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Abstract: The growing increase in multidrug resistance malaria cases necessitates the need to 

search for new cost-effective drugs. Quantitative Structure-Activity Relationship (QSAR) and 

molecular docking studies were performed on a data set of forty-nine Pyrrolones antimalarial agents 

against Plasmodium falciparum (P. falciparum). Forty-two molecules were used as a training set 

and seven as the test set. The molecular descriptors were obtained by Density Functional Theory 

(DFT) using Becke's three-parameter Lee-Yang-Parr hybrid functional (B3LYP) in combination with 

the 6-31G* basis set. The QSAR model was built using Genetic Function Algorithm (GFA) method. 

The model with the best statistical significance (N = 42, R2
ext = 0.700, R2 = 0.933, R2a = 0.916, 

Q2cv = 0.894, LOF = 0.417, Minimum experimental error for non-significant LOF (95%) = 0.250 

was selected. The docking experiment was carried out using AutoDock Vina of PyRx and Discovery 

Studio Visualizer. Docking analysis revealed that three of the studied compounds with binding 

affinity values of -10.7 kcal/mol, -10.9 kcal/mol and -11.1 kcal/mol possess higher potency than 

standard antimalarial drugs with binding affinity values of -8.8 kcal/mol, -9.5 kcal/mol and -9.0 

kcal/mol. It is envisioned that the wealth of information provided by the QSAR and molecular 

docking results in this study will offer important structural insights for further laboratory 

experiments in the future design of novel and highly potent antimalarial from the pyrrolones. 
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INTRODUCTION 

 

Approximately half of the world's population is at risk of malaria. In 2015, there were roughly 212 

million malaria cases and an estimated 429 000 malarial deaths. Increased prevention and control 

measures have led to a 29% reduction in malaria mortality rates globally since 2010. Sub-Saharan 

Africa continues to carry a disproportionately high share of the global malarial burden. In 2015, the 

region was home to 90% of malaria cases and 92% of malaria deaths (1). Among the Plasmodium 

species responsible for this disease, most commonly encountered and deadliest is Plasmodium 

falciparum (P. falciparum) (2). In addition to its fatal effects, it has been reported to also have a 

huge economic impact in countries where it is prevalent. Malaria disease have a huge tendency of 

spreading to other regions of the world due to increasing globalization and global warming (3). The 

increasing resistance of P. falciparum to clinically used chemotherapeutic agents coupled with the 

unavailability of vaccines (3,4,5). Though many drugs are abounded for the treatment of this 

disease, the increasing instances of resistance against antimalarial drugs in recent years are 

becoming worrisome (6). This underscores the need to discover novel and highly potent drugs in 

the drug development pipeline to combat the scourge of this disease. In the pursuant of this effort, 

several molecular drug targets have been identified to develop new drug candidates. Very prominent 

among these targets are cysteine proteases. This target protein plays an essential role in malaria 

parasites; therefore, an obvious area of investigation is the inhibition of these enzymes to treat 

malaria. Studies with cysteine protease inhibitors have revealed its role in hemoglobin hydrolysis. 

The best characterized Plasmodium cysteine proteases are falcipains, which are papain family 

enzymes. Falcipain-2 and falcipain-3 are major hemoglobinases of P. falciparum (7). In-silico 

techniques such as QSAR and molecular docking have been proving valuable tools in recent years 

for rapid discovery of novel drug candidates, e.g. the discovery of o-acetyl-L-serine sulfhydrylase 

of Entamoeba histolytica inhibitors, acetylcholinesterase inhibitors, and antagonists 

acetophenazine, fluphenazine and periciazine against human androgen receptor (8,9,10).  

 

QSAR plays a crucial role in drug development as it analyzes the properties of the drug. It is 

mathematical model that links the structural features of compounds (i.e. molecular descriptors) to 

their quantity showing specific biological or chemical activity (11). It gives description of how 

biological activity can vary as a function of molecular descriptors derived from the chemical structure 

of a set of molecules using regression models. Hence, a model containing those calculated 

descriptors can be used to predict responses of new compounds (12). The molecular descriptors for 

the compounds are calculated and used to build QSAR Model (13). 

 

Molecular docking, on the other hand, is a computational method used to determine the binding 

compatibility of the active site residues to specific groups and to reveal the strength of interaction. 
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The results of docking procedure are analyzed by a statistical scoring function which converts 

interacting energy into numerical values known as the docking score. The 3D pose of the bound 

ligand can be visualized using different visualizing tools like Pymol, Rasmol, and Discovery Studio, 

which could help in the inference of the best fit of ligand. Predicting the mode of protein-ligand 

interaction can assume the active site of the protein molecule and further help in protein annotation. 

Moreover, molecular docking has major application in drug discovery and designing (14). 

 

The main aim of the present study was to develop various QSAR models using Genetic Function 

Algorithm (GFA) method for pyrrolones for their antimalarial activities and to relate antimalarial 

activity to its physicochemical properties. Also to docked falcipain-2 protein (2GHU) with bound 

ligands (pyrrolone analogues). 

 

MATERIALS AND METHODS 

 

Dataset of Experimental Falcipain-2 Inhibitors 

A dataset of 49 pyrrolone compounds known as inhibitors of P. falciparum was obtained from 

reference (3) and used in this study. The inhibitory bioactivities of the compounds expressed as half 

maximal effective concentration (EC50) were converted to the logarithmic scale (pEC50 = Log EC50) 

to reduce data dispersion and obtain a more linear response in the process of building the QSAR 

model. EC50 is the concentration of the drug which induces a response halfway between the baseline 

and maximum after a specified exposure time (15). It is a commonly used index for assessing the 

drug’s potency. The IUPAC name and biological activities of antimalarial used in this study are 

presented in Table 1 (See Supplementary Information). 

 

Computational and Statistical Techniques 

The molecular structure of each compound was optimized using the molecular modeling program, 

Spartan’14 V1.1.0 on Speedstar computer system (4.00 GB RAM, 2.66 GHz processor) on Microsoft 

windows 10 Ultimate using Density Functional Theory (DFT) level using Becke's three-parameter 

Lee-Yang-Parr hybrid functional (B3LYP) in combination with the 6-31G* basis set. Our choice of 

B3LYP/6-311G* basis set is anchored on the fact that it gives a far more accurate result. 

Optimization of the molecules is necessary to get the lowest energy geometries (most stable 

geometries).  The molecular descriptors of the optimized compounds were calculated using the 

Spartan’14 V.1.1.0 quantum chemistry package and paDEL descriptor toolkit. The data sets of the 

molecules were split into the training set (42 molecules) for model development and test set (7 

molecules) for external validation of the models using Euclidian Distance Based model and the 

distance between cluster was set at 5. Subsequently, the QSAR models were built by means of 

Genetic Function Approximation (GFA) techniques embedded in Material Studio, a modeling and 
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simulation software using the experimentally obtained biological activities as the dependent variable 

the computed molecular descriptors as independent variables. Five QSAR models were generated 

but the best set was selected based on the model with the lowest Lack of Fit (LOF) score, a 

parameter used for assessing the robustness of GFA derived QSAR model. As a form of quality 

assurance evaluation of the built QSAR model, the external predictive ability and extrapolation of 

the best model evaluated using the test set molecules with the aid of Equation 1. 

𝑅2
𝑝𝑟𝑒𝑑  =1–

∑(𝑃𝑟𝑒𝑑.𝑌𝑡𝑒−𝐴𝑐𝑡.𝑌𝑡𝑒)2

∑(𝐴𝑐𝑡.𝑌𝑡𝑒−𝑌𝑚)2       (Eq 1) 

 

Where R2
pred is termed the predictive R2 of a development model and is an important parameter 

that is used to test the external predictive ability of a QSAR model, 𝑃𝑟𝑒𝑑. 𝑌𝑡𝑒 and 𝐴𝑐𝑡. 𝑌𝑡𝑒 indicate 

predicted and observed activity values of the test set compounds respectively and 𝑌𝑚 indicates 

mean activity value of the training set (17). 

 

Applicabilty Domain of the Model 

Applicability domain (AD) is the physicochemical, structural or biological space, knowledge or 

information on which the training set of the model has been developed (18). The resulting model 

can be reliably applicable for only those compounds which are inside this domain since it cannot be 

applied to the entire universe of anti-P.falciparum compounds. The AD of the model was calculated 

by the leverage approach (19). 

 

The leverage values of all compounds were calculated and plotted against the standardized residuals 

(William plot) (20). This method offers a graphical assessment of the leverage values (hii) as a 

function of the standardized cross-validated residuals. It is suitable not only for detection of the 

structurally-influential outliers, but also for determination of the response outliers. The leverage is 

defined as a compound’s distance from the centroid of 𝑋. Mathematically, the leverage (hii) of a 

given compound in the multidimensional descriptor space, can be calculated as in the following 

equation: 

ℎ𝑖𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖     (Eq 2) 

Where 𝑥𝑖 the descriptor row matrix of the compound under consideration and 𝑋 is the 

multidimensional matrix carrying the structural information (calculated molecular descriptors) for 

each training set compound. 

 

Molecular docking studies 

In order to have an in-depth knowledge of the nature of the described interaction of inhibitors (3) 

with the falcipain-2 receptor, molecular docking was performed using AutoDock Vina of PyRx virtual 
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screening software. The energy grid calculations and visual analysis of the docking site performed 

using AutoDock Vina of PyRx and Discovery Studio visualization software, respectively. The crystal 

structure of falcipain-2 was obtained from protein data bank (PDB CODE: 2GHU). The removal of 

native ligands present in the protein was confirmed by calculating the root mean square deviation 

(RMSD) value of the original structure and the structure with ligand deletion (21,22). 

 

All heteroatomic molecules were excluded from the three-dimensional structure of falcipain-2 

receptor (Figure 1) and its structure was minimized, protonated and saved in PDBQT file format in 

all polar residues. Likewise, the 3D structures of the optimized 49 different pyrrolone compounds 

(Figure 2) were also converted to PDBQT format with the aid of AutoDock 4.2 software. The protein-

ligand interaction was analyzed using AutoDock Vina of PyRx Virtual Screening software. (23) 

 

 

  

Figure 1: Structure of falcipain-2 (2GHU)  

Source: (http://www.pdb.org) (24). 
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Figure 2: 3D structure of the prepared ligand.  

 

RESULTS AND DISCUSSION 

 

The five models constructed are detailed as follows:  

 Model 1 

 𝑝𝐸𝐶50 =  − 3.441 (𝑮𝑨𝑻𝑺𝟐𝒎) +  1.934 (𝒎𝒊𝒏𝒔𝒔𝒔𝑵) +  1.314 (𝑴𝑫𝑬𝑶 −

𝟐𝟐) +  3.251 (𝑹𝑫𝑭𝟗𝟓𝒖)                                  −  5.776 (𝑹𝑫𝑭𝟏𝟑𝟎𝒖) +  3.038 (𝑹𝑫𝑭𝟑𝟎𝒗) +

2.324 (𝑹𝑫𝑭𝟏𝟓𝟓𝒗) −  1.739 (𝑹𝑫𝑭𝟏𝟓𝒔) +  7.131   

 

Model 2 

𝑝𝐸𝐶50 = − 4.943 (𝑮𝑨𝑻𝑺𝟐𝒎) − 1.663(𝑺𝒑𝑴𝒂𝒙𝟔𝑩𝒉𝒔) + 1.799 (𝒎𝒊𝒏𝒔𝒔𝒔𝑵) + 1.196(𝑴𝑫𝑬𝑶 −

𝟐𝟐) +                                    2.707 (𝑹𝑫𝑭𝟗𝟓𝒖) − 5.842 (𝑹𝑫𝑭𝟏𝟑𝟎𝒖) +  2.774 (𝑹𝑫𝑭𝟑𝟎𝒗) +  2.375(𝑹𝑫𝑭𝟏𝟓𝟓𝒗) +  7.982 

 

Model 3 

𝑝𝐸𝐶50 =   −  4.585 (𝑮𝑨𝑻𝑺𝟐𝒎) + 1.959 (𝒎𝒂𝒙𝒔𝒔𝒔𝑵) −  1.735 (𝑻𝑰𝑪𝟎) +  1.261 (𝑴𝑫𝑬𝑶 − 𝟐𝟐) +

 3.278 (𝑹𝑫𝑭𝟗𝟓𝒖) −  5.290 (𝑹𝑫𝑭𝟏𝟑𝟎𝒖) +  3.123 (𝑹𝑫𝑭𝟑𝟎𝒗) +  2.609 (𝑹𝑫𝑭𝟏𝟓𝟓𝒗) +  7.276416456 

 

Model 4 

𝑝𝐸𝐶50 =  − 4.242 (𝑮𝑨𝑻𝑺𝟐𝒎) +  1.783 (𝒎𝒂𝒙𝒔𝒔𝒔𝑵) +  1.659 (𝑴𝑫𝑬𝑶 − 𝟐𝟐) +  2.908 (𝑹𝑫𝑭𝟗𝟓𝒖) 

           −  5.612 (𝑹𝑫𝑭𝟏𝟑𝟎𝒖) −  1.076 (𝑹𝑫𝑭𝟐𝟎𝒎) +  2.999 (𝑹𝑫𝑭𝟑𝟎𝒗) +  2.136 (𝑹𝑫𝑭𝟏𝟓𝟓𝒗) +  7.216 

 

Model 5 

𝑝𝐸𝐶50  =  − 3.544 (𝑮𝑨𝑻𝑺𝟐𝒎) −  1.983( 𝑽𝑷) − 7 +  2.459 (𝒎𝒊𝒏𝒔𝒔𝒔𝑵) +  1.218 (𝑴𝑫𝑬𝑶 −

𝟐𝟐) +               3.482 (𝑹𝑫𝑭𝟗𝟓𝒖) −  6.363( 𝑹𝑫𝑭𝟏𝟑𝟎𝒖) +  3.007 (𝑹𝑫𝑭𝟑𝟎𝒗) +  2.708 (𝑹𝑫𝑭𝟏𝟓𝟓𝒗) +  7.0614 
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The validation parameters for the QSAR models are presented in Table 2 and the detailed definition 

of the descriptors in the model 1 are presented in Table 3. Out of the five models generated, Model 

1 shows the best GFA derived QSAR models for inhibitory activity of the studied pyrrolones against 

P. falciparum. Table 4 gives the comparison of observed  𝑝𝐸𝐶50 and predicted 𝑝𝐸𝐶50 of the model 1. 

 

Table 2: Validation Metrics for Models 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Recommended 

R2 0.933 0.929 0.928 0.928 0.928 ≥ 0.6 

R2
a 0.916 0.911 0.911 0.911 0.911 Very close to R2 

QCV 2 0.844 0.887 0.891 0.887 0.882 ˂ 0.5 

LOF 0.417 0.441 0.443 0.444 0.444 Very low 

R2
ext 0.700 - - - - ≥ 0.6 

Error 0.490 0.257 0.257 0.257 0.257 Very minimal 

F-value 56.993 53.676 53.427 53.323 53.312 High 

Source: Ravinchandran, (2011) (25) 
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Table 3: Definition of descriptors in Model 1. 

S/n Descriptor Definition 

1 GATS2m Geary autocorrelation - lag 2 / weighted by mass 

2 MinsssN Minimum atom-type E-State: >N- 

3 MDEO-22 Molecular distance edge between all secondary oxygens 

4 RDF95u Radial distribution function - 095 / unweighted 

5 RDF130u Radial distribution function - 130 / unweighted 

6 RDF30v Radial distribution function - 030 / weighted by relative van der Waals volumes 

7 RDF155v Radial distribution function - 155 / weighted by relative van der Waals volumes 

8 RDF15s Radial distribution function - 015 / weighted by relative I-state 

9 RDF20m Radial Distribution Function-020 / weighted by mass 

10 MaxsssN Maximum atom-type E-State: >N- 

11 spMax6Bhs largest eigenvalue n. 6 of Burden matrix weighted by I-state 

12 TICO Total Information Content index (neighborhood symmetry of 0-order) 

13 Vp Valance path order 

Source: Descriptor Manual (2012) (26,27) 
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Table 4: Comparison of observed pEC50 and predicted pEC50 of Model 1 

Cpd Act. pEC50 Pred. pEC50 Cpd Act. pEC50 Pred. pEC50 

1a 7.85 7.78 26a 6.96 7.05 

2a 7.46 7.27 27a 5.85 6.34 

3a 4.92 5.00 28a 8.39 8.23 

4a 5.85 5.59 29b 9.39 9.13 

5a 5.62 5.49 30a 6.82 6.75 

6a 6.72 6.39 31a 5.92 6.51 

7a 5.96 5.61 32b 7.00 8.91 

8a 7.23 7.36 33a 7.74 7.81 

9a 6.42 6.77 34b 6.00 7.11 

10a 6.33 6.49 35a 7.92 7.43 

11b 7.62 6.98 36a 9.00 8.94 

12a 7.64 7.62 37a 5.82 6.21 

13a 8.69 8.78 38a 8.12 7.94 

14a 9.30 9.41 39a 5.59 7.71 

15b 7.62 8.18 40a 7.21 7.24 

16a 6.49 7.02 41a 7.33 7.21 

17a 7.08 6.78 42a 7.85 7.85 

18a 6.89 6.97 43a 7.68 7.64 

19b 7.02 6.47 44a 6.82 7.30 

20a 8.15 8.21 45a 6.64 6.16 

21a 9.00 8.91 46a 6.60 6.86 

22b 5.28 6.39 47a 6.64 6.75 

23a 5.62 -0.03 48a 7.34 7.36 

24a 5.46 5.61 49a 7.11 6.99 

25a 7.79 7.51    

      

      

a: training set, b: test set Cpd: compounds, Act: Actual, Pred:Predicted 

 

Figures 3a and 3b give the plot of predicted pEC50 against actual pEC50 of the compounds for the 

test set and training set, respectively. The William’s plot is depicted in Figure 4.  
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Figure 3a: Plot of predicted versus the observed pEC50 values for the test set compounds. 

 

 

 

Figure 3b: Plot of predicted versus the observed pEC50 values for the training set compounds 
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Figure 4. William’s plot, the plot of the standardized residuals versus the activity leverage value 

of model 1. 

 

Table 5 (supplementary files) shows the docking scores, hydrogen bonding length (in Angström) 

and interacting residues involved in the docking of inhibitors (ligands) at the active site of Falcipain-

2.  

Figures 5a-c show the best three docking results obtained. 
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(5a) 

 

       

(5b)

 

       

(5c) 
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Figure 5: Three-dimensional docked Falcipain-2-Ligands Complex: (5a) Interactions between 

Falcipain-2 and Ligand 45a, (5b) interactions between Falcipain-2 and Ligand 49a and (5c) 

interactions between Falcipain-2 and Ligand 48a Green dashed lines represent the H-bond 

interactions, and red dashed lines represent the hydrophobic interactions. 

 

The statistical parameters of the Genetic Function Algorithm derived QSAR model is in compliance 

with the standard QSAR validation metrics shown in Table 2. The high predictability of the model is 

evidenced by the low residual values observed in Table 4 which gives the comparison of observed 

and predicted anti-P. falciparum activities of the Pyrrolones. Also, the high linearity of the plot of 

predicted pEC50 against observed pEC50 depicted in Figures 3a and 3b for test set and training set 

molecules, respectively confirms the robustness of the model. 

 

William’s plot (Figure 4) obtained to ascertain the inclusiveness of the studied pyrrolones in model’s 

applicability domain reveals that all the compounds of the training set have leverage values lower 

than the warning hi value (hi = 0.64) except two compounds with leverage values higher than hi. 

This implies that the models can be successfully applied to this series of pyrrolone antimalarial 
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compounds. The two compounds with higher leverage than hi value are most likely to be structural 

outliers. 

 

Molecular docking studies were carried out between the targets (falcipain-2) and the inhibitors 

reveal that all the compounds were found to strongly inhibit the growth of P. falciparum by 

completely occupying the active sites of the target protein (falcipain-2). Most of the inhibitors were 

found to be involved in both hydrophobic interactions and hydrogen bonding with the receptor 

(falcipain-2).  

 

The best three docking results are shown in Figure 5. Ligand   45a with a binding energy of -10.7 

kcal/mol shows hydrophobic interactions Trp210, Trp206, Gln209, Gln36, Lys37, Asn38, Cys39, 

Cys42, Cys80, Gly82, Asn81, Glu222, Ala157, Asp18, His19, Asn16 and Phe17 with the target in 

addition to three hydrogen bonding (2.57 Å, 2.91 Å, and 2.21 Å) with Trp206, Trp210 and Asn16. 

Ligand  49a with binding score of -10.9 kcal/mol forms four hydrogen bonding (2.26 Å, 2.92 Å, 2.22 

Å and 2.69 Å) with Trp206, Trp210, Asn16 and Glu14 respectively, and hydrophobic interaction with 

Trp210, Trp206, Gln209, Gln36, Lys37, Asn38, Cys39, Gly40, Asn16, Asp18, Ala157, His19, Glu222, 

Phe17, Asn173, Glu14. Similarly, compound  48a with binding score of -11.1 kcal/mol forms 

hydrogen bonds (2.40 Å, 2.97 Å, and 2.27 Å) with Trp206, Trp210 and Asn16 respectively, and 

hydrophobic interactions with Trp210, Trp206, Gln209, Gln36, Lys37, Asn38, Cys39, Gly40, Asn16, 

Asp18, Ala157, His19, Glu222, Phe17, Glu14, and Glu15. 

 

CONCLUSIONS 

 

The present study aimed to generate a highly predictive GFAQSAR model capable of revealing the 

structural requirements for the observed antimalarial inhibitory activities of Pyrrolones against the 

Plasmodium, P. falciparum. In addition to that, it also investigates the Pyrrolones with best binding 

affinity to falcipain-2 of the parasite. Falcipain-2 is an essential and validated drug target involved 

in performing various enzymatic functions such as hemoglobin digestion, erythrocyte invasion, and 

parasite growth in the host cell. The robustness and applicability of QSAR equation have been 

established by internal and external validation techniques. The best three docking score is seen in 

compounds 45a, 49a and 48a, due to their low binding affinity (-10.7, -10.9 and -11.1 kcal/mol) 

which is higher compared to the standard antimalarial drugs binding affinity value of (-8.8, -9.5 and 

-9.0 kcal/mol) (28). These compounds may be considered for further studies in view of their high 

potency and binding affinity to the target protein of P. falciparum. 
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It is envisioned that the wealth of information provided by the QSAR and Molecular docking results 

in this study will offer important structural insight for further laboratory experiments in the future 

design of novel and highly potent antimalarial.  

 

In view of the high potency and binding affinity of the compounds to falcipain-2, it is recommended 

that these compounds be subjected to further laboratory studies. Also, our study advocates the use 

of combined approaches of QSAR and molecular docking to search for novel potential inhibitors 

unique to falcipain-2 of P. falciparum. 

 

REFERENCES 

 

1. WHO. 10 facts on malaria [Internet]. World Health Organization; 2016 [cited 2018 Jan 10]. Available 
from: http://www.who.int/features/factfiles/malaria/en/ 
 
2. Newton C. Severe Falciparum Malaria in Children Current Understanding of Pathophysiology and 
Supportive Treatment. Pharmacology & Therapeutics. 1998 Jul;79(1):1–53.  

 
3. Kumari M, Chandra S, Tiwari N, Subbarao N. 3D QSAR, pharmacophore and molecular docking studies of 
known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium 
falciparum. BMC Structural Biology [Internet]. 2016 Dec [cited 2018 Jan 13];16(1). Available from: 
http://bmcstructbiol.biomedcentral.com/articles/10.1186/s12900-016-0063-7 
 
4. Basco LK, Bras JL. In Vitro Activity of Artemisinin Derivatives Against African Isolates and Clones of 

Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene. 1993 Sep 1;49(3):301–7.  
 

5. Pandey KC, Dixit R. Structure-Function of Falcipains: Malarial Cysteine Proteases. Journal of Tropical 
Medicine. 2012;2012:1–11.  
 
6. Bisson WH, Cheltsov AV, Bruey-Sedano N, Lin B, Chen J, Goldberger N, et al. Discovery of antiandrogen 
activity of nonsteroidal scaffolds of marketed drugs. Proceedings of the National Academy of Sciences. 2007 

Jul 17;104(29):11927–32.  
 
7. Mizutani MY, Itai A. Efficient Method for High-Throughput Virtual Screening Based on Flexible Docking: 
Discovery of Novel Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry. 2004 Sep;47(20):4818–
28.  
 

8. Nagpal I, Raj I, Subbarao N, Gourinath S. Virtual Screening, Identification and In Vitro Testing of Novel 
Inhibitors of O-Acetyl-L-Serine Sulfhydrylase of Entamoeba histolytica. Bogyo M, editor. PLoS ONE. 2012 Feb 
15;7(2):e30305.  
 
9. Esposito EX, Hopfinger AJ, Madura JD. Methods for Applying the Quantitative Structure-Activity 

Relationship Paradigm. In: Bajorath J, editor. Chemoinformatics [Internet]. Totowa, NJ: Humana Press; 2004 
[cited 2018 Jan 13]. p. 131–213. Available from: http://link.springer.com/10.1385/1-59259-802-1:131 

 
10. Xue L, Bajorath J. Molecular Descriptors in Chemoinformatics, Computational Combinatorial Chemistry, 
and Virtual Screening. Combinatorial Chemistry & High Throughput Screening. 2000 Oct 1;3(5):363–72.  
 
11. Barril X, Morley SD. Unveiling the Full Potential of Flexible Receptor Docking Using Multiple 
Crystallographic Structures. Journal of Medicinal Chemistry. 2005 Jun;48(13):4432–43.  
 

12. Anonymous. EC50 [Internet]. revolvy.com; [cited 2018 Oct 1]. Available from: 
https://www.revolvy.com/main/index.php?s=EC50&uid=1575 
 



Shehu, Uzairu and Sagagi. JOTCSA. 2018; 5(2): 569-584.  RESEARCH ARTICLE 

584 
 

13. Anonymous. Stardrop. Optibrium;  

 

14. Veeresamy R, Rajak H, Jain A, Sivadasan S, Varghese C, Agrawal R. Validation of QSAR Models - 
Strategies and Importance. Int J Drug Des Dis. 2011;2(3):511–9.  
 
15. Eriksson L, Jaworska J, Worth A, Cronin M, McDowell R, Gramatica P. Methods for reliability and 
uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. 

Environ Health Perspect. 2003;111(10):1361–75.  
 
16. Gramatica P. Principles of QSAR models validation: internal and external. QSAR & Combinatorial Science. 
2007 May;26(5):694–701.  
 
17. Madeswaran A, Umamaheswari M, Asokkumar K, Sivashanmugam T, Subhadradevi V, Jagannath P. 
Computational drug discovery of potential phosphodiesterase inhibitors using in silico studies. Asian Pacific 

Journal of Tropical Disease. 2012 Jan;2:S822–6.  
 
18. Daisy P, Nivedha R, Bakiya RH. In silico drug designing approach for biotin protein Ligase of 

Mycobacterium tuberculosis. Asian J Pharm Clin Res. 2013;6(l1):103–107.  
 
19. Monika JK, Singh K. Virtual screening using the ligand ZINC database for novel lipoxygenase-3 inhibitors. 
Bioinformation. 2013;9(11):583.  

 
20. Hogg T, Nagarajan K, Schmidt CL, Hilgenfeld R. Crystal structure of falcipain-2 from Plasmodium 
falciparum. 2006 Jun 6;  
 
21. Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK. Validation of QSAR models-
strategies and importance. International Journal of Drug Design & Discovery. 2011;3:511–519.  

 
22. Anonymous. List of molecular descriptors calculated by Dragon [Internet]. Talete; Available from: 
http://www.talete.mi.it/products/dragon_molecular_descriptor_list.pdf 
 
23. Adejoro I, Waheed S, Adeboye O. Molecular Docking Studies of Lonchocarpus cyanescens Triterpenoids 
as Inhibitors for Malaria. Journal of Physical Chemistry & Biophysics. 2016;6:213.  


