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 ABSTRACT  

 

The Coronavirus disease is an infectious disease caused by the SARS-CoV-2 virus. The 

disease spreads from person to person and is known to cause severe acute syndrome and death. 

A vaccine against the disease was developed at short notice to reduce its fatal impact. The 

reduction in deaths was achieved with the vaccine. However, in addition to this reduction, the 

vaccine has also been associated with side effects. One of these is an observed increase in heart 

attacks in vaccinated people. This study investigates the effect of the COVID-19 vaccine on 

heart attacks. A mathematical model has been developed, and susceptible individuals have been 

divided into groups of those who have had a heart attack before vaccination and those who have 

not. Using the developed mathematical model, the study discusses whether the increase in heart 

attack cases after COVID-19 has been related to the vaccine.  First, a diagram of the system has 

been obtained, and the basic reproduction number has been calculated. Equilibrium points were 

determined to assess whether the system has correct dynamics. The stability of the equilibrium 

points has been analyzed using eigenvalues. Numerical calculations and graphs have also been 

provided to support the findings. It has been demonstrated that the model can be examined with 

real-life data, allowing the impact of the COVID-19 vaccine on heart attacks to be analyzed. 

This study has made a significant contribution to literature in this field. 

 

 Keywords: COVID-19 Vaccination, Equilibrium point, Heart attack, Runge-Kutta method.  

 

1 INTRODUCTION 

Coronavirus disease (COVID-19) was first identified on 13 January 2020 following 

investigations into a group of patients in Wuhan Province, China, who presented with symptoms 

of fever, cough and shortness of breath. COVID-19 belongs to a family of viruses that can cause 
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disease in animals and humans. Coronaviruses can also lead to more serious diseases such as 

Severe Acute Respiratory Syndrome (SARS). In a short time, this virus has spread around the 

world, prompting various efforts to control it. One of these is vaccination. In addition, one of 

the most effective ways to identify ways to combat this virus and plan these strategies is through 

mathematical modelling. For this reason, many mathematical modelling studies have been 

carried out to analyze and understand the effects of the disease.  

In 2020, Zeb et al. developed a mathematical model incorporating an isolation class to 

understand the spread of COVID-19 infection. The model concluded that isolating infected 

individuals could reduce the risk of future spread and that human contact is the primary cause 

of epidemics. Furthermore, numerical solutions were obtained to enhance the accuracy of the 

model using the Nonstandard Finite Difference (NSFD) method and the fourth-order Runge-

Kutta method [1].   

Adiga et al. (2020) stated that the COVID-19 pandemic has been experienced as a major 

global health crisis over the past 100 years, with increasing impacts on the economy, society, 

and health. Mathematical models have played a significant role in informing public health 

policies and supporting social distancing measures. The use of various models in the fight 

against the pandemic has been comprehensively addressed [2]. 

Tuan et al. modeled the spread of COVID-19 using Caputo fractional derivatives, 

calculating the equilibrium points and reproduction numbers. They proved that the model has a 

unique solution using fixed point theory and solved the system by obtaining approximate 

solutions with the Adams-Bashforth-Moulton method. As a result, the basic reproduction 

number was found, indicating that the epidemic is still ongoing [3]. 

Peter et al. developed a COVID-19 model using an eight-dimensional differential 

equation system, considering the first and second doses of vaccination. The model was analyzed 

to obtain the control reproduction number, and the equilibrium points of the system were 

examined to assess the stability of the model. In the model calibrated with vaccination data 

from Malaysia for 2021-2022, it was determined that the transmission rate, vaccination dose 

rates, and recovery from the second dose had a positive effect. Numerical measurements 

showed that vaccination significantly reduced the number of infected individuals [4]. 

Logeswari et al. modeled the spread of the SARS-CoV-2 virus using the Atangana–

Baleanu derivative in an equation and examined the existence and singularity of the system 

using the fixed-point method. They conducted digital simulations to predict the virus spread in 
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India. The study provides a permanent analysis of the infectious dynamics of COVID-19, 

enabling the evaluation of epidemics [5]. 

Magadum et al. investigated the effects of COVID-19 on the body systems. They found 

that individuals with pre-existing conditions such as cardiovascular diseases, diabetes, 

hypertension, and obesity experience more severe courses of the disease, with the virus’s 

destructive effects on the heart becoming even more pronounced. COVID-19 leads to various 

conditions in the cardiovascular system, including myocarditis, acute myocardial injury, stress-

induced cardiomyopathy, cardiogenic shock, arrhythmia, and eventually heart failure (HF). It 

was noted that the virus directly damages heart tissue through ACE2 receptors, and these effects 

are exacerbated by systemic treatment, hypoxia, and cytokine storms. The development of a 

comprehensive understanding of the viral effects and the advancement of new treatment 

methods has facilitated the protection of these complements and minimized long-term damage 

[6]. 

Özköse et al. developed a fractional-order pandemic model to explain the spread of the 

COVID-19 pandemic and its relationship with heart attacks. The model, considering the impact 

of Omicron’s strength, analyzed the relationship between heart attacks and quarantine. The data 

for the model were determined with the help of real data. Numerical simulations showed an 

increase in heart attack cases during the period of rising Omicron cases, but it was expected 

that the risk of heart attacks would decrease as Omicron cases declined [7]. 

In their study, Ahmad et al. developed a mathematical model using the fractional fractal 

operator (FFO) to investigate the effects of the SARS-CoV-2 (SC-2) virus on heart attacks. The 

model was evaluated using Lyapunov stability analyses to assess the local and global stability 

of the SC-2 virus. To validate the combined effects of COVID-19 and heart patients, solutions 

for the fractional-order system were derived with the help of the advanced FFO tool for different 

fractional values. This model, developed to understand the impact of the SC-2 outbreak on heart 

attack patients and observe its global behavior, will be useful for future prediction and control 

strategies [8]. 

Evirgen et al. developed a new comprehensive model to differentiate between heart 

attacks and Omicron characteristics. The model includes two adjustable parameters to control 

the number of individuals who could be infected and carry Omicron, and analyzes the possible 

locations of these individuals. Digital simulations using real COVID-19 data from Turkey have 

shown positive results on the proposed control samples and Omicron characteristics [9]. 
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The purpose of this study is to analyze whether COVID-19, in relation to vaccination, 

affects heart attacks by performing stability analyses of a mathematical model created using 

first-order differential equations. The key difference of this study from the literature is that the 

susceptible population group is expressed in two subcategories. This population is divided into 

individuals who experienced a heart attack before vaccination and those who did not. This 

allows the mathematical model to predict changes in the number of both vaccinated and 

unvaccinated individuals, not just those who contracted COVID-19. Thus, a mathematical 

model has been developed that can work in alignment with real-world data. 

This study consists of five sections. The second section provides basic information and 

definitions related to the developed model. These include the definitions of the basic 

reproduction number, stability analysis, and the Runge-Kutta method. In the third section, 

modeling of the effect of the vaccine on heart attacks is carried out using differential equations, 

and a diagram is created. Continuing in the third section, the equilibrium points for both 

diseased and healthy states are found, and the stability analysis of these points is performed. In 

the fourth section, using assumed parameter values, the consistency of the equilibrium points 

is demonstrated by finding the corresponding eigenvalues. Subsequently, numerical solutions 

of the system are presented with the help of the Runge-Kutta method, and convergence to the 

equilibrium points is shown. The fifth section provides information about the suitability of the 

developed model for its purpose and the results of the obtained data. 

2 BASIC INFORMATION AND DEFINITIONS 

This section provides the necessary basic information and definitions for finding and 

analyzing the equilibrium points. Additionally, the formulation of the Runge-Kutta method used 

for the numerical solution is also included in this section. 

The basic reproduction number (𝑅0) is a measure of the potential for disease spread in 

a population. 𝑅0 is a threshold for the stability of the disease-free equilibrium point and is 

related to the peak and final size of an epidemic. Predictions about the course of the epidemic 

can be made based on 𝑅0 . When 𝑅0 > 1, the infection leads to an epidemic [10]-[12]. 

Definition 2.1: To calculate basic reproduction number, the next generation matrix 

method can be used. Let’s consider the next generation matrix G . The matrix G consists of two 

parts F and 𝑉−1. 

F = [
∂Fi(x0)

∂xj
 ] , V = [

∂Vi(x0)

∂xj
 ] (1) 
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Here, 𝐹𝑖 represents new infections, and 𝑉𝑖 represents transfers of infections from one 

compartment to another. 𝑥0 denotes the disease-free equilibrium points. 𝑅0 is the largest 

eigenvalue of the matrix G = F. V−1 [11]. 

Differential equations may not have an analytical solution, or finding these solutions 

can be quite difficult. In such cases, equilibrium points and stability analyses can be used to 

make interpretations about the solutions of the given system of equations. 

Equilibrium points and stability analyses used in the solutions of equation systems are 

not primarily meant to provide quantitative information about the equations but rather to offer 

qualitative insights. In other words, they help us make interpretations about the solutions of 

nonlinear equation systems that cannot be solved quantitatively 

Definition 2.2: In the equation 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥), if 𝑓(𝑡, 𝑥∗) = 0 for some values of 𝑡, then 

𝑥∗ ∈  𝑅𝑛  is called an equilibrium point. 

The equilibrium points of the system are analyzed by examining the Jacobian matrices, 

and eigenvalues are found, which allow for the categorization of the equilibrium points. For the 

equilibrium point to be physically meaningful, it must meet certain stability criteria to a certain 

degree [13]. 

Definition 2.3: Let 𝑝 ∈ 𝑅𝑚and 𝑓 = (𝑓1, 𝑓2, 𝑓3, ⋯ 𝑓𝑚) be a function in. The Jacobian 

matrix of the function  𝑓 at point   𝑝 is denoted as 𝐷𝑓(𝑝). The Jacobian matrix 𝐷𝑓(𝑝)  is given 

by [14]: 

𝐷𝑓(𝑝 =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑚

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯
𝜕𝑓2
𝜕𝑥𝑚

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑚]

 
 
 
 
 
 
 

 (2) 

The Jacobian matrix is a matrix that provides the linear approximation of a vector 

function and generally contains the derivatives of multivariable functions. The determinant of 

a function's Jacobian matrix is used to analyze the local stability of the system at equilibrium 

points. The characteristic equation is a determinant equation that must be solved to find the 

eigenvalues of a matrix, and the eigenvalues are the roots of this equation [14]-[20]. 
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Definition 2.4: The behavior at each equilibrium point of the system can be qualitatively 

determined by finding the eigenvectors associated with each eigenvalue [13]: 

⚫ If all eigenvalues have negative real parts, the point is stable, 

⚫ If none of the eigenvalues have a real part, the equilibrium point is called hyperbolic,  

⚫ If at least one eigenvalue has a positive real part, the point is unstable, 

⚫ If at least one eigenvalue has a negative real part and at least one eigenvalue has a positive 

real part, the equilibrium point is a saddle point and is unstable. 

Definition 2.5: The Runge-Kutta method is a numerical technique used to solve 

differential equations. For an initial value problem in general form, an iterative approach is used 

as follows: 

                                                            yn+1 = yn +  h∑ wi ki

k

i=1

                                                          (3) 

Here, h is the step size, and wi are the weights of the Runge-Kutta method.  ki are the 

intermediate values calculated at each step, and they are usually computed as follows: 

 k1 =  f( tn, yn),  k2 =  f(tn  +  h/2, yn  +  h/2 k1), k3 =  f(tn  +  h/2, yn  +  h/2 k2), 

 k4 =  f(tn  +  h, yn +  h k3). 

This formula is commonly known as the 4th-order Runge-Kutta method (RK4), which 

provides high accuracy [21]-[22]. 

The 4th-order Runge-Kutta method utilised in this study is a highly reliable and accurate 

technique for the numerical solution of differential equations. The advantages of this method 

include high accuracy, ease of implementation, and effectiveness across a wide range of 

problems. RK4 improves the solution by using more information at each step, resulting in faster 

and more accurate results compared to lower-order methods. The accuracy of the method can 

be further enhanced by adjusting the step size (h), thereby enabling the model to generate more 

precise outcomes. Furthermore, the Runge-Kutta method exhibits high reliability in terms of 

sensitivity to initial conditions and the proximity to the solution. Its wide applicability to various 

types of differential equations, including linear, nonlinear, and stiff systems, renders it a popular 

choice in mathematical modelling and health sciences. The step-by-step implementation of this 

method, in conjunction with error analysis and associated processes, serves to enhance the 

clarity of the solution process and augment the reliability of the results [21]-[22]. 
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3 DEVELOPMENT OF A NEW MATHEMATICAL MODEL AND ITS 

DIAGRAM 

The investigation of the impact of the COVID-19 vaccine on heart attacks is of great 

importance for public health, as the potential effects of COVID-19 on the cardiovascular system 

have been shown to trigger critical conditions such as heart attacks. Therefore, mathematical 

modeling is necessary to assess the long-term effects of this situation. Mathematical models can 

help identify the most effective strategies by simulating disease spread and the impact of 

vaccination campaigns on public health. These models play a crucial role in determining the 

most effective vaccination policies to protect the health of individuals and communities and 

minimize the risks of complications such as heart attacks. In this section, a mathematical model 

has been developed to analyze whether there is a direct relationship between the increased 

number of heart attack cases after COVID-19 and the COVID-19 vaccines. The equilibrium 

points of the model have been determined, and stability analyses have been conducted to make 

inferences about the disease’s progression.  

 In the modelling process, the transmission dynamics of the infection, along with its 

potential impact on the risk of developing heart attacks after infection, were given full 

consideration, thereby establishing a bidirectional interaction mechanism. In this context, 

cardiovascular complications that may be triggered by the infection, in particular the risk of 

heart attacks, were incorporated as a key component of the model. The model parameters were 

defined with consideration for biological processes, and the probability of experiencing a heart 

attack after infection was integrated into the model as a dynamic risk factor. 

Mathematically, a transition rate was defined, representing the proportion of infected 

individuals who are at risk of experiencing a heart attack. This risk was assumed to vary 

depending on the severity of the infection, the individual's pre-existing cardiovascular history, 

and their vaccination status. The transition parameters were designed in such a way that 

vaccinated individuals have lower risks of both infection and post-infection heart attacks. The 

model was structured to simultaneously track the direct effects of the virus and its long-term 

cardiovascular outcomes. This holistic approach combines epidemiological analyses with 

clinical cardiology data, enhancing the interpretability of the study from a health sciences 

perspective. 

A Susceptible, Susceptible, Vaccinated, Infected, Recovered (SSVIR) model has been 

developed to model whether heart attack cases in a population will continue or cease. In the 
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developed model, the population is divided into five subgroups: 𝑆1(𝑡) Susceptible individuals 

who have had both a heart attack and COVID-19, 𝑆2(𝑡) Susceptible individuals who have had 

COVID-19 but not a heart attack, V(t) Vaccinated individuals, I(t) Infected individuals and 

R(t) Individuals who have acquired immunity or have recovered from the disease.The diagram 

of the system for the developed model is shown as follows: 

 

Figure 1. Mathematical Diagram of SSVIR Model. 

The mathematical model examining the effect of the COVID-19 vaccine on heart attacks 

using a diagram has been developed as follows: 

𝑑𝑆1

𝑑𝑡
= 𝑎 − 𝑎𝑆1 − 𝜇1𝑆1 − 𝛼1𝑆1 + 𝛿1𝑅 

𝑑𝑆2

𝑑𝑡
= 𝑎 − 𝑎𝑆2 − 𝜇2𝑆2 − 𝛼2𝑆2 + 𝛿2𝑅 

                                                 
𝑑𝑉

𝑑𝑡
= 𝜇1𝑆1 + 𝜇2𝑆2 − 𝛽𝑉𝐼 − 𝑎𝑉                                                         (4) 

𝑑𝐼

𝑑𝑡
= 𝛼(𝑆1 + 𝑆2)𝐼 + 𝛽𝑉𝐼 − 𝛾𝐼 − 𝑎𝐼 

𝑑𝑅

𝑑𝑡
 = 𝛾𝐼 − 𝑎𝑅 −  𝛿𝑅 

The parameters used in the model are as follows: 𝑎 is the renewal and death rate, 𝜇1 is 

the vaccination rate of sensitive individuals who have experienced both heart attacks and 

COVID-19, 𝜇2 is the vaccination rate of sensitive individuals who have experienced COVID-

19 but not a heart attack, 𝛼1 is the rate at which unvaccinated individuals who have experienced 

heart attacks and COVID-19 experience another heart attack, 𝛼2 is the rate at which 

unvaccinated individuals who have experienced COVID-19 but not a heart attack experience a 
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heart attack, 𝛽1 is the rate at which vaccinated individuals who have experienced heart attacks 

and COVID-19 experience another heart attack, 𝛽2 is the rate at which vaccinated individuals 

who have experienced COVID-19 but not a heart attack experience their first heart attack, 𝛾1 is 

the recovery rate when unvaccinated individuals who have experienced heart attacks and 

COVID-19 experience another heart attack, 𝛾2 is the recovery rate when vaccinated individuals 

who have experienced heart attacks and COVID-19 experience another heart attack, 𝛾3 is the 

recovery rate when unvaccinated individuals who have experienced COVID-19 but not a heart 

attack experience their first heart attack, 𝛾4 is the recovery rate when vaccinated individuals 

who have experienced COVID-19 but not a heart attack experience their first heart attack, 𝛿1 is 

the rate at which vaccinated individuals who have experienced heart attacks and COVID-19 

transition back to the population after recovery, and 𝛿2 is the rate at which vaccinated 

individuals who have experienced COVID-19 but not a heart attack transition back to the 

population after recovery. 

While finding the equilibrium points in the SSVIR model, the equations are set to zero 

according to Definition 2.2. 

𝑑𝑆1

𝑑𝑡
= 𝑎 − 𝑎𝑆1 − 𝜇1𝑆1 − 𝛼1𝑆1 + 𝛿1𝑅 = 0 

𝑑𝑆2

𝑑𝑡
= 𝑎 − 𝑎𝑆2 − 𝜇2𝑆2 − 𝛼2𝑆2 + 𝛿2𝑅 = 0 

                                                 
𝑑𝑉

𝑑𝑡
= 𝜇1𝑆1 + 𝜇2𝑆2 − 𝛽𝑉𝐼 − 𝑎𝑉 = 0                                                 (5) 

𝑑𝐼

𝑑𝑡
= 𝛼(𝑆1 + 𝑆2)𝐼 + 𝛽𝑉𝐼 − 𝛾𝐼 − 𝑎𝐼 = 0 

𝑑𝑅

𝑑𝑡
 = 𝛾𝐼 − 𝑎𝑅 −  𝛿𝑅 = 0                          

Accordingly, it is necessary to solve the expression in Equation (5). At the disease-free 

equilibrium point, there should be no infected individuals, meaning I = 0 is assumed. 

Accordingly, the equilibrium point 𝐸0 is obtained as follows: 

𝐸0 = (
𝑎

𝑎 + 𝜇1
,

𝑎

𝑎 + 𝜇2
,

𝑎 + 2𝜇1𝜇2

𝑎2 + 𝑎(𝜇1 + 𝜇2) + 𝜇1𝜇2
, 0,0) (6) 

Remark 3.1: For the endemic equilibrium point 𝐸1, the equations are quite complex; 

therefore, the analysis of this point will be performed in later sections by substituting specific 

parameter values.  
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In this part, the basic reproduction number for the model system developed is calculated. 

For this calculation, the system has been revised in the following form:  

      
𝑑𝑆

𝑑𝑡
= 𝑎 − 𝑎𝑆 − 𝜇𝑆 − 𝛼𝑆𝐼 + 𝛿𝑅 

                                                           
𝑑𝑉

𝑑𝑡
= 𝜇𝑆 + 𝛽𝑉𝐼 − 𝑎𝑉                                                                 (7) 

𝑑𝐼

𝑑𝑡
= 𝛼𝑆𝐼 + 𝛽𝑉𝐼 − 𝛾𝐼 − 𝑎𝐼 

𝑑𝑅

𝑑𝑡
 = 𝛾𝐼 − 𝑎𝑅 −  𝛿𝑅            

where 𝑆 = 𝑆1 + 𝑆2, 𝛼 = 𝛼1 + 𝛼2, 𝜇 = 𝜇1 + 𝜇2, 𝛽 = 𝛽1 + 𝛽2, 𝛾 = 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4, 

and 𝛿 = 𝛿1 + 𝛿2. According to the revised system with given Equation 7, the Jacobian matrix, 

and the F and V matrices are obtained as follows: 

J(R0) = [

−𝑎 − 𝜇 − 𝛼𝐼 0 −𝛼𝑆 𝛿
𝜇 −𝛽𝐼 − 𝑎 −𝛽𝑉 0
𝛼𝐼 𝛽𝐼 𝛼𝑆 + 𝛽𝑉 − 𝛾 − 𝑎 0
0 0 𝛾 −𝑎 − 𝛾

], 

F =

[
 
 
 
 
 
0 0 0 0

0 0 −
𝛽𝜇

𝑎 + 𝜇
0

0 0
𝛽𝜇

𝑎 + 𝜇
0

0 0 0 0]
 
 
 
 
 

, 𝑉 =

[
 
 
 
 
 𝑎 + 𝜇 0

𝛼𝑎

𝑎 + 𝜇
−𝛿

−𝜇 𝑎 0 0

0 0 −
𝛼𝑎

𝑎 + 𝜇
+ 𝛾 + 𝑎 0

0 0 −𝛾 𝑎 + 𝛿]
 
 
 
 
 

. 

The basic reproduction number is derived using the equation R0 = F . 𝑉−1 as follows: 

𝑅0 =
𝛽𝜇

𝑎2 + 𝛼𝑎 + 𝛾𝑎 + 𝑎𝜇 + 𝛾𝜇
. 

Theorem 3.2: The disease-free equilibrium point 𝐸0 is asymptotically stable if 𝑅0 < 1. 

Proof: If the values of the disease-free equilibrium point are substituted into the 

Jacobian matrix of the SSVIR model: 

J(S1, S2, V, I, R) =

[
 
 
 
 
−𝑎 − 𝜇1 − 𝛼1𝐼 0 0 −𝛼1𝑆1 𝛿1

0 −𝑎 − 𝜇2 − 𝛼2𝐼 0 −𝛼2𝑆2 𝛿2

𝜇1 𝜇2 −𝛽𝐼 − 𝑎 −𝛽𝑉 0
𝛼𝐼 𝛼𝐼 𝛽𝐼 𝑎(𝑆1 + 𝑆2) + 𝛽𝐼 − 𝛾 − 𝑎 0
0 0 0 𝛾 −𝑎 − 𝛿]

 
 
 
 

 

From here, the eigenvalues are determined using the characteristic function as follows: 
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λ1 = −𝑎,   λ2 = −𝑎 − μ,    λ3 = −𝑎 − 𝜇2,      λ4 = −𝑎 − 𝛿, 

λ5 =
𝑎3 − 2𝑎2𝛼 + 𝑎2𝛾 + 𝜇𝐼𝑎2 + 𝑎2𝜇2 − 𝑎𝛼𝜇2 + 𝑎𝛽𝜇1 − 𝑎𝛽𝜇2 + 𝑎𝛾𝜇1 + 𝑎𝛾𝜇2 + 𝑎𝜇1𝜇2 − 2𝛽𝜇1𝜇2 + 𝛾𝜇1𝜇2

𝑎2 + 𝑎𝜇1 + 𝑎𝜇2 + 𝜇1𝜇2

 

As can be seen from the eigenvalues, the first four eigenvalues have a negative real part. 

To ensure that the fifth eigenvalue has a negative real part, necessary simplifications reveal that 

𝑅0 < 1 is required. 

4 NUMERICAL ANALYSIS FOR SSVIR MODEL 

In this section, the stability analysis of the equilibrium points of the newly defined 

SSVIR mathematical model has been examined. The numerical solution of the system was 

carried out using the Runge-Kutta method, and graphs were provided to show the convergence 

to the equilibrium points. The parameters used in the stability analysis and numerical solution 

are provided in two different groups in Table 1. 

Table 1. Parameter values for numerical and stability analysis. 

Parameter Values  

Conditions 1 

Parameter Values  

Conditions 2 

 a =  0.02  a =  0.002 

𝜇1=0.05 𝜇1= 0.25 

𝜇2 =0.06 𝜇2 = 0.26 

𝜇=0.11 𝜇= 0.51 

𝛼1=0.13 𝛼1= 0.13 

𝛼2 =0.15 𝛼2 = 0.15 

α = 0.28 α = 0.28 

β = 0.18 β = 0.3 

γ = 0.7 γ = 0.27 

𝛿1= 0.8 𝛿1 = 0.002 

𝛿2 = 0.13 𝛿2 = 0.003 

 

When the parameter values from Condition 1 in Table 1 are substituted, the value of 𝑅0 

is found to be 0.2249999999. Using these parameters, the equilibrium points are calculated as 

follows: 

𝐸0 = (0.2857142858, 0.2500000000, 1.464285715, 0, 0), 

 𝐸1 = (0.7112619653, 0.3056088098, 2.418201016, 0.01271745789, 0.03870530663) 
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When the obtained disease-free equilibrium point 𝐸0 is substituted into the Jacobian 

matrix and the necessary operations are performed, the characteristic function of the system is 

found as follows: 

P(λ) = (0.07 +  λ )(0.08 +  λ)(0.02 +  λ)(0.3064 +  λ)(0.23 +  λ) 

When the roots of the characteristic equation are calculated, the following results are 

obtained: 

λ1 = −0.3064, λ2 = −0.23, λ3 = −0.07, λ4 = −0.08, λ5 = −0.02 

By analyzing all the eigenvalues, it is observed that they all have a negative real part, 

indicating that the 𝐸0 equilibrium point is asymptotically stable. 

If the same operations are performed using the Jacobian matrix for the 𝐸1 equilibrium 

point, the characteristic equation is: 

P(λ) = −8.457207478 10−6 −0.0002262074224 λ + 0.0005117418046 λ2 

+0.05122609544 λ3  + 0.4058500307  λ4+ λ5 

By solving characteristic equation, the eigenvalue is found in the following form: 

λ1=0.06351087630, λ2= −0.1689745623 +  0.06308289406I,  

λ3=−0.05073935353, λ4= −0.08067242892, λ5=−0.1689745623 − 0.06308289406I 

Since λ1 has a positive real part, the 𝐸1 equilibrium point is unstable under these 

conditions. 

To support the stability results, the numerical solution of the system was carried out 

using the Runge-Kutta method. The Maple software package was used for the solution. As a 

result of the analysis, the solutions shown in Figure 2 were obtained. As seen in Figure 2, 

considering the parameter values used in the system of equations, the numerical results indicate 

that the system converges to the 𝐸0 equilibrium point. In other words, under these conditions, 

the equation becomes disease-free, and the mortality rate of the individuals in the system will 

approach zero. As demonstrated in Figure 2, an initial positive correlation is observed between 

the increase in vaccination and the number of individuals experiencing either a heart attack or 

not. However, as the vaccination rate rises and the number of infected individuals decreases, 

this increase stabilises, reaching a balanced state. The findings emphasise the critical 

importance of effective measures to control the spread of the virus and the implementation of 

appropriate health policies to improve public health. Furthermore, the observed correlation 
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between the occurrence of heart attacks and the presence of the virus serves to highlight the 

significant role of vaccination and preventive measures in public health, as the system reaches 

a disease-free state. 

 

Figure 2. Numerical Simulation of the Equilibrium Point 𝑬𝟎. 

If similar operations are performed using the values from Condition 2 in Table 1, 

𝑅0=1.103068405 is obtained. According to Theorem 3.2, the disease-free equilibrium point is 

unstable under these conditions. On the other hand, the endemic equilibrium point must become 

stable. To conduct this analysis, when the equilibrium points are calculated, they are obtained 

as follows: 

𝐸0 = ( 0.007936507937, 0.007633587786, 1.984429904, 0, 0), 

 𝐸1 = (0.01670822445,0.02031273199 ,0.8721137740  ,0.02948445150 , 1.137257415). 

First, if the characteristic equation is calculated using the Jacobian matrix for 𝐸0, it will 

be obtained as follows: 

P(λ) = −3.028943679 10−7   − 0.0001961515191 λ − 0.02255437509 λ2  

−0.100717136 λ3  + 0.1953114020  λ4  +  λ5 

When the eigenvalues of the equation are calculated, the following results are obtained: 

λ1=−0.262, λ2= −0.252, λ3=−0.007, λ4=−0.002,  λ5= 0.3276885980 
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Since the fifth eigenvalue does not have a negative real part, the equilibrium point is 

unstable. This result is consistent with Theorem 3.2. 

Subsequently, if the characteristic equation for 𝐸1 is found using the Jacobian matrix, it 

will be obtained as follows: 

P(λ) = 3.003752875 10−7  + 0.0001686549892  λ +  0.002493453426  λ2  

+  0.07991277695 λ3  +  0.5401009819 λ4  +  λ5 

By solving this equation, the eigenvalues are found as follows: 

λ1=−0.007994303602 +  0.04844835615 I, λ2=−0.001827525481, 

λ3=−0.2558455535, λ4=−0.2664392957, λ5= −0.007994303602 −  0.04844835615 I 

It is clear that all the eigenvalues have a negative real part. Therefore, the equilibrium 

point 𝐸1 is stable. 

Numerical simulations for Condition 2 values were performed using the Runge-Kutta 

method, and the results are presented in Figure 3. In the graphs, the selection of parameter 

values and stability analysis show convergence towards the equilibrium point 𝐸1, as expected. 

In this case, where convergence occurs to the endemic equilibrium point, the risk of death from 

the disease continues. As demonstrated in Figure 3, it is evident that the prolongation of the 

vaccination process, in conjunction with the high rate of infection, exerts an augmented effect 

on individuals who have experienced a heart attack, as well as those who have not. The effect 

manifests as a fluctuating increase in the rate of change until the diseased equilibrium point is 

attained. Conversely, as the number of recovered individuals increases and the vaccination 

reaches a stable state, the effect undergoes a decline. Moreover, when two different sets of 

parameter values are considered, it is observed that the convergence to both disease-free and 

endemic equilibrium points does not significantly affect the system. This suggests that the 

dynamic behavior of the system is consistent, and accurate results will be obtained when using 

real-world data. As a result of the stability analysis and numerical simulations, the effects of the 

COVID-19 vaccine on heart disease can be further explored by dividing the population into two 

sensitive groups, allowing for more detailed results to be obtained. 
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Figure 3. Numerical Simulation of the Equilibrium point 𝑬𝟏 for all Population Groups. 

 1 

 2 

 3 
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5 CONCLUSION 

In this study, one of the side effects of the COVID-19 vaccine has been examined to 

understand its impact on public health dynamics. The effect of the vaccine on heart attacks has 

been investigated. For this purpose, a new mathematical model system SSVIR has been 

developed.  

Unlike sources in the literature, susceptible individuals are divided into two groups. The 

first group consists of individuals who have had COVID-19 and a prior history of heart attacks, 

while the second group includes those who have had COVID-19 but no prior history of heart 

attacks. Thus, the model analysis aims to predict individuals who have had COVID-19 and 

heart attacks with distinct interpretations. 

To determine the behaviours of the SSVIR mathematical model system, equilibrium 

points were first identified. Then, the analyses of these equilibrium points were supported with 

parameter values. In interpreting the stability of equilibrium points, the basic reproduction 

number was calculated, and the interpretation was proven based on this number. Using the 

Runge-Kutta method, numerical solutions were performed, and graphs were drawn under 

different parameter values. These graphs also supported the stability of the equilibrium points. 

Accordingly, it has been shown that the system's character works correctly based on real-life 

data. This study contributes to the literature in this field. In future studies, the work will be 

further developed using updated data. 
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