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Abstract. In this paper, we calculate the value of new geometric constants for the Morrey spaces and small
Morrey spaces. The new geometric constants which were investigated are generalizations of the other new constants
Ω(X) and Ω(X) for Banach spaces X. The two constants are related to isosceles orthogonal type and introduced by
Liu et al in 2022. We introduce the generalizations of the constants which are denoted by Ω(s)(X) and Ω

(s)
(X) for

s ≥ 1. We calculate the value of each of the constants for Morrey spacesMp
q and small Morrey spaces mp

q,λ. The

results show that Ω(s)(Mp
q ) = 2s+1

5s−1 and Ω
(s)

(mp
q,λ) =

2s+1

5s−1 .
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1. Introduction

One of the important function spaces used in functional analysis is Morrey space. The Morrey spaces were first
introduced by Charles Bradfield Morrey in 1938 [9]. For 1 ≤ p ≤ q < ∞, the Morrey space Mp

q is the set of any
measurable function f such that the norm

∥ f ∥Mp
q
= sup

a∈Rn,r>0
|B(a, r)|

1
q−

1
p

(∫
B(a,r)
| f (y)|pdy

) 1
p

is finite, where |B(a, r)| denotes the Lebesgue measure of the open ball B(a, r) centered at a ∈ Rn and radius of r > 0.
Throughout this paper, we shall denote B(r) = B(0, r) for simplicity. If p = q, then Mp

q is the Lebesgue space Lp.
Therefore, the Morrey Spaces can be considered as one of the extensions of the Lebesgue spaces. Meanwhile, one
of the modifications of Morrey spaces is small Morrey space mp

q which is defined as the collection of all measurable
functions f on Rn such that

∥ f ∥mp
q
= sup

a∈Rn,0<r<1
|B(a, r)|

1
q−

1
p

(∫
B(a,r)
| f (y)|pdy

) 1
p

(1.1)

is finite. Here, the norm in (1.1) is generalized become the form

∥ f ∥mp
q,λ
= sup

a∈Rn,0<r<λ
|B(a, r)|

1
q−

1
p

(∫
B(a,r)
| f (y)|pdy

) 1
p

, (1.2)

where λ > 0 is fixed. It can be seen that for λ = 1, (1.2) reduces to (1.1). For λ > 0 and 1 ≤ p ≤ q < ∞, we then
defined a new space mp

q,λ as the collection of the measurable function f such that ∥ f ∥mp
q,λ

is finite. It can be seen that the
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Morrey spacesMp
q and the small Morrey spaces mp

q,λ are Banach spaces. If we define the spaceMp
q,λ for 0 < λ ≤ +∞

and 1 ≤ p ≤ q < ∞ to be the set of all functions f for which

∥ f ∥Mp
q,λ
= sup

a∈Rn,0<r<λ
|B(a, r)|

1
q−

1
p

(∫
B(a,r)
| f (y)|pdy

) 1
p

< ∞,

thenMp
q,λ generalizesMp

q and mp
q,λ.

Let X be a Banach space. In order to investigate the geometric properties of X, some geometric constants had
been defined. Some of them are Von Neumann-Jordan constant CNJ(X) (see [4]), James constant CJ(X) (see [7]),
the Dunkl-William constant CDW (see [3]), and Zbáganu contant CZ (see [12]). Moreover, some generalizations and
modifications of Von Nueman-Jordan constant also have been defined, for example: generalized Von-Neumann Jordan
constant C(s)

NJ(X) (see [2]), modified Von Neumann-Jordan constant C′NJ(X) (see [1, 5]), and generalized modified Von
Neumann-Jordan constant C̄(s)

NJ(X) (see [11]).
In [6], three geometric constants for Morrey spaces, namely the von Neumann-Jordan constant, the James constant,

and the Dunkl-Williams contant, have been computed to obtain that CNJ(Mp
q ) = CJ(Mp

q ) = 2 and CDW (Mp
q ) = 4.

Moreover, in [10], it has been obtained that

C(s)
NJ(Mp

q ) = C′NJ(Mp
q ) = C̄ s

NJ(Mp
q ) = CZ(Mp

q ) = 2

and
C(s)

NJ(mp
1,q) = C′NJ(mp

1,q) = C̄ s
NJ(mp

1,q) = CZ(mp
1,q) = 2.

Recently, some new constants for a Banach space X have been defined related to isosceles orthogonal type. The
new constants are Ω(X) and Ω′(X) which have been introduced by Liu et al [8].

Related to the definitions of the constants, an element x ∈ X is said to be isosceles orthogonal to y ∈ X, denoted by
x⊥Iy, if ∥x + y∥ = ∥x − y∥. By the notations, the new constants Ω(X) and Ω′(X) are defined by

Ω(X) = sup
{
∥x + 2y∥2 + ∥2x + y∥2

5∥x + y∥2
: x, y ∈ S X , x⊥Iy

}
and

Ω′(X) = sup
{
∥x + 2y∥2 + ∥2x + y∥2

5∥x + y∥2
: x⊥Iy

}
,

where S X = {x ∈ X : ∥x∥ = 1}. For more details about the constants Ω(X) and Ω′(X), one may refer to [8].
For 1 ≤ s < ∞, we extend the constant Ω(X) become Ω(s)(X) and the constant Ω′(X) become Ω̄(s)(X) which have

been defined by

Ω(s)(X) = sup
{
∥x + 2y∥s + ∥2x + y∥s

5s−1∥x + y∥2
: x, y ∈ S X , x⊥Iy

}
and

Ω̄(s)(X) = sup
{
∥x + 2y∥s + ∥2x + y∥s

5s−1∥x + y∥s
: x⊥Iy

}
.

It is clear that,
Ω(s)(X) ≤ Ω̄(s)(X), s ≥ 1. (1.3)

In this paper, we calculate the geometric constants Ω(s) and Ω̄(s)(X) for the Morrey spacesMp
q , where 1 ≤ p < q <

∞. Moreover, we also calculate the constants for small Morrey space mp
q,λ, where λ > 0 and 1 ≤ p < q < ∞.

2. Main results

The following theorems are our main results on the new geometric constants for the Morrey spaceMp
q and the small

Morrey space mp
q,λ.

Theorem 2.1. Let s ≥ 1. If 1 ≤ p < q < ∞, then Ω(s)(Mp
q ) = 2s+1

5s−1 = Ω̄
(s)(Mp

q ).

Corollary 2.2. If 1 ≤ p < q < ∞, then Ω(Mp
q ) = 8

5 = Ω
′(Mp

q ).

Theorem 2.3. Let s ≥ 1 and λ > 0. If 1 ≤ p < q < ∞, then Ω(s)(mp
q,λ) =

2s+1

5s−1 = Ω̄
(s)(mp

q,λ).

Corollary 2.4. Let λ > 0. If 1 ≤ p < q < ∞, then Ω(mp
q,λ) =

8
5 = Ω

′(mp
q,λ).
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Before proving the main results, we first state and prove the following lemmas and theorems which will be used to
prove our main results.

Lemma 2.5. Let a ∈ Rn and r > 0. Then,

|B(a, r)| = |B(r)| =
ωn−1

n
rn,

where ωn−1 is a constant that does not depend on a and r.

Theorem 2.6. Let X be a Banach space, then 1+2s

5s−1 ≤ Ω̄
(s)(X) ≤ 2s+1

5s−1 for s ≥ 1.

Proof. Let s ≥ 1. Suppose that x⊥Iy. Then ∥x + y∥ = ∥x − y∥, and by using triangle inequality, we have that

∥x + 2y∥s + ∥2x + y∥s

5s−1∥x + y∥s
=

(
1
2

)s
∥x − y − 3(x + y)∥s +

(
1
2

)s
∥3(x + y) + (x − y)∥s

5s−1∥x + y∥s

≤

(
1
2

)s (∥x − y∥ + 3∥x + y∥)s + (3∥x + y∥ + ∥x − y∥)s

5s−1∥x + y∥s

=
2s+1

5s−1 .

In the other hand, for y = 0 and x , 0, we have that

Ω̄(s)(X) ≥
∥x∥s + ∥2x∥s

5s−1∥x∥s
=

1 + 2s

5s−1 ,

and this completes the proof of Theorem 2.6. □

Theorem 2.7. Let X be a Banach space, then Ω(s)(X) ≤ 2s+1

5s−1 for s ≥ 1.

Proof. This is a direct consequence of the inequality (1.3) and Theorem 2.6. □

Theorem 2.6 and 2.7 obviously extend the results in [8]. Next, we provide some functions belonging to Mp
q and

some functions belonging to mp
q,λ for 1 ≤ p < q < ∞ and λ > 0.

Lemma 2.8. [6] Let 1 ≤ p < q < ∞. Define f (x) := |x|−n/q for x ∈ Rn. If g(x) = X(0,1)(|x|) · f (x) and h(x) =
X[1,∞)(|x|) · f (x) for all x ∈ Rn, then

∥ f ∥Mp
q
= ∥g∥Mp

q
= ∥h∥Mp

q
=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

.

Lemma 2.9. Let 1 ≤ p < q < ∞ and λ > 0. Define f (x) := X(0,λ)(|x|)|x|−n/q for x ∈ Rn. For 0 < δ < λ, define
g(x) = X(0,δ)(|x|) · f (x) and h(x) = X[δ,λ)(|x|) · f (x) for all x ∈ Rn. Then,

∥ f ∥mp
q,λ
= ∥g∥mp

q,λ
=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

and ∥h∥mp
q,λ
=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p
1 − (

δ

λ

)− np
q +n 1

p

.

Proof. We see that f , g, and h can be considered as radial functions. We first check that for any r > 0 and s > 0,
the integral

∫
B(a,r) |x|

−sdx is maximized when a = 0 by using rearrangement inequality argument. Specifically, for the
measurable set A ⊆ Rn and any function f : Rn → [0,∞), we let A∗ be the symmetric rearrangement of A and f ∗ be
the symmetric decreasing rearrangement of f , i.e.

A∗ = {x ∈ Rn, ωn|x|n < |A|}, and f ∗(x) =
∫ ∞

0
X{y: f (y)>t}∗(x)dt,

where ωn = |B(1)| denotes the volume of the unit ball in Rn. It can be checked that for the ball B(a, r) and the function
f (x) = |x|−s, then B(a, r)∗ = B(r), f ∗ = f , and [XB(a,r)]∗ = XB(r). Hence, by Hardy-Littlewood inequality, we have that∫

B(a,r)
|x|−sdx ≤

∫
Rn

f (x)XB(a,r)(x)dx ≤
∫
Rn

f ∗(x)XB(r)(x)dx =
∫

B(r)
|x|−sdx.
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Therefore, the integral
∫

B(a,r) |x|
−sdx is maximized when a = 0. Thus, Lemma 2.5 yields

∥ f ∥mp
q,λ
= sup

a∈Rn,0<r<λ

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)∩B(0,λ)

|x|−
np
q dx

) 1
p

= sup
0<r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)
|x|−

np
q dx

) 1
p

= sup
0<r<λ

1

|B(r)|
1
p−

1
q

(
ωn−1

∫ r

0
s−

np
q +n−1ds

) 1
p

= sup
0<r<λ

1

|B(r)|
1
p−

1
q

(
ωn−1

n
q

q − p
r−

np
q +n

) 1
p

=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

.

For g, we may also obtain that

∥g∥mp
q,λ
= sup

a∈Rn,0<r<λ

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)∩B(0,λ)∩B(0,δ)

|x|−
np
q dx

) 1
p

= sup
0<r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)∩B(δ)

|x|−
np
q dx

) 1
p

.

We consider two cases as follows.

(i) If 0 < r < δ, then

1

|B(r)|
1
p−

1
q

(∫
B(r)∩B(δ)

|x|−
np
q dx

) 1
p

=
1

|B(r)|
1
p−

1
q

(∫
B(r)
|x|−

np
q dx

) 1
p

=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

.

(ii) If δ ≤ r < λ, then

1

|B(r)|
1
p−

1
q

(∫
B(r)∩B(δ)

|x|−
np
q dx

) 1
p

=
1

|B(r)|
1
p−

1
q

(∫
B(δ)
|x|−

np
q dx

) 1
p

=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p (
δ

r

)n
(

1
p−

1
q

)
.

The assumption 1 ≤ p < q < ∞ then implies that

sup
δ≤r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)∩B(δ)

|x|−
np
q dx

) 1
p

= sup
δ≤r<λ

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p (
δ

r

)n
(

1
p−

1
q

)
=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

.

From the two cases, we obtain

∥g∥mp
q,λ
=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

.

Finally, for h,

∥h∥mp
q,λ
= sup

a∈Rn,0<r<λ

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)∩B(0,λ)∩(B(0,λ)\B(0,δ))

|x|−
np
q dx

) 1
p

= sup
0<r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)∩(B(λ)\B(δ))

|x|−
np
q dx

) 1
p

= sup
0<r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)\B(δ)

|x|−
np
q dx

) 1
p

= sup
δ≤r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)\B(δ)

|x|−
np
q dx

) 1
p

= sup
δ≤r<λ

1

|B(r)|
1
p−

1
q

(
ωn−1

n − 1
q

q − p

) 1
p (

r−
np
q +n
− δ−

np
q +n

) 1
p

= sup
δ≤r<λ

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p
1 − (

δ

r

)− np
q +n 1

p

=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p
1 − (

δ

λ

)− np
q +n 1

p

.

It completes the proof of Lemma 2.9. □
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In proving our main results, we define functions fq, gq, and hq, where fq = |x|−n/q, gq(x) = X(0,1)(|x|) fq(x), hq(x) =
X[1,∞)(|x|) f (x) for x ∈ Rn. Hence, by Theorem 2.8, ∥ fq∥Mp

q
= ∥gq∥Mp

q
= ∥hq∥Mp

q
. We also define the function g̃q =

gq/∥ fq∥Mp
q

and h̃q = hq/∥ fq∥Mp
q
. Then, g̃ + h̃ = (gq + hq)/∥ fq∥Mp

q
= fq/∥ fq∥Mp

q
.Moreover, g̃, h̃ ∈ SMp

q
.

For 0 < δ < λ, we define the functions fq,δ, gq,δ, and hq,δ where fq,δ = X(0,λ)|x|−n/q, gq,δ(x) = X(0,δ)(|x|) fq,δ(x), hq,δ(x) =
X[δ,λ)(|x|) fq,δ(x) for x ∈ Rn. By Theorem 2.9, ∥ fq,δ∥mp

q,λ
= ∥gq,δ∥mp

q,λ
and

∥hq,δ∥mp
q,λ
= ∥hq,δ∥mp

q,λ

1 − (
δ

λ

)− np
q +n 1

p

.

Next, we consider the function g̃q,δ = gq,δ/∥gq,δ∥mp
q,λ

and h̃q,δ = hq,δ/∥hq,δ∥mp
q,λ

. Then, g̃, h̃ ∈ S mp
q,λ
. By using these

functions, we are now ready to prove our main results.

Proof of Theorem 2.1. It is clear that g̃q⊥I h̃q.We shall compute the form

∥g̃q + 2h̃q∥Mp
q
=

1
∥ f ∥Mp

q

sup
a∈Rn,r>0

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)

(
X(0,1)(|x| + 2 · X[1,∞))(|x|)

)p
|x|−

np
q dx

) 1
p

.

(i) If 0 < r < 1, then

sup
a∈Rn,0<r<1

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)

(
X(0,1)(|x| + 2 · X[1,∞))(|x|)

)p
|x|−

np
q dx

) 1
p

= sup
0<r<1

1

|B(r)|
1
p−

1
q

(∫
B(r)
X(0,1)(|x|)|x|

−
np
q dx

) 1
p

= sup
0<r<1

1

|B(r)|
1
p−

1
q

(∫
B(r)
|x|−

np
q dx

) 1
p

=

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

= ∥ f ∥Mp
q
.

(ii) If 1 ≤ r < ∞, then

sup
a∈Rn,r≥1

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)

(
X(0,1)(|x| + 2 · X[1,∞))(|x|)

)p
|x|−

np
q dx

) 1
p

= 2 sup
r≥1

1

|B(r)|
1
p−

1
q

(∫
B(r)
X[1,∞)(|x|)|x|

−
np
q dx

) 1
p

= 2 sup
r≥1

1

|B(r)|
1
p−

1
q

(∫
B(r)\B(1)

|x|−
np
q dx

) 1
p

= 2 sup
r≥1

(
ωn−1

n

) 1
q
(

q
q − p

) 1
p (

1 − r
np
q −n

) 1
p

= 2
(
ωn−1

n

) 1
q
(

q
q − p

) 1
p

= 2∥ f ∥Mp
q
.

Hence, ∥g̃q + 2h̃q∥Mp
q
= 2. By a similar way, ∥2g̃q + h̃q∥Mp

q
= 2. Since g̃q + h̃q = f̃q, we have that

Ω̄(s)(Mp
q ) ≥

∥gq + 2hq∥
s + ∥2gq + hq∥

s

5s−1∥gq + hq∥
=

2s + 2s

5s−1 =
2s+1

5s−1 .

Theorem 2.6 then implies that

Ω̄(s)(Mp
q ) =

2s+1

5s−1 .
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In the other hand, by the choice of the functions and Theorem 2.7, we obtain that

Ω(s)(Mp
q ) =

2s+1

5s−1 .

These prove Theorem 2.1. □

Proof of Theorem 2.3. We consider the functions g̃q,δ and h̃q,δ. We first need to check if the functions are isometrically
orthogonal or not. Note that by properties of radial function,

∥g̃q,δ + h̃q,δ∥mp
q,λ
=

1
∥ fq,λ∥mp

q,λ

sup
a∈Rn,0<r<λ

1

|B(a, r)|
1
p−

1
q

(∫
B(a,r)

(
X(0,δ)(|x|) + X[δ,λ)(|x|)

)p
|x|−

np
q dx

) 1
p

=
1

∥ fq,λ∥mp
q,λ

sup
0<r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)

(
X(0,δ)(|x|) + X[δ,λ)(|x|)

)p
|x|−

np
q dx

) 1
p

.

We consider two cases as follows.
(i) For 0 < r < δ,

sup
0<r<δ

1

|B(r)|
1
p−

1
q

(∫
B(r)

(
X(0,δ)(|x|) + X[δ,λ)(|x|)

)p
|x|−

np
q dx

) 1
p

= sup
0<r<δ

1

|B(r)|
1
p−

1
q

(∫
B(r)
|x|−

np
q dx

) 1
p

= ∥ fq,λ∥mp
q,λ
.

(ii) For δ ≤ r < λ,

sup
δ≤r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)

(
X(0,δ)(|x|) + X[δ,λ)(|x|)

)p
|x|−

np
q dx

) 1
p

= sup
δ≤r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)
X[δ,λ)(|x|)|x|

−
np
q dx

) 1
p

= sup
δ≤r<λ

1

|B(r)|
1
p−

1
q

(∫
B(r)\B(δ)

X[δ,λ)(|x|)|x|
−

np
q dx

) 1
p

= ∥hq,δ∥mp
q,λ
= ∥ fq,λ∥mp

q,λ
.

From the two cases, we can conclude that

1
∥ fq,λ∥mp

q,λ

sup
0<r<λ

1

|B(a, r)|
1
p−

1
q

(∫
B(r)

(
X(0,δ)(|x|) + X[δ,λ)(|x|)

)p
|x|−

np
q dx

) 1
p

= 1

and ∥g̃q,δ + h̃q,δ∥mp
q,λ
= 1. By the same way, we may obtain ∥g̃q,δ − h̃q,δ∥mp

q,λ
= 1. Hence, g̃q,δ⊥I h̃q,δ. By following the

technique as in calculating the norm ∥g̃q,δ + h̃q,δ∥mp
q,λ

, we obtain

∥g̃q,δ + 2h̃q,δ∥mp
q,λ
= 2

and
∥2g̃q,δ + h̃q,δ∥mp

q,λ
= 2.

Therefore,

Ω̄(s)(mp
q,λ) ≥

∥g̃q,λ + 2h̃q,λ∥
s
mp

q,λ
+ ∥2g̃q,λ + h̃q,λ∥

s
mp

q,λ

5s−1∥g̃q,λ + h̃q,λ∥mp
q,λ

=
2s + 2s

5s−1 =
2s+1

5s−1 .

By Theorem 2.6,

Ω̄(s)(mp
q,λ) =

2s+1

5s−1 .

Moreover, the choice of functions and Theorem 2.7 implies that

Ω(s)(mp
q,λ) =

2s+1

5s−1 .

These prove Theorem 2.3. □
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