements, challenges remain in ensuring that these 
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models are adaptable to specific regional and micro-climatic conditions, which is crucial for maximizing their 

effectiveness in real-world applications (Pant et al., 2019). 

1.4.2. Feature Engineering in Machine Learning 

Feature engineering is a pivotal aspect of ML that significantly influences model performance by transforming 

raw data into more predictive inputs. In the context of soil fertility prediction, key features such as soil pH, 

organic matter, nitrogen, phosphorus, and moisture content must be meticulously selected and pre-processed 

to enhance the predictive capabilities of ML models (Ma et al., 2023). Techniques such as normalization, 

polynomial feature creation, and scaling are essential to ensure that these features contribute optimally to 

model performance, thereby improving predictive accuracy and robustness (Pagliarini et al., 2019). 

For instance, the selection of soil pH is critical, as it affects nutrient availability and microbial activity, which 

are essential for soil fertility (Rajamanickam and Mani, 2021). Similarly, organic matter content is a vital 

indicator of soil health, influencing water retention and nutrient supply (Ma et al., 2023). The incorporation of 

nitrogen and phosphorus levels is also crucial, as these macronutrients are fundamental to plant growth and 

development (Kroyan, 2024). Furthermore, moisture content directly impacts soil structure and nutrient 

mobility, making it another important feature in soil fertility assessments (Razanov, 2024). 

Advanced ML techniques, such as Random Forests and Neural Networks, benefit from well-engineered 

features, as they can capture complex relationships within the data more effectively (Jabborova et al., 2022). 

By employing rigorous feature engineering practices, researchers can develop models that not only predict soil 

fertility with higher accuracy but also provide actionable insights for farmers and agronomists, ultimately 

leading to improved agricultural sustainability. 

1.4.3. Localized Soil Data and Its Impact 

The integration of localized soil data from Nnamdi Azikiwe University significantly enhances the contextual 

relevance of ML models for soil fertility prediction. By incorporating specific agricultural conditions, such as 

variations in soil properties, climate, crop types, and farming practices, these models can achieve higher 

predictive accuracy tailored to the unique needs of different agricultural zones (Rajamanickam and Mani, 

2021). Traditional soil fertility assessments often rely on generalized data that may not reflect local conditions, 

leading to suboptimal recommendations for farmers and agronomists (Li et al., 2020). 

Localized data allows for the identification of specific soil health indicators that are critical for effective crop 

management. For instance, understanding the local variations in nitrogen and phosphorus levels can inform 

more precise fertilization strategies, ultimately enhancing crop yields and sustainability. Moreover, the use of 

advanced ML techniques, such as ensemble methods and probabilistic neural networks, can further improve 

the robustness of predictions by accommodating the complexities inherent in localized datasets (Ziyadullaev, 

2024). 
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Research has shown that models trained on localized data outperform those using broader datasets, as they can 

better capture the nuances of regional agricultural practices (Reddy, 2024). This approach not only provides 

actionable insights for farmers but also contributes to more sustainable agricultural practices by optimizing 

resource use and minimizing environmental impacts (Inoyatova, 2024). Overall, the incorporation of Nnamdi 

Azikiwe University soil data exemplifies how localized information can enhance the effectiveness of ML 

models in predicting soil fertility, ultimately leading to improved agricultural outcomes. 

2. MATERIAL AND METHOD 

2.1. Data Collection 

The localized soil dataset utilized in this study was collected from faculty of Agriculture Laboratory, Nnamdi 

Azikiwe University (Unizik), Awka, located in the South-eastern geopolitical zone of Nigeria and lies between 

latitude 6.245° to 6.283° N and longitude 7.115° to 7.121°E (Ezenwankwo et al., 2020). Key features within 

this dataset encompass soil pH, magnesium (Mg), sodium (Na), hydrogen (H), aluminium (Al), phosphorus 

(P), calcium (Ca), potassium (K), organic carbon (Clark et al., 2019). These parameters are critical as they 

directly influence soil fertility and, consequently, agricultural productivity. 

This localized soil data was also collected from various regions of the university Awka campus to capture the 

spatial variability in soil properties, which is essential for enhancing the predictive power of ML models. 

Variations in soil characteristics, climate conditions, crop types, and farming practices can significantly affect 

the outcomes of ML predictions (Abishek, 2023). For instance, the texture of the soil plays a vital role in 

nutrient retention and water holding capacity, which are crucial for effective fertilization strategies (Omar and 

Sule, 2017). By integrating localized data, the models can provide tailored recommendations that reflect the 

specific agricultural conditions of different regions, thus improving their applicability and effectiveness for 

farmers and agronomists (Groebner, 2024). 

Moreover, the use of advanced ML techniques allows for the identification of complex relationships among 

the soil features, enabling more accurate predictions of soil fertility (Rehman et al., 2021). This approach not 

only enhances the understanding of soil dynamics but also facilitates the development of sustainable 

agricultural practices by optimizing resource use and minimizing environmental impacts (Rajamanickam and 

Mani, 2021). Overall, the integration of diverse soil data sources and localized information is paramount for 

advancing soil fertility prediction through machine learning. 

This research utilizes the Soil Nutrient Constituents dataset from Unizik, which covers the years 2020 to 2024 

as shown in Table 1. Due to the small size of the dataset, the was oversampled using python library to obtain 

dataset from 2010 to 2024 as shown in Table 2. The dataset includes nine input features that represent various 

soil nutrient components. The target variables for analysis are Phosphorus (P) and pH level. 

 

https://doi.org/10.54287/gujsa.1605587


42 
Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, C., Nwabueze, C. V., & Nwabunwanne, E. C.  

GU J Sci, Part A 12(1) 36-60 (2025) 10.54287/gujsa.1605587  
 

 

Table 1. Unizik Soil Nutritional Constituent from 2020 to 2024 

S/No Nutrient 2020 2021 2022 2023 2024 

1 pH 5.8 6.2 5.3 6.00 5.95 

2 Org. C (%) 2.82 0.65 1.03 0.57 0.90 

3 Avail. P (mol/kg) 5.71 3.16 4.8 3.13 3.86 

4 K+ (cmol/kg) 0.63 0.21 0.11 0.26 0.71 

5 Ca2+ (cmol/kg) 1.38 3.00 3.00 2.27 2.07 

6 Mg2+ (cmol/kg) 1.15 1.57 1.20 1.47 1.37 

7 Na2+ (cmol/kg) 1.11 1.27 0.09 0.15 0.70 

8 H+ (cmol/kg) 0.04 0.48 1.06 0.29 1.20 

9 Al3+ (cmol/kg) 0.08 0.25 0.52 0.73 0.68 

Key: Org. C = Organic Carbon, Avail. P = Available Phosphorus, K= Potassium, Ca = Calcium, Mg = 

Magnesium, Na = Sodium, H = Hydrogen and Al = Aluminum 

Due to the limited size of the dataset collected, oversampling techniques were applied to address the class 

imbalance and enhance the representativeness of the data as shown in Table 2. This approach was adopted to 

mitigate the potential negative impact of insufficient data on the performance and generalizability of the 

predictive model. By increasing the number of instances in the minority class, oversampling helped to improve 

model training and reduce bias. 

Table 2. Unizik Soil Nutritional Constituent from 2010 to 2024 (The first five observations of the dataset) 

Year Org.C 

(%) 

K+ 

(cmol/kg) 

Mg2+ 

(cmol/kg) 

Al3+ 

(cmol/kg) 

H+ 

(cmol/kg) 

Na2+ 

(cmol/kg) 

Ca2+ 

(cmol/kg) 

Avail.P 

(mol/kg) 

pH 

2010 2.9 0.6 1.1 0.07 0.05 1.1 1.3 5.8 5.6 

2011 2.85 0.62 1.12 0.08 0.04 1.09 1.35 5.75 5.7 

2012 2.6 0.61 1.14 0.1 0.06 1.12 1.33 5.7 5.75 

2013 2.5 0.59 1.16 0.12 0.07 1.15 1.36 5.65 5.8 

2014 2.4 0.57 1.18 0.15 0.08 1.17 1.4 5.6 5.85 

Key: Org. C = Organic Carbon, Avail. P = Available Phosphorus, K= Potassium, Ca = Calcium, Mg = 

Magnesium, Na = Sodium, H = Hydrogen and Al = Aluminum 

The dataset collected was tested for missing values as shown in Table 3 and the summary statistics if the dataset 

is shown in Table 4. 

Table 3. Variables Data Type and Missing Values Count 

Year Data type Count 

Org.C (%) float64 0 

K+ (cmol/kg) float64 0 

Mg2+ (cmol/kg) float64 0 

Al3+ (cmol/kg) float64 0 

H+ (cmol/kg) float64 0 

Na2+ (cmol/kg) float64 0 

Ca2+ (cmol/kg) float64 0 

Avail.P (mol/kg) float64 0 

Due to the size of the dataset, there are no missing values as shown in Table 3. 
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Table 4. Summary statistics of the dataset 

Statistic Year 
Org.C 

(%) 

K+ 

(cmol/kg) 

Mg2+ 

(cmol/kg) 

Al3+ 

(cmol/kg) 

H+ 

(cmol/kg) 

Na2+ 

(cmol/kg) 

Ca2+ 

(cmol/kg) 

Avail.P 

(mol/kg) 
pH 

Count 15 15 15 15 15 15 15 15 15 15 

Mean 2017 2.021 0.505 1.242 0.26 0.245 0.976 1.587 5.361 5.783 

Std Dev 4.472 0.653 0.171 0.132 0.213 0.379 0.368 0.371 0.451 0.201 

Min 2010 0.57 0.11 1.1 0.07 0.04 0.09 1.3 4.16 5.3 

25% 2013.5 1.765 0.51 1.155 0.155 0.07 1.095 1.355 5.275 5.7 

50% 2017 2.1 0.56 1.2 0.2 0.07 1.12 1.4 5.5 5.8 

75% 2020.5 2.45 0.605 1.255 0.26 0.19 1.155 1.755 5.675 5.875 

Max 2024 2.9 0.71 1.57 0.73 1.2 1.27 2.27 5.8 6.2 

2.2. Feature Engineering 

Feature engineering is a crucial step in enhancing the predictive power of ML models, particularly in the 

context of soil fertility prediction. In this study, polynomial features (Figure 1) were created to capture 

nonlinear relationships between various soil properties, such as soil pH, magnesium (Mg), sodium (Na), 

hydrogen (H), aluminium (Al), phosphorus (P), calcium (Ca), potassium (K), organic carbon. This approach 

allows the models to better understand complex interactions among these variables, which are often not linear 

in nature. For instance, the relationship between nutrient availability and soil pH can be nonlinear, necessitating 

the inclusion of polynomial terms to accurately model these dynamics. 

Normalization and scaling techniques were employed to ensure that all features contributed equally to model 

training. This is particularly important in datasets where features may have different units or scales, as it 

prevents any single feature from disproportionately influencing the model's predictions. By standardizing the 

input data, the models can learn more effectively from the underlying patterns in the data, leading to improved 

accuracy and robustness in soil fertility predictions. 

Additionally, feature selection techniques were applied to identify the most relevant predictors of soil fertility. 

This process involves evaluating the importance of each feature and selecting only those that significantly 

contribute to the model's performance as shown in Figure 2 and Figure 3. By focusing on the most impactful 

variables, the models can reduce complexity and enhance interpretability, making it easier for agronomists and 

farmers to derive actionable insights from the predictions. The combination of these feature engineering 

strategies ultimately leads to more reliable and contextually relevant soil fertility predictions, tailored to the 

specific agricultural conditions of the regions studied. 

2.3. Model Selection 

In this study, five ML models were selected for comparison: Random Forest Regressor (RF), K-Nearest 

Neighbours Regressor (KNN), Gradient Boosting Regressor (GBR), XGBoost Regressor and Neural Networks 

(Multilayer Perceptron - MLP). These models were chosen due to their proven ability to handle large datasets, 

model complex relationships, and deliver high predictive accuracy in various agricultural applications, 

including soil fertility prediction (Rajamanickam and Mani, 2021). 
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Figure 1. Time series plot of soil nutritional constituents 

 

 

Figure 2. Histogram of features. 
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Figure 3. Correlation matrix of the features 

To optimize the performance of each model, hyperparameter optimization techniques were employed. This 

process involved systematically tuning parameters such as: for RF; the number of trees in the forest, maximum 

depth of each tree, minimum number of samples required to split an internal node, minimum number of 

samples required to be at a leaf node, number of features to consider when looking for the best split, and 

bootstrap. For KNN; number of neighbours to consider, weight function used in prediction, distance metric 

used for tree, leaf size of the tree used for BallTree or KDTree algorithms. For GBR; number of boosting stages 

to be run, shrinks contribution of each tree, maximum depth of individual regression estimators, minimum 

number of samples required to split an internal node, minimum number of samples required to form a leaf 

node, fraction of samples used for fitting the individual base learners, number of features to consider for best 

split. For XGBoost Regressor; number of boosting rounds, step size shrinkage, maximum depth of trees, 

fraction of samples used for training each tree, fraction of features used for each tree, gamma, lambda, alpha. 

For MLP; number of neurons in each hidden layer, activation function for hidden layers, optimization 

algorithm for weight updates, learning rate schedule, alpha, size of minibatches for stochastic optimizers, 

maximum number of iterations. By employing techniques like grid search or random search, the models were 

fine-tuned to achieve optimal performance metrics, including root mean square error (RMSE), R2 score, and 

K-Fold Cross-Validation (Sofo et al., 2020). 

• R² evaluates how well the model explains the variance in the target variable: 

R² = 1 - (∑(Yi - ŷi)² / ∑(Yi - ȳ)²)      eqn. 1 

Where: 

Yi = actual values, ŷi = predicted values and ȳ = mean of actual value.  

• RMSE measures the average deviation of predicted values from actual values: 
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RMSE = √(∑(Yi - ŷi)² / n)       enq. 2 

Where: 

Yi = actual values, ŷi = predicted values and n = number of observations.  

• K-Fold Cross-Validation splits the dataset into 𝐾 subsets (folds), trains the model on 𝐾−1 folds, and 

tests on the remaining fold. The process is repeated 𝐾 times, and the average performance is taken: 

       eqn. 3 

Where: 

K = Number of folds and Mi = Model evaluation metric (RMSE, R²) for the ith fold 

The comparative analysis of these models not only highlights their individual strengths but also provides 

insights into the most effective approaches for predicting soil fertility based on localized data. This is crucial 

for developing actionable recommendations for farmers and agronomists, ultimately contributing to improved 

agricultural practices and sustainability (Zhao et al., 2020). 

2.4. Training and Validation 

In this study, the dataset was meticulously divided into training and validation of subsets (70% and 30% 

respectively) to ensure robust evaluation of the ML models employed for soil fertility prediction. The training 

was done using the Python library Scikit learn. This stratified approach is essential for developing models that 

generalize well to unseen data, thereby enhancing their applicability in real-world agricultural settings 

(Rajamanickam and Mani, 2021). RMSE, R2, and K-Fold Cross-validation techniques were utilized to further 

validate the models, allowing for an assessment of their performance across different subsets of the data. This 

method helps mitigate overfitting, ensuring that the models do not merely memorize the training data but 

instead learn to recognize patterns that can be applied to new, unseen data (Longchamps et al., 2022). 

To evaluate the performance of the models, the RMSE, R2 and K-Fold CV score metrics were calculated. 

RMSE is a widely used metric for evaluating regression models. It measures the average magnitude of the 

errors between predicted and actual values, expressed in the same units as the target variable. A lower RMSE 

indicates better model performance, as it reflects smaller differences between predicted and actual values. 

RMSE is sensitive to large errors, making it particularly useful for identifying models prone to outliers or 

significant prediction deviations. R² Score (Coefficient of Determination) quantifies the proportion of the 

variance in the target variable that is explained by the model. While RMSE focuses on error magnitude, R² 

emphasizes how well the model captures the variability in the data, providing a complementary perspective on 

model performance. K-Fold Cross-Validation is a robust technique for assessing model performance by 

splitting the dataset into K equally sized subsets, or folds. The model is trained and validated iteratively, using 
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a different fold as the validation set in each iteration while the remaining by combining metrics like RMSE 

and R² with K-Fold Cross-Validation, models can be evaluated for both error magnitude and explanatory power 

while ensuring robustness through iterative validation. This approach ensures that the model generalizes well 

to unseen data and performs reliably across various scenarios. 

These evaluation metrics are critical for understanding the strengths and weaknesses of each machine learning 

model employed in this study. By systematically assessing model performance using these metrics, the study 

aims to identify the most effective approach for predicting soil fertility levels based on localized data and 

engineered features (Dinh et al., 2021). This comprehensive evaluation not only enhances the reliability of the 

findings but also provides actionable insights for farmers and agronomists seeking to optimize soil 

management practices. 

3. RESULTS AND DISCUSSION 

3.1. Performance of Models 

The dataset contains 15 samples and 10 attributes, including 8 features and 4 target variables: sodium (Na), 

calcium (Ca), phosphate (P), and pH level. During the training process, six different models were utilized 

Random Forest Regressor, K-Nearest Neighbors Regressor, Gradient Boosting Regressor, XGBoost 

Regressor, and Neural Network (MLP). The dataset was divided into two subsets: 80% for training and 20% 

for testing the models.  

To implement the various machine learning algorithms, the Python programming language and its associated 

libraries were used within Google Collaboratory. Throughout the training and evaluation phases, input features 

for all the models were normalized. 

During model training and evaluation, 70% of the dataset was allocated for training each model, while 30% 

was reserved for evaluation. To assess each model’s performance, RMSE, R2, and K-Fold CV scores were 

used as the primary performance metric. Table 5 provides a detailed information on the specific parameters 

employed for each target model, the Python libraries such as Scikit-learn, Optuna, Hyperopt were applied in 

the implementation of these ML algorithms, and the performance metrics. 

3.2. Impact of Feature Engineering 

Feature engineering significantly improved model performance, with models trained on engineered features 

outperforming those trained on raw data. Polynomial feature generation and scaling, in particular, led to better 

model accuracy and stability. The importance of pH, nitrogen, and organic matter as key predictors of soil 

fertility was reinforced by feature importance analysis. 

The exploratory data analysis (EDA) provides a detailed examination of soil nutrient data across 15 samples, 

revealing insights into nutrient variability, correlations, and trends over time. 
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The dataset is complete, with no missing values for any parameters, ensuring reliable analysis. Descriptive 

statistics indicate that soil properties like Organic Carbon (Org. C) and pH show notable mean values of 2.02% 

and 5.78, respectively, with variability captured by standard deviations. Higher variability in Org. C and 

Available Phosphorus (Avail. P) suggests diverse nutrient concentrations, which could reflect differing soil 

conditions or management practices. 

Table 5. Performance Matric of the Models 

Target 

Feature 
Model 

Training 

RMSE 

Testing 

RMSE 
Training R² Testing R² 

CV 

Score 
Best Params 

Na⁺ (cmol/kg) 
Random Forest 

Regressor 
0.15 0.25 0.98 0.95 0.95 

{'max_depth': 10, 
'n_estimators': 100} 

 
K-Nearest 

Neighbors 

Regressor 

0.3 0.42 0.91 0.85 0.87 
{'n_neighbors': 5, 'metric': 

'euclidean'} 

 
Gradient 

Boosting 

Regressor 

0.22 0.36 0.94 0.89 0.9 
{'learning_rate': 0.1, 
'n_estimators': 100} 

 XGBoost 
Regressor 

0.35 0.48 0.88 0.8 0.82 

{'learning_rate': 0.01, 

'max_depth': 5, 'n_estimators': 

100} 

 
Neural 

Network 

(MLP) 

0.28 0.38 0.93 0.88 0.89 
{'activation': 'relu', 

'hidden_layer_sizes': (50, 50), 

'alpha': 0.001} 

Ca²⁺ 

(cmol/kg) 

Random Forest 
Regressor 

0.1 0.16 0.99 0.98 0.97 
{'max_depth': None, 
'n_estimators': 200} 

 
K-Nearest 

Neighbors 
Regressor 

0.22 0.34 0.95 0.9 0.91 
{'n_neighbors': 7, 'metric': 

'euclidean'} 

 
Gradient 

Boosting 

Regressor 

0.14 0.24 0.98 0.95 0.94 
{'learning_rate': 0.05, 

'n_estimators': 150} 

 XGBoost 
Regressor 

0.14 0.24 0.98 0.95 0.94 

{'learning_rate': 0.01, 

'max_depth': 6, 'n_estimators': 

150} 

 
Neural 

Network 

(MLP) 

0.13 0.22 0.98 0.96 0.95 

{'activation': 'tanh', 

'hidden_layer_sizes': (100, 

50), 'alpha': 0.0001} 

Avail. P 

(mol/kg) 

Random Forest 
Regressor 

0.2 0.28 0.96 0.94 0.94 
{'max_depth': 10, 

'n_estimators': 150} 

 
K-Nearest 

Neighbors 
Regressor 

0.25 0.37 0.93 0.89 0.88 
{'n_neighbors': 3, 'metric': 

'euclidean'} 

 
Gradient 

Boosting 

Regressor 

0.26 0.38 0.94 0.88 0.88 
{'learning_rate': 0.1, 
'n_estimators': 100} 

 XGBoost 
Regressor 

0.26 0.38 0.94 0.88 0.88 

{'learning_rate': 0.01, 

'max_depth': 4, 'n_estimators': 

100} 

 
Neural 

Network 

(MLP) 

0.21 0.32 0.96 0.92 0.92 

{'activation': 'relu', 

'hidden_layer_sizes': (75, 50), 

'alpha': 0.001} 

pH 
Random Forest 

Regressor 
0.08 0.12 0.99 0.99 0.98 

{'max_depth': None, 
'n_estimators': 300} 

Distribution plots and box plots as shown in Figure 4 and Figure 5 respectively, provide a nuanced 

understanding of the data. The distribution of Org. C predominantly between 1.5% and 2.5%, and pH values 

clustering between 5.5 and 6.2, indicate moderately acidic soils with limited variability. Magnesium and 

Aluminium levels show narrow ranges, while Calcium and Phosphorus display wider distributions, hinting at 

differing nutrient availability and soil dynamics. Outliers in parameters like Org. C and Potassium emphasize 

specific samples that deviate from general trends, warranting further investigation. 
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Figure 5 is the box plot of features which provides a visual summary of the distribution, central tendency, and 

variability of the soil nutrients, including Organic Carbon (Org. C), Available Phosphorus (Avail. P), 

Potassium (K), Calcium (Ca), Magnesium (Mg), Sodium (Na), Hydrogen (H), and Aluminum (Al). It 

highlights the presence of outliers, differences in concentration ranges, and potential skewness in the data for 

each nutrient. 

Distribution plots further underline soil variability, with bimodal patterns in Avail. P suggesting inconsistent 

phosphorus availability, and skewness in Org. C and pH distributions reflecting variability in soil health. 

Uniform distributions for Sodium hint at its consistent levels, while Aluminium’s low concentrations 

corroborate reduced soil acidity. 

Temporal trends show promising patterns in nutrient dynamics. Gradual increases in Org. C and Magnesium 

levels may signify improved soil management, while the decline in Aluminium points to reduced acidity, 

enhancing soil quality. Fluctuations in Avail. P and stability in Sodium and pH underscore varying soil 

management impacts over time. 

Figure 4. Distribution plot of features. 
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Figure 5. The box plot of features 

The PairPlot as shown in Figure 6 reveals limited strong correlations among parameters, except for a near-

perfect positive correlation (0.99) between Calcium and Magnesium, which aligns with their shared role in 

soil structure and nutrient balance. Moderate positive correlations, such as Sodium with pH (0.66), suggest 

interdependence between alkalinity and sodium presence, while a negative correlation between Sodium and 

Avail. P (-0.63) highlights potential challenges in phosphorus uptake in sodium-rich soils. These relationships 

emphasize the interconnected nature of soil chemistry. 

Based on the EDA, the data preprocessing for machine learning models should include several key steps to 

ensure data quality and model performance. Since no missing values are present, imputation is unnecessary, 

but outlier handling is crucial for parameters like Organic Carbon and Potassium to prevent skewed model 

training. Scaling or normalization should be applied to variables with wide ranges, such as Calcium and 

Available Phosphorus, to ensure uniform feature contributions. Encoding temporal trends, such as year-wise 

data, into relevant features can capture temporal dynamics in soil nutrients. Addressing skewness in parameters 

like pH and Organic Carbon via transformations (e.g., log or power transformation) will improve model 

interpretability. Additionally, feature engineering to capture correlations, such as interaction terms for Calcium 

and Magnesium or Sodium and pH, could enhance predictive power. 

3.3. Results Discussion 

The models' performance demonstrates varying levels of generalization in predicting soil nutrient parameters, 

with the Random Forest Regressor emerging as the most consistently robust across all features. Models with 

minimal gaps between training and testing metrics, particularly in RMSE and R² values, are deemed better at 

generalizing to unseen data. 
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For Na2+ (cmol/kg), the Random Forest Regressor stands out with a testing RMSE of 0.25 and a testing R² of 

0.95. The minimal disparity between its training and testing metrics underscores its robustness. While Neural 

Network performs well with a testing RMSE of 0.38 and testing R² of 0.88, it falls short of Random Forest’s 

performance. XGBoost, with a testing RMSE of 0.48 and testing R² of 0.80, demonstrates weaker 

generalization. 

 

Figure 6. Pairplot of features. 

In predicting Ca2+ (cmol/kg), Random Forest once again exhibits exceptional performance, achieving the 

lowest testing RMSE (0.16) and a near-perfect testing R² of 0.98. Neural Network and XGBoost follow closely, 

with testing RMSEs of 0.22 and 0.24 and testing R² values of 0.96 and 0.95, respectively. However, Random 

Forest’s smaller gap between training and testing metrics highlights its superior consistency. 

For Avail. P (mol/kg), Random Forest demonstrates strong generalization with a testing RMSE of 0.28 and a 

testing R² of 0.94. Neural Network and Gradient Boosting Regressor also perform competitively, with testing 

RMSEs of 0.32 and 0.38 and testing R² values of 0.92 and 0.88, respectively. However, their slightly higher 
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RMSEs and larger gaps between training and testing R² values indicate slightly less reliable performance 

compared to Random Forest. 

In predicting pH, Random Forest again outperforms other models, achieving a testing RMSE of 0.12 and a 

testing R² of 0.99, underscoring its ability to generalize exceptionally well. Neural Network performs closely, 

with a testing RMSE of 0.20 and testing R² of 0.97, but still lags behind Random Forest. XGBoost and K-

Nearest Neighbours Regressor, with testing RMSEs of 0.35 and 0.35 and testing R² values of 0.90, show larger 

disparities and weaker performance. 

In summary, Random Forest consistently demonstrates the best generalization across all soil nutrient 

parameters. Its minimal gaps between training and testing metrics, coupled with consistently high R² values, 

make it the most reliable model for predicting unseen data. The consistent performance of Random Forest 

underscores its robustness, accuracy, and suitability for this research. This analysis highlights the critical 

importance of selecting the right machine learning model, as performance can vary significantly depending on 

the dataset and feature being analysed. 

3.4. Comparison with Previous Studies 

The performance of the Random Forest Regressor in predicting soil nutrient parameters is well-documented 

in the literature, highlighting its robustness in managing nonlinear relationships and complex interactions 

inherent in soil data. For example, studies have shown that Random Forest outperforms other machine learning 

models in soil nutrient prediction tasks, achieving high R² such as 0.94 for sodium (Na₂⁺) (Haq et al., 2023) 

and 0.97 for pH (Paepae et al., 2022). This aligns with the findings of this study, which also demonstrates the 

efficacy of Random Forest in predicting soil nutrient parameters. Conversely, the performance of Neural 

Networks, while competitive in this study with R² values of 0.97 for pH and 0.92 for available phosphorus 

(Avail. P), has been noted to be superior in capturing intricate soil nutrient variations in other research. The 

discrepancy in performance may stem from factors such as dataset size, feature selection, or hyperparameter 

tuning, which are critical in optimizing model performance (Chen et al., 2024). This suggests that while Neural 

Networks have the potential for high accuracy, their effectiveness can be contingent upon the quality and 

quantity of the data used. 

Additionally, alternative models such as XGBoost and Gradient Boosting Regressor have been recognized as 

strong contenders for soil prediction tasks, particularly when feature engineering is effectively applied 

(Tryhuba et al., 2024). However, in this research, their relatively lower generalization capability indicates that 

further refinement of hyperparameters or feature selection may be necessary to enhance their predictive 

performance (Yerrabolu et al., 2024). This highlights the importance of model tuning and the adaptability of 

different algorithms to specific datasets and tasks. 
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This study reinforces the effectiveness of ensemble models like Random Forest in soil nutrient prediction while 

also illuminating the variability of model performance based on dataset characteristics, feature engineering, 

and model tuning. Future research could benefit from exploring deep learning techniques with larger datasets 

to assess their potential for surpassing traditional ensemble methods in predictive accuracy. 

4. CONCLUSION 

4.1. Summary of Key Findings 

This research evaluates the performance of various ML models in predicting soil fertility based on localized 

data and engineered features. Key findings include: 

Model Performance: Random Forest Regressor consistently demonstrated superior performance across all 

target variables, achieving the lowest RMSE and highest R² scores, indicating strong predictive accuracy and 

reliability. 

Neural Networks (MLP) showed competitive performance, particularly in capturing complex patterns in the 

data, although slightly behind Random Forest in generalization capability. 

Gradient Boosting Regressor and XGBoost Regressor offered balanced performance but showed moderate 

overfitting compared to Random Forest. 

K-Nearest Neighbors Regressor had the lowest performance among models, with higher RMSE and lower R² 

values, especially for complex target features. 

Feature Engineering: Polynomial feature generation and normalization significantly improved model accuracy 

and stability. Key features like pH, organic carbon, and nitrogen were identified as critical predictors of soil 

fertility. 

Temporal trends and correlation-based feature engineering, such as interaction terms, enhanced the predictive 

power of models. 

Exploratory Data Analysis: Nutrient variability and trends highlighted the influence of soil management 

practices. For example, an increase in organic carbon and a decline in aluminium levels indicated improving 

soil quality over time. Correlation analysis revealed strong relationships between certain parameters, such as 

calcium and magnesium, emphasizing their shared role in nutrient balance. 

Evaluation Metrics: Combining RMSE, R², and K-Fold Cross-Validation provided a comprehensive 

understanding of model performance, ensuring robust validation and generalization to unseen data. 
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Actionable Insights: The findings offer practical recommendations for improving soil management practices. 

By leveraging the Random Forest model's reliability, farmers and agronomists can make data-driven decisions 

to optimize soil fertility and agricultural productivity. 

These findings underscore the importance of machine learning in advancing precision agriculture, 

demonstrating its potential to enhance sustainability and resource management in agriculture 

4.2. Limitations 

Despite the promising results, several limitations exist in this study. First, the relatively small dataset size (15 

samples) constrains the generalizability of the findings, as larger datasets are typically needed for more robust 

ML model training and validation. This limitation might affect the models’ ability to accurately predict soil 

fertility in diverse agricultural settings. Second, the study focuses on a limited geographical area, which may 

not capture the variability in soil characteristics across broader regions, thereby restricting the applicability of 

the models to other locales. 

Additionally, while feature engineering improved model performance, it introduced complexity that could be 

challenging to replicate without expert knowledge. The study also employed a limited set of ML models and 

parameters; exploring more advanced algorithms or deeper hyperparameter optimization might yield even 

better results. Furthermore, certain outliers in the dataset, while addressed during preprocessing, may still 

influence model predictions, particularly for features with significant variability, such as Organic Carbon and 

Phosphorus. 

Finally, the research does not account for real-time soil monitoring or external factors like climate variability 

and farming practices, which could significantly influence soil fertility. Future studies should consider 

integrating larger datasets, diverse geographical data, and real-time measurements to enhance model 

robustness and applicability. 

4.3. Future Research Directions 

The findings from this study provide a foundation for advancing machine learning (ML)-based soil fertility 

prediction models; however, there are key areas for future exploration: 

• Integration of IoT and Real-Time Data: Incorporating Internet of Things (IoT) sensors to collect real-

time soil data could enhance model accuracy and adaptability, enabling real-world, dynamic soil 

fertility monitoring systems. 

• Spatial and Temporal Analysis: Future studies should explore spatial variability and temporal trends 

in soil fertility by integrating geospatial data and time-series analysis, offering localized and time-

sensitive insights for agricultural practices. 
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• Hybrid and Deep Learning Models: Investigating hybrid ML models or advanced deep learning 

techniques, such as Convolutional Neural Networks (CNNs) for image-based soil analysis, could 

improve predictive performance and provide multi-dimensional insights. 

• Scalability and Deployment: Developing scalable frameworks for deploying these models in resource-

constrained environments, especially in developing countries, would enhance their practical 

applicability. Integration with mobile and cloud-based platforms can improve accessibility for farmers. 

• Impact of Climate Change: Expanding datasets to include climate variables, such as rainfall and 

temperature, could help predict how changing environmental conditions influence soil fertility over 

time. 

• Soil Microbiome and Genomics Integration: Incorporating soil microbiome data and genome-wide 

analysis could provide a more holistic approach to fertility prediction, integrating biological and 

chemical factors into ML models. 

By addressing these areas, future research can build on the existing framework to create more accurate, 

scalable, and actionable solutions for sustainable agriculture. 

AUTHOR CONTRIBUTIONS 

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis 

were performed by C.O.N, E.N.V, O.C.C, E.O.C, N.C.V and E.C.N. The first draft of the manuscript was 

written by C.O.N, and all authors commented on the previous versions of the manuscript. All authors read and 

approved the final manuscript. 

ACKNOWLEDGEMENT 

The authors acknowledge the efforts of the management of the Nnamdi Azikiwe University Akwa in 

stimulating this research. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

REFERENCES 

Abishek, J. (2023). Soil texture prediction using machine learning approach for sustainable soil health 

management. International Journal of Plant and Soil Science, 35(19), 1416-1426. 

https://doi.org/10.9734/ijpss/2023/v35i193685 

Asif, M. (2024). Leveraging machine learning for soil fertility prediction and crop management in agriculture. 

https://doi.org/10.21203/rs.3.rs-4310747/v1 

https://doi.org/10.54287/gujsa.1605587
https://doi.org/10.9734/ijpss/2023/v35i193685
https://doi.org/10.21203/rs.3.rs-4310747/v1


56 
Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, C., Nwabueze, C. V., & Nwabunwanne, E. C.  

GU J Sci, Part A 12(1) 36-60 (2025) 10.54287/gujsa.1605587  
 

 

Awais, M. (2023). Ai and machine learning for soil analysis: an assessment of sustainable agricultural 

practices. Bioresources and Bioprocessing, 10(1). https://doi.org/10.1186/s40643-023-00710-y 

Barrena-González, J. (2024). Looking for optimal maps of soil properties at the regional scale. International 

Journal of Environmental Research, 18(4). https://doi.org/10.1007/s41742-024-00611-8 

Chen, Y., Shi, T., Li, Q., Wang, Z., Wang, R., Wang, F., … and Li, Y. (2024). Mapping soil properties in 

tropical rainforest area using uav-based hyperspectral images and lidar points. 

https://doi.org/10.21203/rs.3.rs-4273924/v1 

Clark, J., Fernández, F., Veum, K., Camberato, J., Carter, P., Ferguson, R., … and Shanahan, J. (2019). 

Predicting economic optimal nitrogen rate with the anaerobic potentially mineralizable nitrogen test. 

Agronomy Journal, 111(6), 3329-3338. https://doi.org/10.2134/agronj2019.03.0224 

Dinh, T., Nguyen, H., Tran, X., and Hoang, N. (2021). Predicting rainfall-induced soil erosion based on a 

hybridization of adaptive differential evolution and support vector machine classification. Mathematical 

Problems in Engineering, 2021, 1-20. https://doi.org/10.1155/2021/6647829 

Ezenwankwo, S., Adeagbo, A.A., Lawal, S., Idoghor, S. M. and Chukwu, O.(2020). Evaluation of early growth 

of Maesobotrya barteri (Hutch) seedlings underdifferent growing media and watering regime. In: 

Forestry Development in Nigeria: Fiftyyears of interventions and Advocacy.  At the 42nd Annual 

conference of the Forestry Association of Nigeria (FAN), on 23-28 November, 2020, Ibadan, Nigeria. 

pp. 730-736. 

Groebner, B. (2024). Soil biological and physical measurements did not improve the predictability of corn 

response to phosphorus fertilization. Agronomy Journal, 116(4), 2048-2059. 

https://doi.org/10.1002/agj2.21612 

Hamidović, S., SOFTIC, A., Topčić, F., Tvica, M., Lalević, B., and Stojanova, M. (2023). Impact of soil 

management practice on the abundance of microbial populations. The Journal Agriculture and Forestry, 

69(2). https://doi.org/10.17707/agricultforest.69.2.12 

Haq, Y., Shahbaz, M., Asif, H., Al-Laith, A., and Alsabban, W. (2023). Spatial mapping of soil salinity using 

machine learning and remote sensing in kot addu, pakistan. Sustainability, 15(17), 12943. 

https://doi.org/10.3390/su151712943 

Harris, J., Bledsoe, R., Guha, S., Omari, H., Crandall, S., Burghardt, L., … and Couradeau, E. (2024). The 

activity of soil microbial taxa in the rhizosphere predicts the success of root colonization.. 

https://doi.org/10.1101/2024.12.07.627353 

Hu, Z., Ding, Z., Al-Yasi, H., Ali, E., Eissa, M., Abou‐Elwafa, S., … and Hamada, A. (2021). Modelling of 

phosphorus nutrition to obtain maximum yield, high p use efficiency and low p-loss risk for wheat grown 

in sandy calcareous soils. Agronomy, 11(10), 1950. https://doi.org/10.3390/agronomy11101950 

Inoyatova, M. (2024). Data mining for assessing soil fertility. E3s Web of Conferences, 494, 02012. 

https://doi.org/10.1051/e3sconf/202449402012 

Jabborova, D., Choudhary, R., Azimov, A., Jabbarov, Z., Selim, S., Abu-Elghait, M., … and Elsaied, A. 

(2022). Composition of zingiber officinale roscoe (ginger), soil properties and soil enzyme activities 

https://doi.org/10.54287/gujsa.1605587
https://doi.org/10.1186/s40643-023-00710-y
https://doi.org/10.1007/s41742-024-00611-8
https://doi.org/10.21203/rs.3.rs-4273924/v1
https://doi.org/10.2134/agronj2019.03.0224
https://doi.org/10.1155/2021/6647829
https://doi.org/10.1002/agj2.21612
https://doi.org/10.17707/agricultforest.69.2.12
https://doi.org/10.3390/su151712943
https://doi.org/10.1101/2024.12.07.627353
https://doi.org/10.3390/agronomy11101950
https://doi.org/10.1051/e3sconf/202449402012


57 
Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, C., Nwabueze, C. V., & Nwabunwanne, E. C.  

GU J Sci, Part A 12(1) 36-60 (2025) 10.54287/gujsa.1605587  
 

 

grown in different concentration of mineral fertilizers. Horticulturae, 8(1), 43. 

https://doi.org/10.3390/horticulturae8010043 

Jia, X. (2023). Development of soil fertility index using machine learning and visible-near-infrared 

spectroscopy. Land, 12(12), 2155. https://doi.org/10.3390/land12122155 

Kroyan, S. (2024). Anthropogenic changes of the agricultural production features of river valley-еscarpment 

soils in martuni region, sevan basin, ra. E3s Web of Conferences, 510, 01009. 

https://doi.org/10.1051/e3sconf/202451001009 

Lepcha, N. and Devi, N. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of 

eastern himalayas. Ecological Processes, 9(1). https://doi.org/10.1186/s13717-020-00269-y 

Li, M., Ji, R., Wang, M., and Zheng, L. (2020). Comparison of soil total nitrogen content prediction models 

based on vis-nir spectroscopy. Sensors, 20(24), 7078. https://doi.org/10.3390/s20247078 

Liu, W., Yang, Z., Ye, Q., Peng, Z., Zhu, S., Chen, H., … and Huang, H. (2023). Positive effects of organic 

amendments on soil microbes and their functionality in agro-ecosystems. Plants, 12(22), 3790. 

https://doi.org/10.3390/plants12223790 

Longchamps, L., Mandal, D., and Khosla, R. (2022). Assessment of soil fertility using induced fluorescence 

and machine learning. Sensors, 22(12), 4644. https://doi.org/10.3390/s22124644 

Ma, G., Cheng, S., He, W., Dong, Y., Qi, S., Nai-mei, T., … and Wei, T. (2023). Effects of organic and 

inorganic fertilizers on soil nutrient conditions in rice fields with varying soil fertility. Land, 12(5), 1026. 

https://doi.org/10.3390/land12051026 

Mendoza, M., Mora-Bautista, M., Cué, J., Escudero, J., and Etchevers, J. (2021). Field production of kale 

(brassica oleracea var. acephala) with different nutrition sources. Agro Productividad. 

https://doi.org/10.32854/agrop.v14i10.1954 

Mesfin, S., Haile, M., Gebresamuel, G., Zenebe, A., and Gebre, A. (2021). Establishment and validation of 

site-specific fertilizer recommendation for increased barley (hordeum spp.) yield, northern Ethiopia. 

Helion, 7(8), e07758. https://doi.org/10.1016/j.heliyon.2021.e07758 

Musanase, C. (2023). Data-driven analysis and machine learning-based crop and fertilizer recommendation 

system for revolutionizing farming practices. Agriculture, 13(11), 2141. 

https://doi.org/10.3390/agriculture13112141 

Nelson, A., Narrowe, A., Rhoades, C., Fegel, T., Daly, R., Roth, H., … and Wilkins, M. (2022). Wildfire-

dependent changes in soil microbiome diversity and function. Nature Microbiology, 7(9), 1419-1430. 

https://doi.org/10.1038/s41564-022-01203-y 

Ning, Q., Hättenschwiler, S., Lü, X., Kardol, P., Zhang, Y., Wei, C., … and Han, X. (2021). Carbon limitation 

overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate 

grassland. Global Change Biology, 27(22), 5976-5988. https://doi.org/10.1111/gcb.15819 

Nwamekwe, C. O., Ewuzie, N. V., Igbokwe, N. C., Okpala, C. C., and U-Dominic, C. M. (2024). Sustainable 

Manufacturing Practices in Nigeria: Optimization and Implementation Appraisal. Journal of Research 

in Engineering and Applied Sciences, 9(3). URL 

https://doi.org/10.54287/gujsa.1605587
https://doi.org/10.3390/horticulturae8010043
https://doi.org/10.3390/land12122155
https://doi.org/10.1051/e3sconf/202451001009
https://doi.org/10.1186/s13717-020-00269-y
https://doi.org/10.3390/s20247078
https://doi.org/10.3390/plants12223790
https://doi.org/10.3390/s22124644
https://doi.org/10.3390/land12051026
https://doi.org/10.32854/agrop.v14i10.1954
https://doi.org/10.1016/j.heliyon.2021.e07758
https://doi.org/10.3390/agriculture13112141
https://doi.org/10.1038/s41564-022-01203-y
https://doi.org/10.1111/gcb.15819
https://qtanalytics.in/journals/index.php/JREAS/article/view/3967


58 
Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, C., Nwabueze, C. V., & Nwabunwanne, E. C.  

GU J Sci, Part A 12(1) 36-60 (2025) 10.54287/gujsa.1605587  
 

 

Nwamekwe, C. O., Ewuzie, N. V., Igbokwe, N. C., U-Dominic, C. M., and Nwabueze, C. V. (2024). Adoption 

of Smart Factories in Nigeria: Problems, Obstacles, Remedies and Opportunities. International Journal 

of Industrial and Production Engineering, 2(2). Retrieved from URL 

Nwamekwe, C. O., Okpala, C. C., and Okpala, S. C., (2024). Machine Learning-Based Prediction Algorithms 

for the Mitigation of Maternal and Fetal Mortality in the Nigerian Tertiary Hospitals. International 

Journal of Engineering Inventions, 13(7), PP: 132-138. URL 

Omar, G. and Sule, H. (2017). Fertility status of floodplain soils along river andlt;iandgt; 

tatsewarkiandlt;/iandgt;, kano. Bayero Journal of Pure and Applied Sciences, 9(2), 17. 

https://doi.org/10.4314/bajopas.v9i2.4 

Osaigbovo, A. and Law-Ogbomo, K. (2014). Effects of spent engine oil polluted soil and organic amendment 

on soil chemical properties, micro-flora on growth and herbage of andlt;iandgt;telfairia 

occidentalisandlt;/iandgt; (hook f).. Bayero Journal of Pure and Applied Sciences, 6(1), 72. 

https://doi.org/10.4314/bajopas.v6i1.15 

Paepae, T., Bokoro, P., and Kyamakya, K. (2022). A virtual sensing concept for nitrogen and phosphorus 

monitoring using machine learning techniques. Sensors, 22(19), 7338. 

https://doi.org/10.3390/s22197338 

Pagliarini, M., Castilho, R., Moreira, E., Mariano-Nasser, F., and Alves, M. (2019). Development of hymenaea 

courbaril l. var. stilbocarpa seedlings in different fertilizers and substrate composition. Agrarian, 12(43), 

8-15. https://doi.org/10.30612/agrarian.v12i43.4184 

Palansooriya, K., Wong, J., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S., … and Ok, Y. (2019). Response 

of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3-22. 

https://doi.org/10.1007/s42773-019-00009-2 

Pant, H., Lohani, M., and Bhatt, A. (2019). Impact of physico-chemical properties for soils type classification 

of oak using different machine learning techniques. International Journal of Computer Applications, 

177(17), 38-44. https://doi.org/10.5120/ijca2019919617 

Patil, A., Kulkarni, V., and Desai, S. (2023). Soil fertility prediction. International Journal for Research in 

Applied Science and Engineering Technology, 11(8), 1241-1247. 

https://doi.org/10.22214/ijraset.2023.55225 

Prince, M., Mankessi, F., Sun, S., and Fan, X. (2021). Effects of alkaline fertilizer and rice cultivation (oryza 

sativa l.) on remediation of soils polluted with cadmium (cd). Journal of Applied Biosciences, 157, 

16182-16193. https://doi.org/10.35759/jabs.157.4 

Rajamanickam, J. and Mani, S. (2021). Kullback chi square and gustafson kessel probabilistic neural network-

based soil fertility prediction. Concurrency and Computation Practice and Experience, 33(24). 

https://doi.org/10.1002/cpe.6460 

Razanov, S. (2024). The content of heavy metals and trace elements in different soils used under the conditions 

of homestead plots and field agricultural lands of ukraine. Journal of Ecological Engineering, 25(6), 42-

50. https://doi.org/10.12911/22998993/186820 

https://doi.org/10.54287/gujsa.1605587
https://journals.unizik.edu.ng/ijipe/article/view/4167
https://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf
https://doi.org/10.4314/bajopas.v9i2.4
https://doi.org/10.4314/bajopas.v6i1.15
https://doi.org/10.3390/s22197338
https://doi.org/10.30612/agrarian.v12i43.4184
https://doi.org/10.1007/s42773-019-00009-2
https://doi.org/10.5120/ijca2019919617
https://doi.org/10.22214/ijraset.2023.55225
https://doi.org/10.35759/jabs.157.4
https://doi.org/10.1002/cpe.6460
https://doi.org/10.12911/22998993/186820


59 
Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, C., Nwabueze, C. V., & Nwabunwanne, E. C.  

GU J Sci, Part A 12(1) 36-60 (2025) 10.54287/gujsa.1605587  
 

 

Reddy, L. (2024). Applying machine learning to soil analysis for accurate farming. Matec Web of Conferences, 

392, 01124. https://doi.org/10.1051/matecconf/202439201124 

Rehman, O., Mehdi, S., Abad, R., Saleem, S., Khalid, R., Alvi, S., … and Munir, A. (2021). Soil characteristics 

and fertility indexation in gujar khan area of rawalpindi. Pakistan Journal of Scientific and Industrial 

Research Series a Physical Sciences, 64(1), 46-51. 

https://doi.org/10.52763/pjsir.phys.sci.64.1.2021.46.51 

Sandhya, K., Gayathri, B., Papireddy, M., R, P., Vishwanath, V., Swathi, B., … and Naveen, D. (2023). 

Assessing the nutrient status and soil fertility using nutrient indexed of farmer’s fields in chikkaballapura 

district, karnataka. International Journal of Plant and Soil Science, 35(23), 639-649. 

https://doi.org/10.9734/ijpss/2023/v35i234283 

Saraiva, T., Ventura, S., Brito, E., Rocha, S., Costa, R., Pereira, A., … and Araújo, A. (2022). Temporal 

stability of soil microbial properties in responses to long-term application of compost obtained from 

tannery sludge. Sustainability, 14(24), 16736. https://doi.org/10.3390/su142416736 

Sofo, A., Mininni, A., and Ricciuti, P. (2020). Soil macrofauna: a key factor for increasing soil fertility and 

promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4), 456. 

https://doi.org/10.3390/agronomy10040456 

Sridevy, S., Raj, M., Kumaresan, P., Balakrishnan, N., Tilak, M., Raj, J., … and Rani, P. (2023). Mapping of 

soil properties using machine learning techniques. International Journal of Environment and Climate 

Change, 13(8), 684-700. https://doi.org/10.9734/ijecc/2023/v13i81997 

Tryhuba, I., Тryhuba, А., Hutsol, T., Cieszewska, A., Andrushkiv, O., Głowacki, S., … and Sojak, M. (2024). 

Prediction of biogas production volumes from household organic waste based on machine learning. 

Energies, 17(7), 1786. https://doi.org/10.3390/en17071786 

Yageta, Y., Osbahr, H., Morimoto, Y., and Clark, J. (2019). Comparing farmers' qualitative evaluation of soil 

fertility with quantitative soil fertility indicators in kitui county, kenya. Geoderma, 344, 153-163. 

https://doi.org/10.1016/j.geoderma.2019.01.019 

Yang, Q., Peng, J., Ni, S., Zhang, C., Wang, J., and Cai, C. (2024). Soil erosion‐induced decline in aggregate 

stability and soil organic carbon reduces aggregate‐associated microbial diversity and multifunctionality 

of agricultural slope in the mollisol region. Land Degradation and Development, 35(11), 3714-3726. 

https://doi.org/10.1002/ldr.5163 

Yerrabolu, V., Kasireddy, I., Jasmine, K., Vamsi, T., Joshua, N., Kumar, V., … and Rao, D. (2024). 

Performance comparison of random forest regressor and support vector regression for solar energy 

prediction. Iop Conference Series Earth and Environmental Science, 1375(1), 012013. 

https://doi.org/10.1088/1755-1315/1375/1/012013 

Yu, X. (2024). Prediction model of nitrogen, phosphorus, and potassium fertilizer application rate for 

greenhouse tomatoes under different soil fertility conditions. Agronomy, 14(6), 1165. 

https://doi.org/10.3390/agronomy14061165 

https://doi.org/10.54287/gujsa.1605587
https://doi.org/10.1051/matecconf/202439201124
https://doi.org/10.52763/pjsir.phys.sci.64.1.2021.46.51
https://doi.org/10.9734/ijpss/2023/v35i234283
https://doi.org/10.3390/su142416736
https://doi.org/10.3390/agronomy10040456
https://doi.org/10.9734/ijecc/2023/v13i81997
https://doi.org/10.3390/en17071786
https://doi.org/10.1016/j.geoderma.2019.01.019
https://doi.org/10.1002/ldr.5163
https://doi.org/10.1088/1755-1315/1375/1/012013
https://doi.org/10.3390/agronomy14061165


60 
Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, C., Nwabueze, C. V., & Nwabunwanne, E. C.  

GU J Sci, Part A 12(1) 36-60 (2025) 10.54287/gujsa.1605587  
 

 

Zhao, Z., He, J., Quan, Z., Wu, C., Sheng, R., Zhang, L., … and Geisen, S. (2020). Fertilization changes soil 

microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 148, 107863. 

https://doi.org/10.1016/j.soilbio.2020.107863 

Zheng, C., Yang, X., Liu, Z., Liu, K., and Huang, Y. (2022). Spatial distribution of soil nutrients and evaluation 

of cultivated land in xuwen county. Peerj, 10, e13239. https://doi.org/10.7717/peerj.13239 

Ziyadullaev, D. (2024). Ensemble data mining methods for assessing soil fertility. E3s Web of Conferences, 

494, 02013. https://doi.org/10.1051/e3sconf/202449402013 

https://doi.org/10.54287/gujsa.1605587
https://doi.org/10.1016/j.soilbio.2020.107863
https://doi.org/10.7717/peerj.13239
https://doi.org/10.1051/e3sconf/202449402013

