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Abstract 

Microgrids have come up as a promising solution for ensuring efficient, reliable, and sustainable energy management through the 

distributed energy resources integration. However, some challenges such as integration of distributed generators, economic efficacy 

and operational constraints cause the management and operation of microgrids remain as a complex problem. In this work, a 

comprehensive analysis is realized by using the Polar Fox Optimization algorithm to find solutions to these problems. Four different 

scenarios are analyzed to examine the effects of operational constraints on system performance and economic costs. In the first 

case, all distributed energy resources are operated within the specified limits and all power from renewable sources is injected into 

the microgrid. This scenario results in an operating cost of 269.76 €/day. In the second case, the output power of the renewable 

distributed energy sources is optimized. This case, a cost reduction of 42.5% is obtained when compared to the first scenario. In 

the third case, the energy exchange constraint between the grid and the microgrid is removed. Thus, a cost reduction of 74.7% is 

obtained when compared to the first case. In the fourth case, a detailed battery energy storage system model is added by considering 

technical parameters such as battery efficiency, state-of-charge limits, and charge/discharge rates. This case an operating cost of 

€107.08/day is obtained. Thus, a cost reduction of 60.3% is obtained when compared to the first case. The results show that 

changing the operational constraints significantly affects both system performance and economic efficiency. The proposed 

approach presents valuable perception for microgrid operators and planners. It points out the importance of the optimization 

algorithm in achieving economically efficient and reliable energy management. 
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1. Introduction  

Microgrids (MGs) integrate various distributed energy resources (DERs) to provide reliable, efficient, and 

sustainable energy solutions. These systems typically consist of distributed generators (DGs) such as photovoltaic 

(PV) panels, wind turbines (WT), and energy storage systems like batteries, capacitors, and controllable loads [1-3]. 

These systems offer efficient, reliable, and environmentally friendly solutions for energy management with the 

integration of renewable DGs [4]. MGs operate in both islanded mode  and grid-connected mode unlike traditional 

centralized power grids. In grid-connected mode, MGs can exchange power with the main grid to optimize energy 

costs and stability. In islanded mode, they can independently supply power to critical loads during grid outages or in 

remote areas without grid access [5]. These operations make MGs a key component of modern energy infrastructure 

in areas with limited grid access. The renewable energy sources (RES) penetration in MGs not only reduces 

greenhouse gas emissions but also mitigates the dependency on fossil fuels. Furthermore, MGs show a pivotal duty in 

modern energy infrastructure by supporting the intermittent renewable energy sources integration, improving energy 

efficiency, and providing backup power during emergencies. For instance, the Santa Rita Jail microgrid in California 

includes solar PV, fuel cells, and battery storage. Thus, it provides uninterrupted power supply during grid failures 

and reduces energy costs [6]. Another example is the Bornholm Island microgrid in Denmark. It ensures over 50% of 

the island's energy demand by wind power and other RES [7]. These examples show the importance of MGs in 

addressing contemporary energy challenges.  It also highlights the need for advanced energy management strategies 

to optimize the MGs performance. 

Previous studies on MGs are mainly focused on energy optimization, control strategies, and economic analysis. 

Energy optimization techniques aim to minimize operational costs while meeting energy demand. Control strategies 

focus on maintaining system stability and reliability [8]. Economic analyses evaluate the cost-effectiveness of MGs 

and their potential for reducing energy expenses [8].  There are many studies in the literature investigating the effective 

operation of MGs [9-11]. These studies are used different optimization methodologies and considered different cases 

to find the optimal operating range. Optimization methods are analyzed as deterministic and non-deterministic 

(metaheuristic) approaches [12,13]. Deterministic methods rely on mathematical models and require a continuous, 

differentiable objective function along with its gradient information to guide the search process. These methods are 

efficient for problems where such functions are available, offering fast convergence and high accuracy. However, 

many real-world engineering and scientific problems involve complex, non-linear, or discontinuous objective 

functions, making deterministic approaches less applicable. This limitation has led to the development of non-

deterministic methods, which do not require gradient information and are better suited for handling complex, multi-

modal, and high-dimensional optimization problems [13]. Non-deterministic methods, particularly metaheuristic 

algorithms, are inspired by natural phenomena and employ probabilistic rules to explore the search space. These 

algorithms can be further classified into several categories based on their inspiration sources. Evolutionary algorithms 

imitates the principles of natural selection and evolution. Swarm intelligence algorithms simulate the collective 

behavior of animal groups. Social-based methods, including Teaching-Learning-Based Optimization (TLBO), model 

human learning and social interactions, while physics-based methods, such as Simulated Annealing (SA) and 

Gravitational Search Algorithm (GSA), are inspired by physical laws. Each of these methods has unique and different 

advantages. For instance, swarm-based algorithms show success in exploration. Evolutionary methods are effective 

in balancing exploration and exploitation. Thus, the algorithm should be chosen depending on the problem. This is 

provided comprehensive research on improving the performance and adaptability of metaheuristic algorithms [13]. 

 For an effective energy operation management (EOM) in MGs, different novel algorithms have been implemented 

in recent years. It is tried to find out which algorithm provides the most effective solution to the applied problem. In 

[14], different metaheuristic algorithms applied to MGs. The study revealed the increasing need for renewable energy 
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sources. The study also discussed the problems arising from the intermittent energy supply of DGs and their impact 

on cost analysis. This review paper also emphasizes the importance of metaheuristic algorithms applied to find optimal 

solutions for the economic operation of MGs and, in fact, sets the direction for future research. In [15], a cost analysis 

is performed by solving the sizing problem in MGs using PSO algorithm. In the paper, different PSO-based models 

are considered to see the effectiveness of the algorithm in cost analysis.  The impact of these models on energy 

management, economic dispatch and unit commitment is analyzed. In [16], the application of a dynamic cost penalty 

is analyzed by taking into account the cost function in case of any battery degradation in the EOM. PSO algorithm 

was used in the study and savings of up to 44.50% were achieved. In [17], battery energy storage system (BESS)’s 

optimal size is determined by taking into account the uncertainties due to market prices, load demand, and DGs, and 

it is also aimed to minimize the grid cost by reducing it. The study employs the 2m point estimate method for 

uncertainty modeling and uses Whale Optimization Algorithm and Swine Influenza Model Based Optimization with 

Quarantine (SIMBO-Q) for cost reduction. The results show that incorporating BESS at an optimal size significantly 

reduces the MG's operation cost. 

Early approaches to MG optimization primarily relied on conventional numerical techniques, including interior-

point methods, linear programming, quadratic programming, nonlinear programming, and dynamic programming 

[18]. These classical methods are effective for finding solutions to optimization problems. These are characterized by 

continuous variables, and differentiable, low dimensionality, single objectives, or simple constraints. Nevertheless, as 

MG optimization problems have grown in complexity featuring high dimensionality, large-scale systems, multi-

objective requirements, mixed constraints, and multiple control variables. These traditional techniques have proven 

inadequate or require significant preprocessing to yield results. Moreover, they struggle to address dynamic or robust 

optimization challenges. In contrast, meta-heuristic methods, which are inspired by social adaptation processes or 

natural selection, employ a combination of random and local search strategies. Metaheuristic algorithms have been 

widely applied to various engineering problems, demonstrating their versatility and effectiveness in solving complex 

optimization tasks [12,13,19-24]. Unlike classical techniques, meta-heuristic approaches are less prone to becoming 

trapped in local optima, do not rely on specific problem structures or domains, and demonstrate strong adaptability to 

diverse environments and problem types. They are capable of providing effective solutions in most scenarios [18, 25-

26]. Additionally, meta-heuristic methods can dynamically adjust algorithm parameters and encoding precision during 

the optimization process, making them suitable for solving dynamic optimization problems [18,27]. They also find 

solutions for discontinuous, non-convex, and multi-objective optimization tasks. As a result, meta-heuristic methods 

show significant performance in solving complex MG management problems [18, 28-29]. In [30], microgrid contains 

photovoltaic, wind, and fuel cell generation along with energy storage devices. This method utilizes the 2m point 

estimate method (PEM) to solve uncertainties by applying self-adaptive gravitational search algorithm (SGSA). The 

study aims to optimize the operational costs of the microgrid by considering uncertainties in market prices, load 

demand, and the generated power by DGs. In this work, Polar Fox Optimization (PFO) algorithm is used for the 

optimal operation of microgrids [31]. A metaheuristic approach is chosen due to its flexibility and ability to handle 

the non-linear and complex problems. The algorithm shows a balance between exploration and exploitation which is 

critical for achieving optimal solutions. This research proposes a detailed BESS model.  Unlike previous studies, 

technical parameters such as battery efficiency, state of charge limits, and charging/discharging rates are considered. 

Furthermore, the study systematically evaluates the impact of different operational constraints and control strategies 

through four progressive scenarios: (1) a baseline scenario where all distributed generation units are operational, and 

the full power output from renewable sources (PV and WT) must be injected into the grid; (2) The scenario in which 

the power generated from DGs is optimally injected into the grid in accordance with the objective function (there is 

no obligation to supply all the generated energy to the grid); (3) a scenario removing power exchange limitations with 

the main grid (utility) to evaluate the impact of MG constraints on system economics; and (4) a scenario incorporating 

detailed battery storage characteristics and constraints into the optimization framework. In summary, this study 

investigates four different scenarios. In comparison with previous studies (cases 1-3), improvements have been made 

numerically in terms of cost and reliability. The main contribution of the study is presented in Case 4. By adding a 
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detailed BESS model, more realistic optimization results have been achieved. The inclusion of BESS constraints in 

the optimization with a realistic approach has proven its importance for grid operation. The proposed approach not 

only enhances the economic efficiency of microgrids but also provides a robust solution for managing complex 

operational constraints, making a significant advancement in the field of microgrid energy management. 

Section 2 introduces the problem formulation; section 3 outlines the algorithm used in the paper. In Section 4, 

simulation results are presented and discussed. Furthermore, 4 different scenarios are presented to show the impact of 

the PFO algorithm on the cost minimization problem. The last section is the conclusion. 

2. Formulation part  

The studied MG system consists of multiple DERs and operates in a grid-connected mode at a voltage level of 

400V. The primary goal of the MG is to optimize energy dispatch and cost minimization while ensuring reliable power 

supply to different types of consumers. The parameters are as follows: 

• The system includes DGs such as microturbines (MT), PV, fuel cells (FC), and WT.  

• A BESS is integrated into the MG to manage load fluctuations and store excess renewable energy. 

• The MG can import and export electricity from the utility depending on market prices and operational constraints. 

Figure 1 shows the MGs architecture.  

In this section, cost is chosen as the objective function. The mathematical formulas are presented for minimization 

of the total operating cost. The constraints for system reliability and stability are also provided. Additionally, 

mathematical models for each DG are presented.  

2.1. Objective function 

The objective function of this study is the minimization of the total operational cost.  For this purpose, the 

generation units and storage systems must be operated optimally within a certain period. The minimum cost function 

formula is shown in Eq. 1[32]. 

min(Cost) 
q

=
min

q
∑ Cost(qt, rt)THorizon

t=1 =
min

q
∑ ∑ [fDG(PGi

t ) + λt. PGrid
t ]NDG

i=1
THorizon
t=1   (1) 

where pt is the vector of control variables at time t.  It includes the active power outputs of the storage units and 
generation. This can be written as in Eq. 2. 

qt = [PG1
t , PG2

t , … , PGNG

t ]   (2) 

Additionally, rt denotes the amount of active power exchanged with the utility at time t. It is shown in Eq. 3. 

rt = PGrid
t    (3) 

Here, THorizon is the time intervals in the optimization period. NDG demonstrated the number of DGs.  PGi
t  is active 

power output of the i-th DG unit at time t.  fDG(PGi
t ) is the cost associated with the power generation of the i-th unit. 

PGrid
t  is the power exchanged with the utility at time t.  λt shows the market price of electricity. The function fDG(PGi

t ) 

is typically nonlinear, reflecting the complex nature of generation cost functions. The term λt. PGrid
t  represents the 

economic cost of purchasing or selling electricity with the utility at time t.  

The objective function in Eq. 1 is inherently nonlinear. Specifically,  fDG(PGi
t ) shows the complex nature of 
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generation cost functions. It includes quadratic terms (e.g.,𝑐(𝑃𝐺𝑖
𝑡 )2) or other nonlinear components. Additionally, the 

cost associated with power exchange with the grid (λt . PGrid
t ) introduces a piecewise linear component. These 

nonlinearities are resulted from the complex interactions between generation units, storage systems, and grid 

exchange. 

2.2. Operational constraints 

The optimal operation of the microgrid system must satisfy various technical and operational constraints to ensure 

reliable and stable performance. These constraints include power balance requirements, generation limits of distributed 

energy resources, energy storage system limitations, and grid power exchange boundaries. The following constraints 

are considered in the optimization framework for secure and efficient operation of the microgrid. 

2.2.1. Micro turbine 

The operational constraints of the microturbine are defined by Eq. 4. 
Power output limits: 

PMT,min  ≤  PMT  ≤  PMT,max   (4) 

where PMT,min and PMT,max represent the minimum and maximum power outputs respectively. As specified in Table 

1, the MT operates within a power range of 6-30 kW with an associated cost coefficient of 0.457 €/kWh. The dynamic 
operation of MT must respect these power limits while maintaining system stability and meeting demand 

requirements. These constraints ensure that the MT operates within its technical capabilities while providing reliable 

power output for microgrid operation. 

RDMT and RUMT, is given Eq. 5, represent the ramp-down and ramp-up rates respectively, and t denotes the time 

interval. 

−RDMT  ≤  PMT
(t)

−  PMT
t−1 ≤  RUMT   (5) 

2.2.2. Pem Fuel Cell 

Power output limits: 

PFC,min   ≤  PFC  ≤  PFC,max   (6) 

Ramp rate constraints: 

 

−RDFC  ≤  PFC
t  −  PFC

t−1 ≤ RUFC   (7) 

where PFC,min and PFC,max are the minimum and maximum power outputs (3-30 kW in the current study) RDFC and 

RUFC represent ramp-down and ramp-up rates respectively, as shown in Eq. 6. The dynamic operation of the fuel cell 

is constrained by its ramp rates as expressed in Eq. 7, where t denotes the time interval. 
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2.2.3. Energy storage system 

The BESS power output is constrained by its rated capacity as shown in Eq. 8, where Prated  represents the 

maximum charging/discharging power capability (±30 kW).  
Power limits: 

−PRated   ≤  Pb(t)  ≤  Prated   (8) 

The state of charge must be maintained within operational limits as defined in Eq. 9, where SoCmin and SoCmax are 

set to 20% and 90% respectively to protect battery life and ensure reliable operation. For initialization purposes, the 

initial state of charge (SoCinitial) is defined as 50% of the total capacity. 

State of charge limits: 

SoCmin ≤  SoC(t)  ≤  SoCmax   (9) 

2.2.4. Photovoltaic panels 

The power output of the PV system is bounded by the constraints expressed in Eq. 10, where the lower bound 

represents zero output during periods of no solar irradiance, and PPV,max represents the maximum power output 

capacity of 25 kW. This constraint ensures that the PV generation remains within its physical limitations while 

accounting for the intermittent nature of solar resources. Note that the actual power output at any time t depends on 

the available solar irradiance and ambient temperature conditions but cannot exceed the rated capacity defined in Eq. 

10. 
Power output limits: 

0 ≤  PPV(t)  ≤  PPV,max   (10) 

where PPV,max is equal 25 kW (rated capacity) in this study. 

2.2.5. Utility 

The power exchange between the microgrid and utility grid is subject to constraints as defined in Eq. 11, where 

Pgrid,min and Pgrid,max are set to -30 kW and +30 kW respectively for Case-1 and Case-2. The negative value indicates 

power export to the utility grid, while positive value represents power import from the utility grid. It should be noted 
that in Cases 3-4, these power exchange limitations are removed, allowing unrestricted power transactions with the 

main grid. This constraint plays a crucial role in determining the optimal operation strategy and overall system 

economics, particularly during periods of high price differentials or significant renewable generation fluctuations. 

Power exchange limits for Case-1 and Case-2: 

−30 kW ≤  Pgrid(t)  ≤  30 kW  (11) 

The limitation specified in Eq.11 is not taken into account in case 3 and case 4. The constraints in the optimization 

model include both linear and nonlinear components. The power exchange constraint (Eq. 11) is linear, as it defines a 
simple range for power import/export between the microgrid and the utility grid. However, the battery storage system 

constraints (Eqs. 8, 9, and 18) introduce nonlinearity due to the inclusion of charging/discharging efficiencies (𝜂𝑐ℎ𝑎𝑟𝑔𝑒  

and 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) and the state of charge dynamics (SoC(t)). These nonlinear constraints significantly affect the overall 
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structure of the optimization problem, making it more complex and requiring advanced optimization techniques for 

effective solution. 

2.3. DG’s model  

The MG studied in this study includes DGs such as PV and WT, generators such as MT and FC, and energy storage 

systems. Each DG unit needs to be properly modeled to operate optimally. In this section, mathematical models of 

operational characteristics and constraints of DGs are presented. 

2.3.1. Micro turbine 

Microturbines are tiny gas turbines that can creates both heat and electricity. Their electrical output ranges from 

about 25-250 kW. The reasons why microturbines are preferred in MGs include their high efficiency and low emission 

release. The MT consists of a compressor, turbine, combustor, and permanent magnet generator operating at high 

speeds (typically 50,000-120,000 rpm). 

I. Cost function  

Eq. 12 shows the operational cost calculation of the MT [33]: 

CMT(PMT)  =  a +  bPMT  +  c(PMT)²   (12) 

where PMT is the output power(kW), CMT is the operational cost (€/h), and a, b, c are the cost coefficients.  

II. Fuel cost 

The calculation of the fuel cost is demonstrated in Eq.13. 

Cfuel  =  F ×  HR × PMT   (13) 

where F is the fuel price (€/m³),  Cfuel is the fuel cost (€/kWh), HR is the heat rate (m³/kWh), and PMT is the power 

output (kW). 

III. Operation & maintenance cost 

The costs calculation for maintenance and operation are shown in Eq.14. 

CO&M    =  KO&M  × PMT   (14) 

where KO&M is the O&M coefficient (€/kWh) and  CO&M is the O&M cost (€/kWh). 

IV. Start-up/Shut-down Cost 

Eq. 15 shows the cost calculation for Start-up/shut-down. 

CSU

SD
 =

KSU

SD
 ×

NSU

SD
   (15) 

where the  
NSU

SD
 is the number of start-ups/shut-downs events and the  

KSU

SD
 is the start-up/shut-down cost coefficient. 

V. Total bid calculation: 

Eq. 16 shows the total bid calculation. 
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BidMT   =  (Cfuel + CO&M)   × (1 + Pmargin)   (16) 

Here, Pmargin is the profit margin (typically taken as 10-20%). 

In order to optimally price MTs, analysis of many components is required. The main one among these components 

is the fuel cost. This cost is calculated by multiplication of the heat rate, fuel price and power output of the MT unit. 

The production of the heat rate (m³/kWh), fuel price(€/m³), and the MT power output (kW) give the fuel cost in terms 

of €/h. Another component is the operation and maintenance (O&M) cost, which takes into account component wear, 

routine maintenance, and so on. Shutdown and start-up costs are important, especially in high-cycle operations. 

Especially in frequent cycle operations, the closing and start-up costs are important. The cost here is obtained by 

multiplying the closing/start-up coefficients by the number of cycles. In the final price offer, all costs are added and 

formulated by adding a profit margin, usually between 10% and 20%. 

In this study, considering the local market conditions and the operational characteristics of the MT system and 

taking all costs into account, it was determined as 0.457 €/kWh. 

2.3.2. Pem fuel cell  

Proton exchange membrane fuel cells (PEM FC) directly and efficiently convert chemical energy stored in fuel 

into electrical energy. In MG applications, PEMFCs offer several advantages including high efficiency, quick start-

up capability, and environmental benefits due to zero emissions during operation. PEMFCs typically operate at low 

temperatures (60-80°C) which makes them suitable for power generation applications. 

The cost of the PEM FCs can be calculated as in Eq. 17. 

CFC(PFC)  =  αFC  + βFC  × PFC  +  γFC  ×  (PFC)²   (17) 

Here, PFC is the power output (kW), CFCis the operational cost (€/h), αFC, βFC, γFC are the cost coefficients. 

In this work, the cost of PEMFC is determined as 0.294 €/kWh. This price is lower than the MT price, indicating 

that PEMFCs operate at high efficiency and low operating costs. This cost advantage makes PEMFC an economically 

attractive option for MG operations, particularly during periods of high energy demand or when renewable sources 

are unavailable. 

2.3.3. Energy storage systems 

The BESS plays an important role in MG operation by providing power balance, peak shaving capabilities, and 

economic optimization through energy arbitrage. In this study, a NiMH battery system is implemented with a rated 

power capacity of 30 kW and energy capacity of 400 kWh, enabling efficient energy management and grid support 

functionalities. 

I. Mathematical model: 

The state of charge (SoC) dynamics can be expressed as [34]: 

SoC(t) = SoC(t − 1) + (ηcharge. Pcharge(t) −
Pdischarge(t)

ηdischarge
) (

Δt

Cb
)   (18) 

where SoC(t) is the state of charge at time t, ηcharge and ηdischarge  are charging and discharging efficiencies (95% and 

92% respectively). Pcharge(t) and Pdischarge(t) represent charging and discharging power, 𝐶𝑏is the battery capacity 

(400 kWh), and Δt is the time interval. 
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II. Cost function: 

The operational cost of BESS is shown in Eq. 19. 

CBESS  =  Cdeg   × |Pb(t)|  +  CO&M   (19) 

Here, CO&M is operation and maintenance cost and   Cdeg indicates the degradation cost.  The total bid cost is set at 

0.38 €/kWh. Here, the total cost is determined as 0.38 €/kWh. BESS works bidirectionally, allowing both injection 

and absorption of power. Thus, it responds more flexibly to the changing load demands of the MG and the changing 

price signals accordingly. 

2.3.4. Photovoltaic panels 

PVs are an important renewal DG in MGs. They convert solar radiation directly into electrical energy through 

semiconductor materials. The power output produced depends entirely on solar radiation. In this work, the PV system 

has a rated capacity of 25 kW, with its actual power output varying throughout the day based on solar radiation 

intensity. 

I. Mathematical model: 

The PV output power can be calculated as in Eq. 20. 

PPV(t)  =  ηPV × A × G(t) × (1 − β(Tc(t) − Tref))   (20) 

where ηPV is the overall system efficiency, A is the total area of PV panels (m²), G(t) is the solar irradiance (kW/m²), 

β is the temperature coefficient (%/°C), Tc(t) is the cell temperature, and Tref is the reference temperature (25°C) 

II. The generation cost structure includes: 

CPV  =
Ccapital

N
 +  CO&M   (21) 

where Ccapital is the annualized capital cost, N is the number of operational hours per year, CO&M represents operation 

and maintenance costs. The total bid cost is set at 2.584 €/kWh.  

The PV system's output exhibits daily and seasonal variations, with peak generation occurring around 13:00 hours 

in the current study, reaching approximately 23.9 kW. Despite having no fuel costs, the relatively high bid price 

reflects the capital investment and maintenance requirements. The system's intermittent nature necessitates 

coordination with other microgrid components, particularly the battery storage system and conventional generators, 

to ensure reliable power supply. The optimization algorithm considers both mandatory full power injection (Case-1) 

and flexible power injection (Cases 2-4) scenarios, allowing for comprehensive evaluation of different operational 

strategies while maintaining system stability and economic efficiency. 

2.3.5. Utility  

The microgrid maintains continuous power exchange with the main grid (utility), enabling both power import 

during high demand or low local generation periods and power export during excess generation. The bidirectional 

power flow is governed by economic and technical constraints. 
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Given the nonlinearity of the objective function and the presence of nonlinear constraints, the proposed 

optimization problem is classified as a nonlinear optimization model. Although the problem is solved using a 

metaheuristic algorithm (Polar Fox Optimization), the mathematical structure of the problem remains nonlinear due 

to the quadratic cost terms of distributed generation units and the efficiency-based constraints of the battery storage 

system. This classification is essential for understanding the complexity of the problem and the need for advanced 

optimization techniques to achieve an effective solution. 

I. Mathematical model: 

The power exchange with utility can be expressed as [1,35]: 

Pgrid(t)  =  Pload(t)  −  [PMT(t)  +  PFC(t)  +  PPV(t) +  PWT(t)  ± PBAT(t)]   (22) 

where Pgrid(t) > 0 represents power import from utility, Pgrid(t) < 0 represents power export to utility. 

II. Cost/Revenue Function: 

Cgrid(t)  =  Pgrid(t) ×  Bgrid(t)   (23) 

Here, Cgrid(t) > 0 denotes the cost (import), Bgrid(t) is the time-varying utility bid price, and Cgrid(t) < 0 indicates 

the revenue (export).  

Utility bid cost varies according to the peak hours of the day. For example, it is 0.12 €/kWh in the early morning 

hours, while it becomes 4.00 €/kWh during the peak hours, which include the 10:00-14:00 period. The change here 

once again shows the importance and necessity of the optimization study. During peak hours, it maximizes power 

export by using all the DERs available in the MG. During low-price periods, it imports power for consumption and 

battery charging. Thus, this bidirectional change is important in cost function optimization studies. 

3. Polar fox optimization algorithm 

PFO is a metaheuristic algorithm inspired by hunting behaviours and movements of arctic foxes [31]. In the PFO 

algorithm, a group of “arctic foxes” explore a solution space to find the global optimum of the objective function. The 

location of each fox is represented as a vector in the solution space, represented as 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑], where i 

refers to the fox index and d represents the dimension of the problem. The PFO algorithm uses two main strategies 

for movement: global exploration (random movement) and local exploitation (interactions between individuals). The 

algorithm employs two main strategies for movement: a global exploration strategy (simulating random movement) 

and a local exploitation strategy (based on interactions between individuals). Mathematically, the position of each fox 

is updated iteratively using the Eq. 24. 

Xi
new = Xi

old + α. (Xbest − Xi) + β. (Xrand − Xi)   (24) 

where, Xbest is the best-known solution (global best), Xrand is a randomly selected fox, α and β are scaling factors 

that control the exploration and exploitation behaviors, Xi
new and Xi

old are the updated and previous positions of the 

fox, respectively. These movements allow the foxes to converge towards the optimal solution, balancing exploration, 

and exploitation throughout the search process. The PFO algorithm has been shown to effectively solve complex and 

nonlinear problems, outperforming many traditional optimization methods in terms of both accuracy and convergence 

speed. 
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4. Simulation results 

The structure of the proposed system for optimal operation of microgrids is shown in Figure 1. The test system is 

a typical low-voltage microgrid containing DGs including a fuel cell (FC),  micro-turbine (MT), WT, and PV. 

Additionally, the system includes a battery as an energy storage unit. The microgrid operates in grid-connected mode 

at 400V level and serves three different load zones (industrial, commercial, and residential). The technical 

specifications and cost data of the generation units in the system are presented in Tables 1 and 2. The minimum-

maximum generation capacities and operating costs (€/kWh) of each unit are specified. The battery system has a ±30 

kW power capacity and can perform charging/discharging operations. Power exchange with the main grid is also 

limited to ±30 kW. Figure 2 shows the load demand, PV and WT generation, and grid price variations during the 24-

hour operation period of the system. The load demand varies between 50-90 kW throughout the day. While PV 

generation reaches its peak value of approximately 24 kW at 13:00 due to maximum solar radiation intensity, WT 

generation shows variability depending on wind speed. Grid electricity prices remain particularly high during peak 

hours (between 9:00-16:00). In light of this data, minimum-cost generation planning has been performed for optimal 

MG operation under different scenarios. The operation strategy has been developed considering the technical 

constraints of all units and system reliability. The suggested approach aims to minimize the total operating cost while 

maintaining power balance and satisfying various operational constraints such as generation limits, battery storage 

characteristics, and grid exchange limitations. 

The mathematical formulation and detailed analysis of different operational scenarios will be presented in the 

following sections to show the proposed optimization technique’s effectiveness in achieving economical and reliable 

microgrid operation. In this study, four different operational scenarios are investigated to analyse the optimal operation 

management of the microgrid system: 
 Case-1 represents the baseline scenario where all distributed generation units are operational, and the full 

power output from renewable sources (PV and WT) must be injected into the grid. This case serves as a 
reference point for comparing other operational strategies. 

 Case-2 maintains the same system configuration as Case-1 but introduces flexibility in renewable power 

integration. Instead of mandatory full power injection, PV and WT outputs are treated as optimization 

variables, allowing the system to determine the optimal level of renewable power utilization. 

 Case-3 extends Case-2 by removing the power exchange limitations with the main grid. While Case-1 and 

Case-2 operate under strict grid power exchange constraints (±30 kW), this case allows unrestricted power 

exchange to evaluate the impact of grid constraints on system economics. 

 Case-4 builds upon Case-3 by incorporating detailed battery storage characteristics into the optimization 

framework. This scenario considers technical parameters such as battery efficiency, state of charge limits, 

and charging/discharging rates to provide a more realistic assessment of storage system integration. 

Through these progressive scenarios, it is aimed to systematically evaluate the impact of different operational 

constraints and control strategies on microgrid performance and economic efficiency. This framework helps identify 

the most effective operational strategy considering various technical and economic factors affecting microgrid 

operation. 
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Fig. 1. Single-line diagram of the proposed low-voltage microgrid with distributed generation units [36] 

Table 1. Power output limitations and cost parameters of generation units [1] 

ID 
Generator 

Type 

Min Power 

Generation  

[kW] 

Max Power 

Generation 

[kW] 

Bid  

(€/kWh) 

1 Battery -30 30 0.380 

2 PEM FC 3.0 30 0.294 

3 PV 0.0 25 2.584 

4 WT 0.0 15 1.073 

5 MT 6.0 30 0.457 

6 Utility -30 30 
In Table (2) 

Column (5) 

Table 2. Technical specifications of distributed generation units in the microgrid [1,35,36] 

Hour 
Photovoltaic 

[kW] 

Wind Turbine 

[kW] 

Load  

[kW] 

Utility 

(€/kWh) 

1 0.0000 1.7850 52.000 0.2300 

2 0.0000 1.7850 50.000 0.1900 

3 0.0000 1.7850 50.000 0.1400 
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4 0.0000 1.7850 51.000 0.1200 

5 0.0000 1.7850 56.000 0.1200 

6 0.0000 0.9150 63.000 0.2000 

7 0.0000 1.7850 70.000 0.2300 

8 0.2000 1.3050 75.000 0.3800 

9 3.7500 1.7850 76.000 1.5000 

10 7.5250 3.0900 80.000 4.0000 

11 10.4500 8.7750 78.000 4.0000 

12 11.9500 10.4100 74.000 4.0000 

13 23.9000 3.9150 72.000 1.5000 

14 21.0500 2.3700 72.000 4.0000 

15 7.8750 1.7850 76.000 2.0000 

16 4.2250 1.3050 80.000 1.9500 

17 0.5500 1.7850 85.000 0.6000 

18 0.0000 1.7850 88.000 0.4100 

19 0.0000 1.3020 90.000 0.3500 

20 0.0000 1.7850 87.000 0.4300 

21 0.0000 1.3005 78.000 1.1700 

22 0.0000 1.3005 71.000 0.5400 

23 0.0000 0.9150 65.000 0.3000 

24 0.0000 0.6150 56.000 0.2600 
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Fig. 2. Time-dependent parameters of the microgrid over 24 hours: (a) Load demand, (b) Grid electricity prices (c) PV power availability and, (d) 

WT power availability. 

4.1. Case-1: system operation under complete renewable power injection 

The performance analysis of Case-1, where all DG units are operational and full power from PV and WT is injected 

into the grid, is presented in Table 3 and Figure 3. The results demonstrate several key operational characteristics over 

the 24-hour period, revealing distinct patterns in different time intervals. 
During early morning hours (00:00-06:00), the system operates under low grid prices ranging from 0.12 to 0.23 

€/kWh. In this period, the battery system operates in charging mode, storing energy between -11.7 to -17.7 kW. 

Simultaneously, both MT and FC maintain their minimum output levels of 6 kW and 30 kW respectively, responding 

to the combination of low demand and prices. 

The operational strategy undergoes a significant shift during peak hours (09:00-14:00) when grid prices surge to 

4.0 €/kWh. During these hours, the MT outputs maximum capacity, while the battery goes into maximum discharge 

mode. MG efficiently exports excess power to the grid and reaches up to -30 kW. This shows that the stored energy 

is used efficiently during peak hours. Renewable DGs contribute at different rates throughout the day. For example, 

PV generation reaches its maximum level at 23.9 kW around 13:00, while WT produces between 0.61-10.41 kW. By 
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applying the PFO algorithm to the optimization problem, the system is operated stably. During the evening hours 

(17:00-21:00), the power demand in the system increases. However, during the same hours, there is a decrease in the 

power production of renewable DGs. Therefore, the grid is supported by the power provided by MT, FC and battery 

during the evening hours. 

The total operating cost for Case-1 is calculated as 269.76 €/day. This baseline scenario effectively demonstrates 

system operation under full renewable power injection constraints, showcasing successful coordination between 

dispatchable units (MT, FC), storage system, and grid exchanges while minimizing operational costs and meeting 

demand requirements. The effectiveness of this operational strategy can be further evaluated through comparison with 

subsequent cases to assess potential improvements in operational efficiency and cost reduction. 

Table 3. Hourly optimal dispatch results and operational costs for Case-1 with full renewable power integration 

Time 

Hour 

Fuel Cell 

[kW] 

Micro Turbine 

[kW] 

Wind Turbine 

[kW] 

PV 

[kW] 

Utility 

(€/kWh) 

Cost 

(€/kWh) 

Energy Storage 

[kW] 

1 30.0000 6.0000 1.7850 0.0000 30.0000 14.3790 -15.7850 

2 30.0000 6.0000 1.7850 0.0000 30.0000 12.4190 -17.7850 

3 30.0000 6.0000 1.7850 0.0000 30.0000 10.9190 -17.7850 

4 30.0000 6.0000 1.7850 0.0000 30.0000 10.6990 -16.7850 

5 30.0000 6.0000 1.7850 0.0000 30.0000 12.5990 -11.7850 

6 30.0000 6.0000 0.9150 0.0000 30.0000 17.0561 -3.9150 

7 30.0000 6.0000 1.7850 0.0000 30.0000 21.2190 2.2150 

8 30.0000 6.0000 1.3050 0.2000 10.3031 27.7272 27.1919 

9 30.0000 30.0000 1.7850 3.7500 -19.5350 16.2328 30.0000 

10 30.0000 30.0000 3.0900 7.5250 -20.6150 -25.7698 30.0000 

11 30.0000 28.7750 8.7750 10.4500 -30.0000 -50.2115 30.0000 

12 30.0000 21.6400 10.4100 11.9500 -30.0000 -47.8418 30.0000 

13 30.0000 14.1850 3.9150 23.9000 -30.0000 47.6609 30.0000 

14 30.0000 18.5800 2.3700 21.0500 -30.0000 -34.3527 30.0000 

15 30.0000 30.0000 1.7850 7.8750 -23.6600 8.8743 30.0000 

16 30.0000 30.0000 1.3050 4.2250 -15.5300 15.9642 30.0000 

17 30.0000 30.0000 1.7850 0.5500 -7.3350 32.8655 30.0000 

18 30.0000 6.0000 1.7850 0.0000 20.2150 33.1655 30.0000 

19 30.0000 6.0000 1.3020 0.0000 30.0000 32.0843 22.6980 

20 30.0000 6.0000 1.7850 0.0000 19.2150 33.1398 30.0000 

21 30.0000 30.0000 1.3005 0.0000 -13.3005 19.7639 30.0000 

22 30.0000 30.0000 1.3005 0.0000 -20.3005 24.3632 30.0000 

23 30.0000 6.0000 0.9150 0.0000 30.0000 20.8161 -1.9150 

24 30.0000 6.0000 0.6150 0.0000 30.0000 15.9882 -10.6150 

--- --- --- --- --- Total Cost: 269.7599 --- 
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Fig. 3. Power dispatch profiles and system performance under full renewable injection (Case-1: Generation unit outputs a-FC, b-MT, c-WT, d-

PV, e-Grid exchange power, f-Hourly operational cost, and g-Battery power.) 
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4.2. Case-2: operational optimization with controllable renewable integration 

In this study, Case-2 examines the operational optimization where renewable power (PV and WT) injection is 

considered as a decision variable, unlike Case-1 where complete injection of renewable generation was mandatory. 

The optimization results, presented in Table 4 and Figure 4, reveal several significant findings.  
The total operational cost decreased to 155.01 €/day, representing a substantial 42.5% reduction compared to Case-1 

(269.76 €/day). This remarkable improvement demonstrates the advantages of flexible renewable power integration. 
During low-price periods (00:00-07:00), the optimization strategy-maintained MT and FC at their minimum outputs 

(6 kW and 30 kW respectively) while completely curtailing PV and WT generation. Throughout this period, the battery 

operated in charging mode with values ranging from -3 to -16 kW, storing energy for high-price periods. 

During peak price hours (09:00-14:00), the system implemented various strategies to maximize economic benefits. 

These strategies included operating MT and FC at full capacity (30 kW each), selectively utilizing renewable 

generation (e.g., 7.52 kW from PV and 3.09 kW from WT at 10:00), maintaining battery discharge at maximum 

capacity (30 kW), and exporting power to the grid when profitable.  

In the evening period (17:00-22:00), the system coordinated battery discharge and conventional generation (MT, FC) 

in a balanced manner to minimize grid power import during moderate price periods. This case study demonstrates that 

optimal scheduling of renewable power injection can significantly enhance economic performance while maintaining 

system stability and meeting demand requirements. The results clearly indicate that allowing flexibility in renewable 
power integration can lead to more cost-effective operation of the microgrid system. 

Table 4. Optimal dispatch results for Case-2: flexible renewable power integration strategy 

Time 

Hour 

Fuel Cell 

[kW] 

Micro Turbine 

[kW] 

Wind Turbine 

[kW] 

PV 

[kW] 

Utility 

(€/kWh) 

Cost 

(€/kWh) 

Energy Storage 

[kW] 

1 30.0000 6.0000 0.0000 0.0000 30.0000 13.1420 -14.0000 

2 30.0000 6.0000 0.0000 0.0000 30.0000 11.1820 -16.0000 

3 30.0000 6.0000 0.0000 0.0000 30.0000 9.6820 -16.0000 

4 30.0000 6.0000 0.0000 0.0000 30.0000 9.4620 -15.0000 

5 30.0000 6.0000 0.0000 0.0000 30.0000 11.3620 -10.0000 

6 30.0000 6.0000 0.0000 0.0000 30.0000 16.4220 -3.0000 

7 30.0000 6.0000 0.0000 0.0000 30.0000 19.9820 4.0000 

8 30.0000 6.0000 0.0000 0.0000 9.3328 26.3820 29.6672 

9 30.0000 30.0000 1.7850 0.0500 -15.7850 12.1678 30.0000 

10 30.0000 30.0000 3.0900 7.5250 -20.6150 -25.7698 30.0000 

11 30.0000 30.0000 8.7750 9.2250 -30.0000 -52.8170 30.0000 

12 30.0000 30.0000 10.4100 3.5900 -30.0000 -65.6235 30.0000 

13 30.0000 30.0000 3.9150 0.0000 -21.9150 5.2583 30.0000 

14 30.0000 30.0000 2.3700 9.6300 -30.0000 -58.6431 30.0000 

15 30.0000 30.0000 1.7850 7.8750 -15.7850 4.2753 30.0000 

16 30.0000 30.0000 1.3050 4.2250 -11.3050 13.2855 30.0000 

17 30.0000 30.0000 0.0000 0.5500 -5.0000 30.9300 30.0000 

18 30.0000 6.0000 0.0000 0.0000 22.0000 31.9820 30.0000 

19 30.0000 6.0000 0.0000 0.0000 30.0000 31.1820 24.0000 

20 30.0000 6.0000 0.0000 0.0000 21.0000 31.9920 30.0000 
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21 30.0000 30.0000 1.3005 0.0000 -13.3005 19.7639 30.0000 

22 30.0000 30.0000 0.0000 0.0000 -19.0000 23.6700 30.0000 

23 30.0000 6.0000 0.0000 0.0000 30.0000 20.1820 -1.0000 

24 30.0000 6.0000 0.0000 0.0000 30.0000 15.5620 -10.0000 

--- --- --- --- --- Total Cost: 155.0133 --- 

 

 

Fig. 4. Optimal power dispatch profiles and cost distribution under flexible renewable generation control (Case-2: Generation unit outputs a-FC, 

b-MT, c-WT, d-PV, e-Grid exchange power, f-Hourly operational cost, and g-Battery power.) 

4.3. Case-3: unrestricted grid exchange with flexible renewable integration 

This study examines the impact of removing grid power exchange limitations while maintaining flexible renewable 
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power integration. The results, presented in Table 5 and Figure 5, demonstrate significant improvements in system 

economics and operational flexibility. The total operational cost decreased to 68.18 €/day, representing a substantial 

reduction of 74.7% and 56.0% compared to Case-1 (269.76 €/day) and Case-2 (155.01 €/day), respectively. This 

remarkable cost reduction highlights the significant economic impact of grid exchange constraints on microgrid 

operation. During low-price periods (00:00-07:00), the optimization strategy exhibited distinct characteristics. The 

MT and FC operated at minimum outputs (6 kW and 3 kW respectively), while renewable generation was completely 

curtailed. The battery maintained maximum charging rate (-30 kW), and significant power import from the grid (up 

to 91 kW) was utilized to meet demand when prices were low. The peak price period (09:00-14:00) demonstrated 

aggressive economic optimization through several strategies. These included maximum utilization of all DG units, 

strategic deployment of renewable resources (e.g., 11.95 kW from PV and 10.41 kW from WT at 12:00), battery 

discharging at maximum capacity (30 kW), and substantial power export to grid (up to -41.42 kW at 14:00) to 

capitalize on high prices. Evening operations (17:00-24:00) revealed dynamic switching between import and export 

modes based on price signals, with grid exchange power varying from -19 kW to 84 kW, demonstrating the benefits 

of unrestricted grid interaction. The results clearly indicate that removing grid exchange limitations enables more 

aggressive economic optimization, although practical implementation would require careful consideration of grid 

stability and infrastructure capabilities. This case effectively illustrates how grid exchange constraints significantly 

impact the economic efficiency of microgrid operations, where the ability to freely exchange power with the main 

grid enables the system to better capitalize on price differentials and optimize resource utilization. 

Table 5. Optimization results for Case-3: unrestricted grid exchange with flexible renewable integration 

Time 

Hour 

Fuel Cell 

[kW] 

Micro Turbine 

[kW] 

Wind Turbine 

[kW] 

PV 

[kW] 

Utility 

(€/kWh) 

Cost 

(€/kWh) 

Energy Storage 

[kW] 

1 3.0000 6.0000 0.0000 0.0000 73.0000 9.0140 -30.0000 

2 3.0000 6.0000 0.0000 0.0000 71.0000 5.7140 -30.0000 

3 3.0000 6.0000 0.0000 0.0000 71.0000 2.1640 -30.0000 

4 3.0000 6.0000 0.0000 0.0000 72.0000 0.8640 -30.0000 

5 3.0000 6.0000 0.0000 0.0000 77.0000 1.4640 -30.0000 

6 3.0000 6.0000 0.0000 0.0000 84.0000 9.0240 -30.0000 

7 3.0000 6.0000 0.0000 0.0000 91.0000 13.1540 -30.0000 

8 30.0000 6.0000 0.0000 0.0000 22.6887 26.3820 16.3113 

9 30.0000 30.0000 1.7850 0.0000 -15.7850 12.1678 30.0000 

10 30.0000 30.0000 3.0900 7.5250 -20.6150 -25.7698 30.0000 

11 30.0000 30.0000 8.7750 10.4500 -31.2250 -54.5516 30.0000 

12 30.0000 30.0000 10.4100 11.9500 -38.3600 -77.4613 30.0000 

13 30.0000 30.0000 3.9150 0.0000 -21.9150 5.2583 30.0000 

14 30.0000 30.0000 2.3700 21.0500 -41.4200 -74.8138 30.0000 

15 30.0000 30.0000 1.7850 0.0000 -15.7850 4.2753 30.0000 

16 30.0000 30.0000 1.3050 0.0000 -11.3050 13.2855 30.0000 

17 30.0000 30.0000 0.0000 0.0000 -5.0000 30.9300 30.0000 

18 30.0000 6.0000 0.0000 0.0000 22.0000 31.9820 30.0000 

19 30.0000 6.0000 0.0000 0.0000 84.0000 29.5620 -30.0000 

20 30.0000 6.0000 0.0000 0.0000 21.0000 31.9920 30.0000 

21 30.0000 30.0000 1.3005 0.0000 -13.3005 19.7639 30.0000 
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22 30.0000 30.0000 0.0000 0.0000 -19.0000 23.6700 30.0000 

23 30.0000 6.0000 0.0000 0.0000 59.0000 17.8620 -30.0000 

24 3.0000 6.0000 0.0000 0.0000 77.0000 12.2440 -30.0000 

--- --- --- --- --- Total Cost: 68.17626 --- 

 

 

 

Fig. 5. Power dispatch profiles and economic performance under unrestricted grid exchange conditions (Case-3: Generation unit outputs a-FC, b-

MT, c-WT, d-PV, e-Grid exchange power, f-Hourly operational cost, and g-Battery power.) 

4.4. Case-4: analysis of microgrid operation with detailed battery energy storage system model 

This case study incorporates a detailed BESS model to achieve more realistic optimization results. The BESS is 
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characterized using Equations 8, 9, and 18. The implementation of detailed battery constraints while maintaining 

unrestricted grid exchange reveals several significant operational characteristics. 

The optimization results demonstrate that the total operational cost amounts to 107.08 €/day. Although this cost is 

higher than Case-3 (68.18 €/day), it represents a more realistic operational scenario and still achieves substantial cost 

reductions compared to Cases 1 and 2. This cost differential primarily stems from the incorporation of practical battery 

constraints, including efficiency losses and state of charge limitations. Analysis of the early morning period (00:00-

05:00) demonstrates an optimization strategy focused on leveraging low electricity prices. During these hours, the 

battery system operates at maximum charging capacity (-30 kW), while distributed generation units maintain minimal 

output levels with MT and FC operating at 6 kW and 3 kW respectively. This period is characterized by significant 

grid power imports, serving both the load demand and battery charging requirements efficiently. The system behaviour 

during peak price periods (09:00-14:00) exhibits sophisticated optimization characteristics. The distributed generation 

units operate at full capacity, with both MT and FC delivering their maximum output of 30 kW. Renewable power 

sources are strategically deployed based on availability and economic considerations. Battery discharge operations 

are carefully optimized while respecting efficiency parameters and SoC constraints, complementing the system's 

ability to export power to the grid during high-price intervals. 

Table 6. Optimal dispatch results for Case-4: integration of detailed battery storage constraints with unrestricted grid exchange 

Time 

Hour 

Fuel Cell 

[kW] 

Micro Turbine 

[kW] 

Wind Turbine 

[kW] 

PV 

[kW] 

Utility 

(€/kWh) 

Cost 

(€/kWh) 

Energy Storage 

[kW] 

1 3.0000 6.0000 0.0000 0.0000 73.0000 9.0140 -30.0000 

2 3.0000 6.0000 0.0000 0.0000 71.0000 5.7140 -30.0000 

3 3.0000 6.0000 0.0000 0.0000 71.0000 2.1640 -30.0000 

4 3.0000 6.0000 0.0000 0.0000 72.0000 0.8640 -30.0000 

5 3.0000 6.0000 0.0000 0.0000 77.0000 1.4640 -30.0000 

6 3.0000 6.0000 0.0000 0.0000 72.4211 11.1082 -18.4211 

7 3.0000 6.0000 0.0000 0.0000 61.0000 17.6540 -0.0000 

8 30.0000 6.0000 0.0000 0.0000 39.0000 26.3820 -0.0000 

9 30.0000 30.0000 1.7850 0.0000 -15.7850 12.1678 30.0000 

10 30.0000 30.0000 3.0900 7.5250 -20.6150 -25.7698 30.0000 

11 30.0000 30.0000 8.7750 10.4500 -31.2250 -54.5516 30.0000 

12 30.0000 30.0000 10.4100 11.9500 -38.3600 -77.4613 30.0000 

13 30.0000 30.0000 3.9150 0.0000 -21.9150 5.2583 30.0000 

14 30.0000 30.0000 2.3700 21.0500 -41.4200 -74.8138 30.0000 

15 30.0000 30.0000 1.7850 0.0000 -15.7850 4.2753 30.0000 

16 30.0000 30.0000 1.3050 0.0000 -11.3050 13.2855 30.0000 

17 30.0000 30.0000 0.0000 0.0000 7.4000 33.6580 17.6000 

18 30.0000 6.0000 0.0000 0.0000 52.0000 32.8820 -0.0000 

19 30.0000 6.0000 0.0000 0.0000 84.0000 29.5620 -30.0000 

20 30.0000 6.0000 0.0000 0.0000 24.7800 32.1810 26.2200 

21 30.0000 30.0000 1.3005 0.0000 16.6995 43.4639 0.0000 

22 30.0000 30.0000 0.0000 0.0000 11.0000 28.4700 0.0000 

23 30.0000 6.0000 0.0000 0.0000 59.0000 17.8620 -30.0000 
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24 3.0000 6.0000 0.0000 0.0000 77.0000 12.2440 -30.0000 

--- --- --- --- --- Total Cost: 107.07747 --- 

 

 

Fig. 6. 24-hour optimal power dispatch profiles considering detailed battery storage constraints (Case-4: Generation unit outputs a-FC, b-MT, c-

WT, d-PV, e-Grid exchange power, f-Hourly operational cost, g-Battery power and h-Battery state of charge) 

The evening operational pattern (17:00-24:00) showcases the system's ability to maintain stable and efficient 

operation. The battery system operates dynamically while strictly adhering to SoC limitations, facilitating balanced 

power exchange with the grid. This shows that there is effective coordination between all units of DERs. Thus, a good 

level is achieved in economic terms and system stability is also ensured. 

The results obtained in this study demonstrate the importance of including realistic battery constraints in the 

operational planning of the MGs. It also highlights that storage system characteristics should be considered in cost 
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function calculations. 

5. Conclusion 

In this study, an optimization study is conducted using PFO algorithm for effective operation and management of 

MGs. In the study, cost minimization is considered as the objective function. This study presents a nonlinear 

optimization model for the optimal operation of MGs, considering both nonlinear objective functions and constraints. 

The use of a metaheuristic algorithm (Polar Fox Optimization) is justified by the complex and nonlinear nature of the 

problem, which cannot be effectively solved using traditional deterministic methods. The proposed approach provides 

a robust framework for handling the nonlinear interactions between distributed energy resources, storage systems, and 

grid exchange, ensuring both economic efficiency and system reliability. The study is conducted on four different 

scenarios. The effects on system performance and economics are investigated by modifying the constraints. In Case 

1, it is assumed that all DERs are operating within the specified limits. In this case, all the energy produced by 

renewable DGs is injected into the MG. Case 1 served as a reference point for the other cases. As a result of the 

optimization study, the cost value is found to be €269.76/day. The value found is compatible with the literature. In 

Case 2, the output power of renewable DGs is accepted as the optimization variable. A 42.5% decrease in cost is 

occurred and the cost function is found to be 155.01 €/day. In case 3, the same conditions as in case 2 are valid. 

However, the utility power restriction (+30- and -30-kW limitation) is removed. The cost function for case 3 is 

calculated as 68.18 €/day. This result shows a reduction of 74.7% compared to the first case 1. Furthermore, the 

improvement in cost shows the impact of utility constraints on the operation costs and system efficiency. In Case 4, 

unlike the other cases, an optimization study was conducted by considering technical parameters such as battery 

efficiency, charge states, battery capacity and battery charge/discharge in order to solve the integration of the BES 

system to the grid with a more realistic approach. As a result of the study, the operating cost was calculated as 107.08 

€/day. Although this cost is higher than the cost in Case 3, it allows the system to operate in a more realistic way since 

it takes into account practical battery limitations and battery efficiency. 

This study shows the critical results obtained regarding the EOM of MGs. Firstly, optimizing the output power of 

renewable DGs contributed to the improvement of performance in economic terms. Secondly, removing constraints 

between MG and utility caused a significant decrease in costs. This situation showed the importance of grid 

infrastructure capacity. Thirdly, adding BESS constraints to the optimization with a realistic approach proved its 

importance for grid operation in daily life. 

Future research can focus on enhancing the proposed optimization framework by incorporating multi-objective 

optimization to balance cost, environmental impact, and system resilience. Real-time optimization techniques using 

adaptive control and machine learning could improve decision-making under dynamic conditions. Additionally, 

integrating hybrid energy storage systems and exploring large-scale microgrid applications would enhance scalability 

and flexibility. Lastly, integrating the model with smart grid technologies, such as demand-side management and 

blockchain-based energy trading, could further optimize microgrid operations for sustainable and cost-effective 

energy management. 
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Appendix A.  

The following tables summarize the sets, indices, parameters, and decision variables used in the optimization 

framework. 

 

A.1. Sets and indices 

Symbol Description 

t ∈  T Time periods (hours) in the planning horizon 

i ∈ I Set of distributed generation units 

s ∈ S Set of energy storage systems 

r ∈ R Set of renewable generation units (PV, WT) 

Xi Solution vector for ith fox 

Xbest Global best solution vector 

Xrand Randomly selected solution vector 

A.2. Distributed/renewable power generation parameters 

Symbol Description Unit 

PMT
min , PMT

max Min/max power output of microturbine kW 

PFC
min , PFC

max Min/max power output of fuel cell kW 

PPV
max Maximum power output of PV system kW 

PWT
max Maximum power output of wind turbine kW 

Prated Rated power of battery system kW 

RDMT, RUMT Ramp down/up rates of microturbine kW/h 

RDFC, RUFC Ramp down/up rates of fuel cell kW/h 

A.3. Cost parameters 

Symbol Description Unit 

αFC, βFC, γFC Cost coefficients for fuel cell €/kWh 

a, b, c Cost coefficients for microturbine €/kWh 

λt Time-varying electricity price €/kWh 

Cdeg Battery degradation cost €/kWh 

A.4. Battery parameters 

Symbol Description Unit 

ηcharge Battery charging efficiency % 

ηdischarge Battery discharging efficiency % 

SoCmin  Minimum state of charge % 
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SoCmax Maximum state of charge % 

Cb Battery capacity kWh 

A.5. Decision variables 

Symbol Description Unit 

PMT(t) Microturbine power output at time t kW 

PFC(t) Fuel cell power output at time t kW 

PPV(t) PV power output at time t kW 

PWT(t) Wind turbine power output at time t kW 

Pb(t) Battery power (+ discharge, - charge) at time t kW 

Pgrid(t) Grid exchange power at time t kW 

SoC(t) Battery state of charge at time t % 
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