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Abstract

This study focuses on a mathematical model of Zika virus transmission that incorporates
multiple time delays. The inclusion of time delays in the model takes into account the
incubation period in humans and the latency of disease transmission from mosquitoes. The
qualitative behavior of the model was examined in four different conditions by analyzing
the characteristic equation corresponding to the endemic equilibrium point. Furthermore,
the two distinct time lags were selected as the bifurcation parameter, while the existence of
a Hopf bifurcation at the endemic equilibrium point for threshold parameters was confirmed.
Subsequently, numerical simulations were used to validate the theoretical analysis for each
case using MATLAB.

1. Introduction

Eco-epidemiology is a branch of bio-mathematics that examines infectious disease models to understand the behavior of disease transmission.
In recent years, some researchers in this field have focused their attention on models that include time-delay (or memory) terms predator–prey
models, considering that the events that occur in real-life predator–prey populations take time to complete. In this manner, natural processes,
including gestation times, incubation periods, and transportation delays, were incorporated into the problem and examined as more realistic
models.
During the past few decades, numerous researchers have analyzed the local stability and Hopf bifurcation at the equilibrium points of the
predator-prey models containing just a single time-lag term, assuming that the other time lags would be unimportant or negligible (see,
e.g., [1–7], and reference therein). However, some researcher believe that this assumption is detrimental to the realism of such models and
have explored several types of delay terms, and the effects of multiple delays on the stability and the existence of Hopf bifurcation (see,
e.g., [8–11], and reference therein).
The system considered in this paper, which models the spread of Zika virus, a vector-borne disease carried by the Aedes mosquito, is an
example of a predator-prey system. Zika virus was initially identified in a monkey in Uganda in 1947 and was declared a public health
emergency of international concern by the World Health Organization (WHO) in 2016. While the Zika virus was initially assumed to only
spread from mosquito bites, it was later found to also be transmitted by sexual intercourse and blood transfer. As a result, Bewick et al.’s
model [12], which to our knowledge, is the first mathematical model of the spread of the Zika virus, has attracted the attention of numerous
researchers and has been revised multiple times (see, e.g., [13–17] and references therein).
In the study by Agusto et al. [13], the transmission model of Zika virus considering newly born babies, adult humans, and the mosquito
population was built, and local stability of the disease-free equilibrium point was observed as the reproduction number.
In the study by Biswas et al., [15], an ordinary differential equations model was used to study the spread of the Zika virus dynamics that
incorporated a nonlinear saturation for host infection and bilinear incidence for vector infection, and analyzed the existence and local
stability of a disease-free equilibrium point.
In the study by Ding et al, [16], who is among those who examined the use of the mathematical models in preventing and controlling
the spread of infectious diseases, established the following model for the spread of Zika virus disease, with no specific vaccine, drug, or
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treatment, and proposed solution by obtaining basic reproduction number.

dx
dt

= a1 −b1b2v(t)x(t)−d1x(t),

dy
dt

= b1b2v(t)x(t)−d1y(t),

dz
dt

= a2 −b3b4z(t)y(t)−d2z(t),

dv
dt

= b3b4z(t)y(t)−d2v(t).

The variables in this problem are x (the number of people who are susceptible), y (the number of people who are infected), z (the number of
mosquitoes that are susceptible), and v (the number of mosquitoes that are infected). All the parameters are positive, a1 is the recruitment
rate of x, a2 is the recruitment rate of z, d1 is the natural death rate of humans, d2 is the natural death rate of mosquitoes. b1 is the contact
rate between humans and mosquitoes, b2 is the transmission rate from an infected mosquito to susceptible humans, b3 is the contact rate
between mosquito and human, and b4 is the transmission rate from infected humans to susceptible mosquitoes.
Inspired by the aforementioned studies, and to be more closely aligned with real-world phenomena, we analyzed the following compartmental
model of the spread of the Zika virus and considered two different time-delay terms, where τ represents the transmission time from the
infected mosquitoes into suspected humans and where ρ represents the incubation period of susceptible mosquitoes to become infectious.

dx
dt

= a1 −b1b2v(t − τ)x(t − τ)−d1x(t), (1.1)

dy
dt

= b1b2v(t − τ)x(t − τ)−d1y(t), (1.2)

dz
dt

= a2 −b3b4z(t −ρ)y(t −ρ)−d2z(t), (1.3)

dv
dt

= b3b4z(t −ρ)y(t −ρ)−d2v(t), (1.4)

with the given initial conditions:

x(0)≥ 0,y(0)≥ 0,z(0)≥ 0,v(0)≥ 0,

and τ ≥ 0, ρ ≥ 0.
The next section of this paper describes how the equilibrium points and reproduction number were obtained. Section 3 presents local
stability analysis and the conditions of Hopf bifurcation existence for the endemic equilibrium point of four different situations. In Section 4,
numerical simulations for each case of time delays are performed using MATLAB to confirm the theoretical conclusions.

2. Equilibrium Points and Characteristic Equation

First, we found the equilibrium points of the vector-borne system (1.1)-(1.4). The equilibrium points x(t) = x(t−τ) = x∗, y(t) = y(t−ρ) = y∗,
z(t) = z(t −ρ) = z∗, v(t) = v(t − τ) = v∗ satisfy the following system:

0 = a1 −b1b2v∗x∗−d1x∗,

0 = b1b2v∗x∗−d1y∗,

0 = a2 −b3b4z∗y∗−d2z∗,

0 = b3b4z∗y∗−d2v∗,

As such, the time-delayed system (1.1)-(1.4) has two equilibrium points. The first is the disease-free equilibrium point: P = ( a1
d1
,0, a2

d2
,0), in

which all vectors are susceptible. The second is the endemic equilibrium point:

P∗ = (
a1(a1b3b4 +d1d2)

d1[a1b3b4 +d1d2R2
0]
,

a1d2(R2
0 −1)

a1b3b4 +d1d2R2
0
,

d2
1d2(a1b3b4 +d1d2R2

0)

a1b1b2b3b4(a1b3b4 +d1d2)
,

d2
1d2(R2

0 −1)
b1b2(a1b3b4 +d1d2)

),

where the basic reproduction number R0 was determined by next-generation matrix method reported by Kara [18]:

R0 =

√
a1a2b1b2b3b4

d1d2
.
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These equilibrium points for this vector-borne system are the same for different delay models and those that do not consider time-delays.
From the biological perspective, we only consider the endemic equilibrium point P∗ and investigate the local stability conditions and
conditions for the existence of a Hopf bifurcation.
To obtain the characteristic equation of the system, which consists of two different time-delayed equations described by (1.1)-(1.4), we first
linearized the system around the endemic equilibrium point P∗ and then obtained the following characteristic equation:

(λ +d1)(λ +d2)[λ
2 +λ (d1 +d2)+d1d2 +(λa+ad1)e−λρ +(λb+bd2)e−λτ +me−λ (τ+ρ)] = 0, (2.1)

where a = b3b4y∗, b = b1b2v∗ and m = ab−d1d2, which was obtained from the determinant:

|J0 −λ I + J1e−λτ + J2e−λρ |= 0,

where the matrices are:

J0 =


−d1 0 0 0

0 −d1 0 0
0 0 −d2 0
0 0 0 −d2

 ,

J1 =


−b1b2v∗ 0 0 −b1b2x∗

b1b2v∗ 0 0 b1b2x∗

0 0 0 0
0 0 0 0

 ,
and

J2 =


0 0 0 0
0 0 0 0
0 −b3b4z∗ −b3b4y∗ 0
0 b3b4z∗ b3b4y∗ 0

 .
The characteristic equation (2.1) has roots λ1 =−d1 and λ2 =−d2. Thus, the following second-order transcendental polynomial determines
the characteristic of the endemic equilibrium point:

[λ 2 +λ (d1 +d2)+d1d2 +(λa+ad1)e−λρ +(λb+bd2)e−λτ +me−λ (τ+ρ)] = 0. (2.2)

3. Dynamics of Delayed Vector-Borne Model

Here we present the analysis of local stability and the conditions for the existence of a Hopf bifurcation for the endemic equilibrium point,
with consideration of the following four situations for time delays τ and ρ .

3.1. Case 1:τ = ρ = 0

In this case, the equation (2.2) reduced to:

λ
2 +λ (d1 +d2 +a+b)+(ab+ad1 +bd2) = 0.

All roots of the above polynomial have negative real parts, since λ1,2 =
−(d1+d2+a+b)±

√
(d1+d2+a+b)2−4(ab+ad1+bd2)

2 , as well as (d1 +d2 +
a+ b) > 0 and (ab+ ad1 + bd2) > 0, we concluded that the endemic equilibrium point P∗ of the problem in the absence of delays is
asymptotically stable.

3.2. Case 2: τ > 0,ρ = 0

In this case, the equation (2.2) becomes:

[λ 2 +λ (d1 +d2 +a)+d1(d2 +a)+(λb+bd2 +m)e−λτ ] = 0. (3.1)

The stability of an endemic equilibrium point P∗ depends upon the existence of purely imaginary solutions to the above characteristic
equation. To demonstrate this, we proceeded with the assumption that λ = iω (ω > 0) is the root of the equation (3.1) and, we obtained the
polynomial:

−ω
2 + iω(d1 +d2 +a)+d1(d2 +a)+(iωb+bd2 +m)(cosωτ − isinωτ) = 0.

Separating the real and imaginary parts, we get:

−(−ω
2 +d1(a+d2)) = (m+d2b)cosωτ +ωbsinωτ, (3.2)

−ω(d1 +d2 +a) = ωbcosωτ − (m+d2b)sinωτ. (3.3)

The square of equations (3.2) and (3.3) yield the following polynomial:

ω
4 −ω

2[b2 −d2
1 − (d2 +a)2]+d2

1(a+d2)
2 − (m+bd2)

2 = 0. (3.4)

Let B̃ := b2 −d2
1 − (d2 +a)2, C̃ := d2

1(a+d2)
2 − (m+bd2)

2 and ∆̃ := B̃2 −4C̃.
If B̃ < 0 and C̃ > 0 or ∆̃ > 0, then none of the roots of the equation (3.4) are positive. Unfortunately, the equation (3.1) does not possess
purely imaginary roots, but shows that the roots of equation (3.1) have negative real parts. Further analysis is presented in Lemma 3.1.
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Lemma 3.1.

i) If B̃ < 0 and C̃ > 0 or ∆̃ < 0, then equation (3.4) has no positive root. Furthermore, equation (3.1) does not have a purely imaginary
root.

ii) If C̃ < 0 or B̃ > 0 and ∆̃ = 0, then the equation (3.4) has only one positive root, so there is a pair of purely imaginary roots ±iω+ in
equation (3.1).

iii) If B̃ > 0, C̃ > 0 and ∆̃ > 0, then the equation (3.4) has two positive roots. Consequently, equation (3.1) has a pair of imaginary roots
±iω+ and ±iω−.

If we consider Lemma 3.1, either (ii) or (iii) valid, the equations (3.2) and (3.3) can be used to derive the critical values τ
±
j of τ , which are

associated with the positive roots ω± of the equation (3.4).

τ
±
j =

1
ω±

[Arccos(−
ω2
±d1(b+d2)+d1(a+d2)(m+d2b)

ω2
±b2 +(m+d2b)2 )+2π j],

τ0 := min
{

τ
+
0 ,τ−0

}
. If we allow λ (τ) = η(τ)+ iω(τ) to be the root of (3.1) near τ = τ0 satisfying η(τ0) = 0 and ω(τ0) = ω0, then the

condition of the transversality of Lemma 3.2 is true.

Lemma 3.2. If the transversality condition is satisfied,

Re
(dλ

dτ

)−1∣∣∣
λ=iω0,τ=τ0

> 0,

the time-delayed system (1.1)-(1.4) undergoes a Hopf bifurcation at the endemic equilibrium point P∗ when τ = τ0,ρ = 0 ( [9], [19]).

Taking the derivative of equation (3.1) with respect to τ , we obtain:(dλ

dτ

)−1
=

2λ +d1 +d2 +a
λ (λb+d2b+m)

eλτ +
b

λ (λb+d2b+m)
− τ

λ
.

Using the equations (3.1) and (3.4), the transversality condition is obtained:

Re
(dλ

dτ

)−1∣∣∣
λ=iω0,τ=τ0

=

√
∆̃

ω2
0 b2 +(m+d2b)2 > 0.

Similarly, we obtain the same conclusion for other positive roots of equation (3.4).
In accordance with the above analysis, we arrive at Theorem 3.3:

Theorem 3.3. For the system (1.1)-(1.4) with τ > 0 and ρ = 0, the following results are correct:

a) if the condition i) of the Lemma 3.1 is correct, then the endemic equilibrium point P∗ is asymptotically stable for all τ > 0.

b) if the condition ii) or iii) of Lemma 3.1 is correct, then there exists a positive number τ0 such that the endemic equilibrium point P∗
is locally asymptotically stable when τ ∈ [0,τ0) and unstable when τ > τ0. Furthermore, the system (1.1)-(1.4) undergoes a Hopf
bifurcation at the equilibrium point P∗ when τ = τ0.

3.3. Case 3: τ = 0,ρ > 0

In this case, the equation (2.2) for equilibrium point P∗ becomes the following transcendental equation:

λ
2 +λ (d1 +d2 +b)+d2(d1 +b)+(λa+ad1 +m)e−λρ = 0. (3.5)

If λ = iω (ω > 0) is a root of the equation (3.5), the following equation is obtained:

−ω
2 + iω(d1 +d2 +b)+d2(d1 +b)+(m+ad1 + iωa)(cosωρ − isinωρ) = 0.

Separating the real and imaginary parts, we get the following equations:

−[−ω
2 +d2(d1 +b)] = (m+ad1)cosωρ +ωasinωρ, (3.6)

−ω(d1 +d2 +b) = ωacosωρ − (m+ad1)sinωρ. (3.7)

Upon summing the squares of the equations (3.6) and (3.7), we get the following equation:

ω
4 −ω

2[a2 −d2
2 − (d1 +b)2]+d2

2(b+d1)
2 − (m+ad1)

2 = 0. (3.8)

If B := a2−d2
2 −(d1+b)2 and C := d2

2(b+d1)
2−(m+ad1)

2 and ∆ :=B2−4C following a similar procedure to case 2, we reach Lemma 3.4.

Lemma 3.4.
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i) If C > 0 and B < 0 or ∆ < 0, then equation (3.8) does not have any positive root. Similarly, equation (3.5) does not possess a purely
imaginary root.

ii) If C < 0 or B > 0, and ∆ = 0, then the equation (3.8) has only one positive root. Therefore, equation (3.5) has a pair of imaginary roots
±iω1.

iii) If B > 0, C > 0, and ∆ > 0, then the equation (3.8) has two positive roots. And equation (3.5) has a pair of imaginary roots ±iω1 and
±iω2.

When condition ii) or iii) of the lemma (3.4) is met, the critical values ρk j’s of ρ with respect to ωk, (k = 1,2) are as follows:

ρk j =
1

ωk
[Arccos

(
−

d2(a+d1)ω
2
k +d2(b+d1)(m+ad1)

ω2
k a2 +(m+ad1)2

)
+2π j], k = 1,2, j = 0,1,2, ...

If λ (ρ0) = iω(ρ0) where ρ0 := min{ρk0 : k = 1,2} is a root of the equation (3.5) near ρ = ρ0 with ω(ρ0) = ω∗, then we have the following
transversality condition by differentiating the equation (3.5) with respect to ρ:(dλ

dρ

)−1
=

2λ +d1 +d2 +b
λ (λa+d1a+m)

eλρ +
a

λ (λa+d1a+m)
− ρ

λ
,

By combining equations (3.5) and (3.8), we deduce the following conclusion for which the transversality condition holds:

Re
(dλ

dρ

)−1∣∣∣
λ=iω∗,ρ=ρ0

=

√
∆

ω2
∗a2 +(m+d1a)2 > 0.

Theorem 3.5. For the system (1.1)-(1.4) with the case τ = 0 and ρ > 0, similar conclusions to Theorem 3.3 can be obtained according to
ρ = ρ0 critical value. The following results hold:

a) if the condition i) of Lemma 3.4 holds, then the endemic equilibrium point P∗ is asymptotically stable for all ρ > 0.

b) if the condition ii) or iii) of Lemma 3.4 is correct, then there exists a positive number ρ0 such that the endemic equilibrium point P∗
is locally asymptotically stable when ρ ∈ [0,ρ0) and unstable when ρ > ρ0. Furthermore, the system (1.1)-(1.4) undergoes a Hopf
bifurcation at the equilibrium point P∗ when ρ = ρ0.

3.4. Case 4:τ > 0,ρ > 0

In this case, we suppose that τ is a parameter and ρ ∈ [0,ρ0) is a constant in its stability interval. If λ = iω̄ is a root of equation (2.2), then
equation (2.2) reduces to:

−ω̄
2 + iω̄(d1 +d2)+d1d2 +(iω̄a+ad1)e−iω̄ρ +(iω̄b+d2b)e−iω̄τ +me−iω̄(τ+ρ) = 0.

Where τ is a parameter, separating the real and imaginary parts gives:

−[−ω̄
2 +d1d2 +ad1cosω̄ρ + ω̄asinω̄ρ] = (d2b+mcosω̄ρ)cosω̄τ +(ω̄b−msinω̄ρ)sinω̄τ, (3.9)

−[ω̄(d1 +d2)+ ω̄acosω̄ρ −ad1sinω̄ρ] = (ω̄b−msinω̄ρ)cosω̄τ − (d2b+mcosω̄ρ)sinω̄τ. (3.10)

By eliminating cosω̄τ and sinω̄τ , we get the equation:

Ψ(ω̄) = ω̄
4 −P1ω̄

2 +P2 +P3cosω̄ρ +P4sinω̄ρ = 0, (3.11)

where

θ = a(ω̄2 +d2
1)−mb,

P1 = b2 −a2 −d2
1 −d2

2 ,

P2 = d2
1(a+d2

2)−m2 −b2d2
2 ,

P3 = 2d2θ ,

P4 =−2ω̄θ .

If Ψ(0) = ad2
1(1+ 2d2)− b2(a2 + d2

2 + 2ad2)− 2abd1d2 < 0, then because of lim
ω̄→∞

Ψ(ω̄)→ ∞ equation (3.11) has at least one positive

root. Not loose of generality, we assume that it has ω̄1, ...ω̄4 four positive roots, and for each ω̄k, (k = 1, ..,4) there exists a sequence
{τk j : j = 0, ...,k = 1, ..,4} so that equation (3.11) satisfies the criteria.
Using the equations (3.9) and (3.10), we get the critical time delays τk j’s of τ for each ω̄k:

τk j =
1

ω̄k

(
Arccos

[
−d1ω̄k

2[b+d2cosω̄kρ̄]−d1(ma+d2
2b)+ ω̄kd1[2ab−d2(d1 +d2)]sinω̄kρ̄

−d1d2(2ab−d1d2)cosω̄kρ̄

/(
ω̄k

2b2 +m2 +d2
2b2 +2mb(d2cosω̄kρ̄ − ω̄ksinω̄kρ̄)

)]
+2π j

)
, j = 0,1, ...
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whereby τ̄0 := min(τk j : k = 1, ..,4, j = 0,1, ...) and ω̄ := ω̄0 are the corresponding root of the equations (3.9) and (3.10) with ρ = ρ̄ ∈ [0,ρ0).

To verify the transversality condition, if λ (τ) = η(τ)+ iω(τ) is the root of equation (2.2) at τ = τ̄0 to satisfy η(τ̄0) = 0, ω(τ̄0) = ω̄ with
ρ = ρ̄ ∈ [0,ρ0), the derivation of (2.2) with respect to τ is:

(
dλ

dτ
)−1 =

2λ +d1 +d2

−λ [λ 2 +λ (d1 +d2)+d1d2 +a(λ +d1)e−λρ̄ ]
− τ

λ
+

[a− ρ̄a(λ +d1)]e−λρ̄ +be−λτ −mρ̄e−λ (τ+ρ̄)

λ [b(λ +d2)e−λτ +me−λ (τ+ρ̄)]
,

and

ω̄Re
(dλ

dτ

)−1∣∣∣
λ=iω̄,τ=τ̄0

=

(
ω̄(2ω̄2 +d2

1 +d2
2)+ ω̄a(d2 −d1)cosω̄ρ̄ −a(2ω̄2 +d1(d1 +d2))sinω̄ρ̄

α2 +β 2

)

+

(
[ω̄aρ̄d2bcosω̄(ρ̄ + τ̄0)−b2

ω̄ −a(1− ρ̄d1)d2bsinω̄(ρ̄ − τ̄0)− ω̄ab(1−d1)cosω̄(ρ̄ − τ̄0)

− ω̄
2aρ̄bsinω̄(ρ̄ + τ̄0)−ma(1− ρ̄d1)sinω̄τ̄0 −mω̄ρ̄acosω̄τ̄0 +mb(1+ ρ̄d2)sinω̄ρ̄

+mbω̄ρ̄cosω̄(ρ̄ +2τ̄0)]/(γ
2 +η

2)

)
̸= 0,

where

α
2 +β

2 = ω̄
2b2 +m2 +b2d2

2 +2mb(d2cosω̄ρ̄ − ω̄sinω̄ρ̄),

γ
2 +η

2 =

(
d2bcosω̄τ̄0 + ω̄bsinω̄τ̄0 +mcosω̄(τ̄0 + ρ̄)

)2

+

(
ω̄bcosω̄τ̄0 −d2bsinω̄τ̄0 −msinω̄(τ̄0 + ρ̄)

)2

.

Therefore, the transversality condition is satisfied ( [9], [19], [20]).

Theorem 3.6. If we consider the system (1.1)-(1.4) with τ > 0 and ρ ∈ [0,ρ0), and suppose ψ(0)< 0 is satisfied, then we reach the following
results:

a) the endemic equilibrium point P∗ is asymptotically stable in which τ ∈ [0, τ̄0).

b) the endemic equilibrium point P∗ is unstable for τ > τ̄0. Moreover, the system (1.1)-(1.4) undergoes a Hopf bifurcation at the endemic
equilibrium point P∗ when τ = τ̄0.

4. Numerical Demonstrations

To validate the theoretical conclusions drawn in section 3, we refer to numerical simulations performed using MATLAB.
To reach our objective, the following set of parametric values of the system (1.1)-(1.4) is taken, so that the endemic equilibrium point
P∗ = (0.2204,2.7796,0.9643,3.1534) is obtained.

a1 = 0.3,a2 = 0.7,b1 = 0.8,b2 = 0.5,b3 = 0.4,b4 = 0.5,d1 = 0.1,d2 = 0.17.

The demonstrations in this section are arranged according to the cases in the previous section.

Case 1: In this situation, in the absence of time delays, endemic equilibrium point P∗ is asymptotically stable.
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Figure 4.1: When τ = 0 and ρ = 0, then the system (1.1)-(1.4) is asymptotically stable.
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Case 2: In this situation, the system (1.1)-(1.4) satisfies Theorem 3.3, so the critical value of time delay τ0 = 1.3253 for ω0 = 1.2515 is
obtained. In Figure 4.2, Figure 4.3, Figure 4.4, the change in behavior of the endemic equilibrium point P∗ for ρ = 0 and different values of
τ and the Hopf bifurcation phase diagram are simulated.
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Figure 4.2: When τ = 1 < τ0 and ρ = 0, then the endemic equilibrium
point of the system (1.1)-(1.4) is stable
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Figure 4.3: When τ = 2 > τ0 and ρ = 0, then the endemic equilibrium
point of the system (1.1)-(1.4) is unstable

Figure 4.4: When τ = τ0 = 1.3253 and ρ = 0, then Hopf bifurcation occurs

Case 3: In this situation, the system (1.1)-(1.4) satisfies Theorem 3.5: therefore, the critical value of time delay ρ0 = 3.4088 for ω1 = 0.5178
is obtained. In Figure 4.5, Figure 4.6, Figure 4.7, the change in behavior of the endemic equilibrium point P∗ for τ = 0 and differing values
of ρ and the Hopf bifurcation diagram are simulated.
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Figure 4.5: When τ = 0 and ρ = 1 < ρ0, then the endemic equilibrium
point of the system (1.1)-(1.4) is stable
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Figure 4.6: When τ = 0 and ρ = 6 > ρ0, then the endemic equilibrium
point of the system (1.1)-(1.4) is unstable
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Figure 4.7: When τ = 0 and ρ = ρ0 = 3.4088, then Hopf bifurcation occurs

Case 4: Here, the system (1.1)-(1.4) satisfies the Theorem 3.6; therefore, the critical value of the time delay τ0 = 1.6837 is obtained for
ω̄ = 1.008, and ρ̄ = 2 is the chosen in stability interval. Figure 4.8, Figure 4.9, Figure 4.10 show the simulated change in behavior of the
endemic equilibrium point P∗ and the Hopf bifurcation.
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Figure 4.8: When τ = 1 < τ̃0 and ρ = ρ̃ = 2 are met, then the equilibrium
point of the system (1.1)-(1.4) is stable.
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Figure 4.9: When τ = 1 > τ̃0 and ρ = ρ̃ = 2 are met, then the equilibrium
point of the system (1.1)-(1.4) is unstable.

Figure 4.10: When τ = τ̃0 = 1.6837 and ρ = ρ̃ = 2 are met, then Hopf bifurcation occurs.
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5. Conclusion

In this paper, we analyzed a mathematical model of Zika virus transmission. Despite previous studies reviewed in the introduction, our model
includes two different time delays τ , which represents the transmission of infection from infected mosquitoes to susceptible humans, and ρ ,
which represents the incubation period of susceptible mosquitoes to become infected. These time delays make our model more realistic. We
obtained the conditions for asymptotic stability and Hopf bifurcation at the endemic equilibrium point, as well as the critical values of time
delays (threshold parameters). Using numerical simulations, we observed visually that the time delay depends on the threshold parameters
similar to those of the obtained theoretical results, and when the time delays exceed these values, the disease dynamics change.
From an eco-epidemiological perspective, these results are important for understanding the life cycle of the Zika virus and analyzing the
incubation periods and transmission time to control the spread of the disease.
This multiple-time model can be extended to include sexual transmission, blood transfer situations, and numbers of asymptomatic humans
for future studies.
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