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Abstract: The primary purpose of this study was to investigate the effect of active pharmaceutical ingredients 
(APIs) with varying particle sizes and properties on drug release and to develop matrix-type tablets based 

on poly(acrylic acid sodium salt) (PAANa) with different gelatin ratios for enhanced paracetamol release. 
Micronized, superfine, and purified paracetamol APIs were selected as model drugs to assess the impact of 

these APIs on drug release. Paracetamol is a frequently used medication in healthcare, so it  is crucial to 

select the API with the optimal release rate and an economical, environmentally friendly production method. 
The direct compression method was employed in the preparation of the tablets due to its simplicity and ease 

of integration on an industrial scale. The release studies, release kinetics, scanning electron microscope 
(SEM), Fourier transform infrared spectroscopy (FT-IR), physical properties, and microbial analyses 

(Escherichia coli, total mold, yeast) were investigated. The release studies at pH 1.2 and pH 7.4 revealed 
that the type of active pharmaceutical ingredient, especially micronized paracetamol API and superfine API, 

affects the paracetamol release ratio. Microbial analyses showed that produced tablets were convenient for 

health. In addition, prepared tablets with added gelatine can be used to deliver paracetamol with the desired 

release profile. 
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1. INTRODUCTION  

 
A controlled drug delivery system involves a wide 

variety of scientific approaches, which are an 
important part of science and contribute to 

healthcare. These scientific approaches enhance 

efficiency, improve patient compliance, and minimize 
side effects (1-4). Furthermore, designed drug 

delivery has been progressing for overwhelming 
problems, including targeting specific sites and 

controlling drug release rates (5-7). Some drug 

release systems have major limitations, including 
poor in vitro release and bioavailability, high doses, 

and adverse side effects (8,9). However, controlled 
drug delivery systems have been developed to 

release APIs in a predictable, desired time, release 
rate, and quantity (10-15). 

 

Controlled-release drug delivery offers a cost-
effective solution for formulations, such as swelling 

matrix-type tablets, which have been widely used in 
the pharmaceutical industry (16,17). Matrix-type 

tablets are useful materials for releasing dosage 

forms and provide the lowest-cost solution for 

various applications. 
 

Direct compression is one of the selected tablet 
preparation methods when mixed powders (active 

pharmaceutical ingredients, or APIs, and excipients) 

are compressible and stable under high-pressure 
conditions (18, 19). Additionally, direct compression 

is favored due to its simplicity, environmental 
friendliness, time, and cost-effectiveness, which is 

the most straightforward route for manufacturing 

matrix-type tablets, offering advantages such as 
large-scale and continuous production (20-24). 

 
The addition of the drug to the polymer ingredient is 

a common method used in drug release (25-28). 
Hydrophilic polymers and polymer combinations are 

attractive for controlled-release studies, and these 

combinations have been used to formulate dosage 
forms for many years due to their unique features for 

efficient and specific drug delivery. Different types of 
polymers are used in release dosage forms. 

Mucoadhesive polymers are extensively selected in 
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tablet formulations due to their ability to adhere to 

the required sites for a prolonged period of time in 
the prepared formulation. Carbomers, commonly 

referred to as Carbopols, are weakly cross-linked 
polymers of acrylic acid with effective mucoadhesive 

properties, making them attractive for use in release 

systems. Additionally, Carbopol is a hydrophilic, 
cross-linked polyacrylic acid polymer with a high 

molecular weight. Additionally, drug dissolution and 
diffusion through the polymer are significant 

phenomena that influence the controlled release 

properties of the drug formulation. PAA and PAANa 
are among the materials preferred in many industries 

due to their properties, including hydrophilicity, non-
toxicity, dispersion, and binding capacity (29-31). 

 
Gelatin is a type of natural hydrophilic polymer and 

non-toxic material derived from the acid or alkaline 

hydrolysis of collagen, which has a variety of 
effective advantages, including good 

biocompatibility, solubility, easy acquisition, and 
biodegradability (32). 

 

Paracetamol (acetaminophen) is probably the most 
common, widely available, and important analgesic 

and antipyretic active pharmaceutical ingredient, 
commonly used to relieve pain such as headaches, 

toothaches, and sprains. Furthermore, paracetamol 
is available in various dosage forms, including 

tablets, intravenous solutions, suspensions, 

capsules, and suppositories (29). The direct 

compression method for the oral solid form of 
paracetamol is mostly selected (24). 

 
The current work aims at creating a release system 

through the preparation and characterization of 

prepared tablets. The effects of gelatine and 
paracetamol types on in vitro release of drugs have 

also been studied. As a result, different particle sizes, 
types of APIs, and kinetic models were significant 

determiners for drug delivery studies. 

Characterization and microbial analyses were 
evaluated, and all results were promising for the 

effective delivery of paracetamol. 
 

2. EXPERIMENTAL SECTION 
 

2.1. Materials 

J.T. Baker provided sodium hydroxide (99.0%) and 
monobasic potassium phosphate. Sodium chloride 

(≥99.5%) and hydrochloric acid (37.0%) were 
supplied by Merck. Atabay Pharmaceutical Company 

kindly provided paracetamol APIs (assay: 100.5-

100.7%). Gelatine (microbial grade) was purchased 
from Carlo Erba. Poly (acrylic acid sodium salt) with 

an average Molecular Weight of ~2,100 (for R&D 
usage) was supplied by Sigma Aldrich. Sabouraud 

4% Dextrose Digest Agar (SDA) and Tryptic Soy Agar 
were provided by Merck. All chemical materials used 

were of analytical grade. 

 

Table 1: API’s sieve properties. 

 Specification Results Method 

Micronized API 325 Mesh (45 µm) =0 0 

Air jet sieving 
Superfine API 

80 Mesh (180 µm) = Max. 2 1 

140 Mesh (106 µm) = Max. 5 3 

Purified API 
80 Mesh (180 µm) = Max 2 1 

140 Mesh (106 µm) = Max. 5 4 

 
2.2. Preparation of Matrix Types of Tablets 

Gelatine and poly(acrylic acid sodium salt) were 
prepared using a clean and dry mortar. All the 

ingredients were weighed accurately, as shown in 

Table 1, and then mixed thoroughly. API and 
excipient were completely blended in a mortar. A 

total of nine formulations were prepared using 
gelatin and various paracetamol APIs. A direct 

compression method was employed to prepare 

paracetamol-loaded tablets. The method used is 

simple and lacks critical manufacturing and 
formulation levels, making it easy to standardize for 

industrial-scale production. A 0.5±0.02 g mixture 

was manually added to the pellet (tablet) pressing 
device. A pressure of 160 kPa was applied for 5 

minutes to produce tablets. A desiccator was used for 
storing the prepared tablets until further studies. 

 



Senol S. JOTCSA. 2025; 12(2): 85-98  RESEARCH ARTICLE 

87 

 
 

Figure 1: Experimental setup. 
 

2.3. Characterization of The Tablets 
A digital caliper was used to measure the diameter 

and thickness of the tablets (Carbon Fiber 

Composites Digital Caliper). Fourier Transform 
Infrared Spectroscopy (FT-IR, PerkinElmer Spectrum 

100) was used for the characterization of chemical 
groups present in the tablets. A spectrum is obtained 

using the ATR technique with a diamond internal 

reflection element mounted on a holder, at a 
resolution of 4 cm-1, in the range of 4000-650 cm-

1, with a total of 16 scans for each tablet. SEM 
photographs were taken with a JEOL JSM 6335F. 

 
2.4. In vitro Drug Release of The Tablets 

pH 1.2 and pH 6.8 buffer solutions were prepared for 

in vitro drug release tests at 37 ± 0.5 °C and 50 rpm. 
50 mL of dissolution medium was used, and 2 mL of 

the same medium was taken for analysis. The 
quantity of paracetamol released over time was 

obtained by withdrawing samples at predetermined 

time intervals for 4-6 hours. The withdrawn volume 
was replaced with the same amount of additional 

buffer. The measurements were performed three 
times at 270 nm by using a UV-Vis 

spectrophotometer (Analytik Jena Specord 
200/Plus). The reproducibility of this approach is 1 to 

3%. A pH 1.2 buffer is prepared according to USP 29. 

The drug concentrations in the sample were validated 
using a standard calibration curve. The complete 

experimental procedures, including details of the 
buffer solution, were reported previously (3). 

 

2.5. Kinetic Evaluation 
First-order, Zero-order, Hixson-Crowell, and 

Korsmeyer-Peppas kinetic models were studied to 

examine the kinetic mechanism. The data from the 
in vitro studies were analysed using Korsmeyer-

Peppas models to determine the release profile. 

Korsmeyer and Peppas’s empirical equation was used 
to understand the dissolution mechanisms from the 

matrix-type tablets (31,33,34). 
 

The equation represents the release of the drug,  

 
Korsmeyer – Peppas model: M / Mt = KKPt (1) 

 
In the equation, M/Mt is the fraction of the drug 

released at time t, KKP is the drug release rate 
constant, and n is the diffusional exponent (31,32). 

 

2.6. Stability Studies 
Tablets were subjected to stability studies by storing 

them at 25 ± 2 °C and 65 ± 5% relative humidity for 
a period of 3 months. At the end of the analysis, the 

formulation was evaluated for in vitro release profile. 

It was determined from the stability analyses that 
there were no significant differences in the drug 

quantity of the tablets. The physical appearance also 
showed no difference in tablet formulation. 

 
3. RESULTS AND DISCUSSION 

 

3.1. Characterization of the tablets 
The produced tablets were characterized with the 

digital microscope, Fourier Transform Infrared 
spectroscopy (FT-IR), and Scanning Electron 

Microscopy (SEM). Figure 2 shows the images of 

tablets taken with the digital microscope. The 
diameter and thickness were 2.40 ± 0.05 and 0.20 

± 0.03 cm, respectively. 
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Table 2: Type of the prepared tablets. 

 

Content, w/w % 

 

Poly(acrylic 

acid sodium 

salt) 

Micronized 

Paracetamol 

API 

Superfine 

Paracetamol 

API 

Purified 

Paracetamol 

API 

Gelatine 

Tablet 1 (T1) 90 10 - - - 
Tablet 2 (T2) 90 - 10 - - 

Tablet 3 (T3) 90 - - 10 - 

Tablet 4 (T4) 85 10 - - 5 
Tablet 5 (T5) 80 10 - - 10 

Tablet 6 (T6) 85 - 10 - 5 
Tablet 7 (T7) 80 - 10 - 10 

Tablet 8 (T8) 85 - - 10 5 

Tablet 9 (T9) 80 - - 10 10 

 
 

 
 

Figure 2: Image of tablets. 
 

FT-IR was applied to determine the intact functional 
groups of samples. The position of the band in the 

FT-IR spectra of paracetamol APIs was compared 
with that in the FT-IR spectra of different types of 

paracetamol APIs with gelatin. The characteristic 

peaks of paracetamol were intact in the FT-IR 
spectrum of different kinds of paracetamol APIs with 

gelatin used in the formulations. The data showed no 
changes in the characteristic peaks of the tablet 

formulations compared to the APIs. When the FT-IR 
spectrum of PAANa is examined, the peaks related to 

the asymmetric and symmetric stretching vibrations 

of the carboxylate group occur at wavenumbers of 
1543 cm−1 and 1400 cm−1 (35). The characteristic 
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bands around 2940 cm−1 and 1107 cm−1 can be 

assigned to the -CH2 stretching and C-H bending of 
PaaNa (36). Vibrational peaks for O-H and -CH3 

stretching appeared at 3318 cm -1 and 3161 cm -1, 
respectively. Vibrational peaks at 1649 and 1609 cm-

1 were assigned to C=O and C=C stretching, 

respectively, for the paracetamol spectrum (37). The 
amide II peak was observed at 1547 cm -1 in the 

spectrum of gelatin (38). The N-H amide II bonding, 
asymmetrical C-H band, and C-C stretching peak 

appeared at 1562 cm -1, 1503 cm-1, and 1416 cm-1 in 

the spectrum of Paracetamol, respectively (37). The 

absorption peaks at 1369-1321 cm-1 and 1258-1223 
cm -1 were examined for symmetrical banding C-H 

and C-N (aryl) stretching. Additionally, absorption 
peaks at 1171 cm -1 and 966 cm -1 were assigned to 

C-O stretching and C-N (amide) stretching, 

respectively. Vibrational peaks for the para-
disubstituted aromatic ring and out-of-plane ring 

deformation of the phenyl ring were observed at 835 
and 671 cm -1, respectively (37). 

 

 

 
 

Figure 3: FT-IR analyses of matrix types of tablets and Paracetamol’s APIs. 
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Figure 4: FT-IR analyses of gelatine and PAANa. 
 

3.2. SEM Analysis 

A Scanning Electron Microscope (SEM) was used to 
determine the morphology of the samples. SEM pho-

tographs of tablets are given in Fig. 4. T1 (a) and T5 
(c) SEM images are powder forms of the tablet before 

pressing the tablet. T1 (b) and T5 (d) are tablet 

forms after pressing. T1 tablet has a large, channel-

like, and open structure. The presence of gelatine in 
the T5 tablet exhibits a less porous structure. SEM 

images demonstrated that the tablet surface became 
nearer with the addition of gelatine (T5). 
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Figure 5: SEM images of tablets (a) T1 powder form before pressing, (b) T1 tablet form, (c) T5 powder 
form before pressing, (d) T5 tablet form. 

 
3.3. In vitro Drug Release Studies 

3.3.1. In pH 1.2 media (simulated gastric fluid) 

Figure 6 shows the percent cumulative release of 
paracetamol at a pH 1.2 medium. Micronized API 

exhibited a significant effect on release 
enhancement. Additionally, the T2 tablet with 

superfine API exhibited high paracetamol release, 

reaching 94.02%. The in vitro drug release data for 

formulations T1 and T5, containing micronized API, 

showed a maximum percent cumulative release of 

paracetamol of 96.72% and 93.39% after 4 hours, 
respectively (39-41). The addition of gelatine in 

tablet formulation resulted in a decrease in the 
amount of drug released. The percentage of 

paracetamol release of T8 reached 58.78% within 4 

h at pH 1.2. 
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Figure 6: Paracetamol release profiles of matrix tablets at pH 1.2. 
 

3.3.2. In pH 6.8 media (simulated intestinal fluid) 
The release of paracetamol from matrix-type tablets 

was studied for 6 hours in simulated intestinal fluid. 

The T1 tablet (micronized API) showed 97.03% 
paracetamol release at the end of 6 hours. T5 and T4 

tablets with micronized API showed good 
performance with 96.40% and 91.54% paracetamol 

release, respectively. Additionally, the T2 tablet with 

superfine API showed a percent cumulative release 
of paracetamol of 91.58%. 

 
T8 exhibited the minimum percent cumulative 

release of paracetamol with 81.19% in 6 h. The 
release rate of tablets with gelatine was slower at 

both pH 1.2 and pH 6.8. Also, as shown in Figs. 

Results 7 and 8 indicate that the presence of gelatin 

in tablets causes a lower drug release ability. In 
general, matrix-type tablets exhibit higher 

cumulative paracetamol release in a pH 6.8 medium 

(39,42). 
 

T1 is a tablet containing micronized API, and T4 and 
T5 are versions of this tablet with added gelatin. T2 

is a tablet containing superfine API, while T6 and T7 

are tablets with added gelatin. T3 is a tablet 
containing purified API, and T8 and T9 are tablets 

with added gelatin. Figure 8 shows the highest 
release rates of the tablets at pH 1.2 and pH 6.8. In 

Figure 8, it is observed that tablets with added 
gelatin have a lower release rate than those without 

gelatin. 
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Figure 7: Paracetamol release profiles of matrix tablets at pH 6.8. 
 

 
 

Figure 8: Paracetamol maximum release profiles at pH 1.2 and pH 6.8. 

 

3.4. Microbial Analyses 
In this section, microbial analyses were conducted to 

assess the compatibility of the produced tablets with 
their health properties. The pour-plate method was 

used according to the European Pharmacopoeia (EP) 

2.6.12 and the United States Pharmacopoeia (USP) 
61-62 (43, 44). Microbial analysis procedures 

consisted of the following steps: 10.0 g of product 
was weighed, and 100 mL (1/10) of N/Peptone was 

added. 10 mL of this dilution was taken, and 100 mL 
(1/100) was completed. 1 mL was poured into two 

pieces of Tryptic Soy Agar-Sabouraud 4% Dextrose 

Agar (TSA-SDA) medium. They were incubated at 30 
– 35°C for 3-5 days for total aerobic bacteria and 

incubated at 20-25°C for 5-7 days for molds and 
yeasts. 

 
For specific microorganism analysis, 10 mL of a 1:10 

dilution was added to 90 mL of Tryptic Soy Broth 

(TSB) medium in a beaker. They were incubated for 
18-24 hours at 30-35 °C. 

 
Microbiological contamination limits follow as: 

Total aerobic microbial count: Not more than 1,000 
colony-forming units (CFU) per gram. 

-Total molds and yeast counts: Not more than 100 

CFU per gram. 
-Pathogens: No Escherichia coli (E. coli) per gram. 
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Table 3 represents the acceptance criteria for the 
microbiological quality of tablets. The total aerobic 

microbial count, total mold, and yeast count were 
found to be less than 100 colony-forming units 

(CFU). E. coli must be absent in oral drugs, and E. 

coli was not found in the tablets. According to the 

specifications presented in Table 3, the formulations 
comply with the required microbiological standards 

for pharmaceutical preparations. These findings 
provide strong evidence supporting the quality and 

safety of the T1–T9 formulations. 

 

 

   
 

Figure 9: Images of microbial analyses. 
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Table 3: Microbial limit test results. 

 

 T1-T9 

Method Pour Plate Method 

Media Sabouraud Casein Digest Agar Medium 

Incubator temperature and time 32.5 ± 2.5 °C, 5 days 

Number of samples 3 

Total Aerobic Microbial Count <1000 CFU / g 

 T1-T9 

Method Pour Plate Method 

Media Sabouraud Dextrose Digest Agar Medium 

Incubator temperature and time 22.5 ± 2.5 °C, 7 days 

Number of samples 3 

Total Aerobic  

Microbial Count 
<100 CFU / g 

Escherichia coli  

(E. coli) 
0 CFU / g 

 

3.5. Paracetamol Release Kinetic Tests 
The release data were fitted into the Korsmeyer-

Peppas kinetic model to understand the release 
mechanism. The model with the higher R-squared 

value is considered optimal for the release data. The 

kinetic values obtained for different formulations are 
indicated in Table 4. The release data were 

investigated using the Korsmeyer-Peppas equation; 
the n values for the prepared tablet formulations 

ranged from 0.9470 to 0.9901 in pH 1.2 and pH 6.8 

media. It was observed that the drug release data for 
all formulations fit well to the Korsmeyer-Peppas 

kinetic model (R² values ranged from 0.9470 to 

0.9901). Most tablet formulations exhibit a non-
Fickian mechanism, as indicated by their n-release 

exponent values within the range of 0.45 < n <, as 
shown in Table 4. These values support the notion 

that the drug release mechanism may be related to 

polymer relaxation and drug diffusion. Drug release, 
erosion, and swelling processes can affect the non-

Fickian release mechanism. Moreover, non-Fickian 
release kinetics can facilitate the development of 

controlled-release formulations that modulate the 

drug release rate over an extended period. The 
development of the formulation can also increase 

patient compliance and treatment efficacy (45-47). 
 

Table 4: Release kinetic studies of tablets. 

 

 pH 

Zero order First order Hixson-Crowell Peppas 

Best Fit 

Model R2 
K0 

[mg / h] 

*10-4 

R2 
K1 

[h-1] 
R2 Ks R2 n 

T1 
1.2 0.8061 7.720 0.6583 1.4583 0.7222 0.0138 0.9667 0.6228 

Korsmeyer-

Peppas 

6.8 0.9219 7.345 0.7098 1.5815 0.7978 0.0137 0.9669 0.6073 

T2 
1.2 0.6950 7.995 0.6241 1.6187 0.6615 0.0151 0.9652 0.7683 

6.8 0.9110 7.695 0.7644 1.8652 0.8383 0.0152 0.9698 0.6768 

T3 
1.2 0.9232 8.270 0.7891 2.3233 0.8589 0.018 0.9901 0.8523 

6.8 0.9007 7.540 0.2914 1.7789 0.8135 0.015 0.9851 0.6882 

T4 
1.2 0.8376 9.135 0.7463 2.4958 0.7939 0.0201 0.9753 0.9886 

6.8 0.9071 7.370 0.7360 1.7268 0.8144 0.0143 0.9685 0.6374 

T5 
1.2 0.7974 9.275 0.7024 2.5732 0.7511 0.0207 0.9629 1.0642 

6.8 0.8787 8.160 0.7230 2.075 0.7884 0.0170 0.9798 0.8140 

T6 
1.2 0.9045 7.114 0.8388 2.6196 0.8982 0.0173 0.9632 0.8331 

6.8 0.8765 8.49 0.753 2.3011 0.8096 0.0184 0.9779 0.8846 

T7 
1.2 0.9283 8.635 0.8118 2.3638 0.8771 0.0185 0.9789 0.8618 

6.8 0.9768 7.955 0.8491 2.6292 0.9195 0.0187 0.9789 0.8864 

T8 
1.2 0.8554 5.690 0.7476 2.8178 0.7965 0.0166 0.9663 0.9268 

6.8 0.8994 7.580 0.2782 2.3366 0.8219 0.0178 0.9880 0.8974 

T9 
1.2 0.9047 8.790 0.8173 2.7221 0.8608 0.0204 0.9470 0.9692 

6.8 0.8382 6.320 0.6476 1.4076 0.7211 0.0118 0.9513 0.5411 

 
4. CONCLUSION 

 
A direct compression method was successfully 

applied to prepare the matrix-type tablet. According 

to experimental data, a greater quantity of the drug 

was released from the tablet as the environmental 
pH increased. The results of the in vitro drug release 

study revealed that the type of gelatin and APIs, 
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especially micronized active pharmaceutical 

ingredients, played a crucial role in enhancing drug 
release. Gelatine decreased the release ratio of 

paracetamol in both media. It was indicated that the 
release of paracetamol was slower in formulation T8, 

which contained gelatin with purified paracetamol. 

Additionally, the T1 tablet exhibited the maximum 
percent cumulative release of paracetamol in both pH 

1.2 and pH 6.8 media. The present study 
demonstrated that matrix-type tablets with added 

gelatin can be formulated for the controlled delivery 

of paracetamol, achieving the desired release profile 
in vitro. Microbial analyses showed that produced 

tablets were suitable for health. From this 
perspective, the current study and its results were 

promising for paracetamol drug delivery. However, it 
should be taken into consideration that in vivo 

studies are required to determine whether the 

prepared and chosen formulation(s) will be accurate. 
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