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Abstract. The aim of this paper is to propose the study of a class of Lie-

admissible algebras. It is the class (variety) of all the (not-necessarily as-

sociative) algebras M over a commutative ring k with identity 1k for which

(x, y, z) = (y, x, z) + (z, y, x) for every x, y, z ∈ M . Here (x, y, z) denotes the

associator of M . We call such algebras algebras of type V2. Very little is known

about these algebras.
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1. Introduction

This paper is devoted to the study of algebras of type V2, that is, the algebras

M for which

(x, y, z) = (y, x, z) + (z, y, x) (1)

for every x, y, z ∈ M . Here (x, y, z) denotes the associator, that is, the k-trilinear

mapping (−,−,−) : M×M×M → M defined by (x, y, z) = (xy)z−x(yz) for every

x, y, z ∈ M .

Let us recall the basic notions and fix the notation. In this paper, k will always

denote a commutative ring with identity 1k. By a k-algebra (M, · ), we mean a

k-module M with a further operation · : M ×M → M , (x, y) 7→ x · y = xy, which

is assumed to be k-bilinear. Equivalently, M is a k-module endowed with a k-

module morphism M ⊗k M → M . Clearly, k-algebras form a category Algk, whose

morphisms are the k-module morphisms that also respect algebra multiplication.

There is an endofunctor U of the category of k-algebras Algk that associates

with any k-algebra (M, ·) the k-algebra (M, [−,−]), where [x, y] = xy − yx for

every x, y ∈ M . It associates with any morphism f : (M, ·) → (N, ·) in Algk, the

same mapping U(f) = f : (M, [−,−]) → (N, [−,−]).
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Dually, there is an endofunctor D of the category Algk that associates with any

k-algebra (M, ·) the k-algebra (M, ◦), where x ◦ y = xy+ yx for every x, y ∈ M . It

also associates with any morphism f : (M, ·) → (N, ·) in Algk, the same mapping

D(f) = f : (M, ◦) → (N, ◦).
As we have implicitly already mentioned above, if M is any k-module, the set

of all k-bilinear mappings M ×M → M is a k-module isomorphic to the k-module

Homk(M ⊗k M,M). If C is the k-submodule of M ⊗k M generated by the set

{x ⊗ y − y ⊗ x | x, y ∈ M }, then the set of all commutative k-bilinear operations

M ×M → M is a sub-k-module of Homk(M ⊗kM,M) isomorphic to the k-module

Homk(M ⊗k M/C,M). If A is the k-submodule of M ⊗k M generated by the

set {x ⊗ y + y ⊗ x | x, y ∈ M }, then the set of all anticommutative k-bilinear

operations M ×M → M is a sub-k-module of Homk(M ⊗k M,M) isomorphic to

Homk(M⊗kM/A,M). Let kM be any k-module and let Comm and AntiComm be

the k-submodules of Homk(M ⊗k M,M) consisting of all k-bilinear commutative

and anticommutative operations on kM , respectively. If 2 is invertible in k, then

Homk(M ⊗k M,M) = Comm⊕AntiComm (see for instance [3, Theorem 4.1]).

For every k-algebra M , the k-algebra U(M) is always anticommutative (i.e.,

[x, y] = −[y, x]) and the k-algebraD(M) := (M, ◦) is always a commutative algebra.

By definition, a k-algebra (M, · ) is Lie-admissible if the anticommutative k-algebra

U(M) := (M, [−,−]) is a Lie algebra, that is, if the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

holds for every x, y, z ∈ M , and is a pre-Lie algebra if (xy)z−x(yz) = (yx)z−y(xz)

for every x, y, z ∈ M . If the associator of a k-algebra M is defined by (x, y, z) =

(xy)z−x(yz) for all x, y, z in M , then M is associative if and only if (x, y, z) = 0 for

all x, y, z ∈ M ; the algebra M is a pre-Lie algebra if and only if (x, y, z) = (y, x, z)

for all x, y, z ∈ M ; and M is Lie-admissible if and only if

(x, y, z) + (y, z, x) + (z, x, y) = (y, x, z) + (x, z, y) + (z, y, x) (2)

for all x, y, z ∈ M . Therefore associative algebras are pre-Lie, and pre-Lie algebras

are Lie-admissible.

Lemma 1.1. Algebras of type V2 are Lie-admissible.

Proof. If M is an algebra of type V2, we have that (x, y, z) = (y, x, z) + (z, y, x).

Swapping y and z in this equation, we get that (z, x, y) + (y, z, x) = (x, z, y).

Summing up these two equalities, we get equality (2). □
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Equality (2) can be written explicitly as

(xy)z + (yz)x+ (zx)y + y(xz) + x(zy) + z(yx)−
−x(yz)− y(zx)− z(xy)− (yx)z − (xz)y − (zy)x = 0

(3)

This is a sum of 12 terms, corresponding to the six permutations of {x, y, z} and

the two possibilities (ab)c and a(bc) of writing the parentheses in a product of three

terms a, b, c. The sign of each of these twelve terms depends on the way (ab)c

or a(bc) in which the parentheses are written and the sign of the permutation of

{x, y, z} (cf. [4, pp. 131–132]).

In this paper, we will study the first properties of the variety of algebras of type

V2. The variety V2 is properly contained between the variety of associative algebras

and the variety of all algebras M for which (x, y, z) + (y, z, x) + (z, x, y) = 0 for all

x, y, z ∈ M (Theorem 3.6 and Examples 3.7 and 3.8).

We are able to show that every 2-torsion-free k-algebra of type V2 is right al-

ternative, hence power-associative (Proposition 3.2 and Corollary 3.4). Also, we

show that a 2-torsion-free algebra is of type V2 if and only if (z, x, y)+ (z, y, x) = 0

and (x, y, z) + (y, z, x) + (z, x, y) = 0 for every x, y, z ∈ M (Theorem 3.6). The

notion of algebras M of type V2 seems to be related to the notion of module over

the commutative algebra D(M) and the notion of module over pre-Lie algebras

(Section 4).

I am grateful to Professor Carmelo Antonio Finocchiaro for several discussions

on this topic.

2. Varieties of Lie-admissible algebras

When k is a field and F := k⟨x1, x2, x3, . . . ⟩ is the non-associative countably

generated free k-algebra, call T -ideal any totally invariant ideal of F , that is, any

ideal invariant under all endomorphisms of the k-algebra F . There is a one-to one

correspondence between the set of all T -ideals of F and the class of all varieties

of k-algebras. The T -ideal corresponding to an arbitrary variety of non-associative

algebras over a field k corresponds to the set of all polynomial identities of the

variety. For instance, our variety of algebras of type V2 corresponds to the principal

T -ideal of F generated by the non-associative polynomial

(x1, x2, x3)− (x2, x1, x3)− (x3, x2, x1).

This is a homogeneous polynomial of degree three.

Remark 2.1. It is important to notice that our algebras are not required to have an

identity in general. Thus, for instance, the k-algebra F introduced in the previous
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paragraph, is an N-graded algebra, whose component of degree zero is zero, whose

component of degree one is the vector space over k with basis all monomials xi,

the component of degree two is the vector space over k with basis all monomials

xixj , and the component of degree three is the vector space over k with basis

all monomials (xixj)xk and all monomials xi(xjxk). Of course, it would be also

possible to consider the category of all k-algebras with an identity 1M , or the

category of all k-algebras M with an identity 1M and an augmentation M → k,

that is, a morphism of k-algebras with identity that composed with the embedding

k → M , λ ∈ k 7→ λ · 1M , gives the identity automorphism of k. Clearly, the

category Algk of our k-algebras is equivalent to the category of all k-algebras M

with an identity 1M and an augmentation.

There is a “hierarchy” of varieties of Lie-admissible algebras corresponding to

the lattice of all T -ideals of the free k-algebra F containing the pricipal T -ideal

generated by the non-commutative non-associative polynomial

(x1, x2, x3) + (x2, x3, x1) + (x3, x1, x2)− (x2, x1, x3)− (x1, x3, x2)− (x3, x2, x1).

Let us examine some of these varieties (cf. [4, pp. 131–132]). Of course, our list

cannot be exaustive, because it has been proved in [5] that the variety of right-

symmetric algebras (see (14) below) over an arbitrary field does not have the Specht

property, that is, it has a subvariety that has not a finite basis of identities.

Now, there is an involutive category automorphism op : Algk → Algk. It as-

sociates with any k-algebra (M, ·) its opposite algebra Mop, which is the algebra

(M, ∗), where ∗ is defined by x ∗ y = y · x for every x, y ∈ M . In our list of variety,

we will denote by Wi the varieties fixed by the automorphism op, and by V∗
j the

variety that is the image of the variety Vj via the automorphism op.

(1) The smallest subvariety of Algk is trivially the variety W1 of all k-algebras

of cardinality 1, corresponding to the improper ideal of the free k-algebra F , which

is the principal T -ideal generated by x1.

(2) Then we have the variety W2 of all abelian k-algebras, that is, the k-algebras

M for which xy = 0 for every x, y ∈ M . Clearly, the full subcategory of the category

Algk whose objects are all abelian k-algebras is equivalent to the category k-Mod

of all modules over k. The variety W2 of all abelian k-algebras corresponds to the

principal T -ideal of F generated by the monomial x1x2 of degree 2. This T -ideal is

the direct sum of all the homogeneous components of degree ≥ 2 of the N-graded
k-algebra F .
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(3) Then we have the variety W3 of all k-algebras M for which (xy)z = 0 and

x(yz) = 0 for all x, y, z ∈ M . These are the algebras for which all the 12 terms

in Identity (3) are zero. This shows, trivially, that the algebras in the variety W3

are Lie-admissible. The algebras in W3 can also be described as the k-algebras

M for which both M2 · M = 0 and M · M2 = 0, that is, equivalently, M2 ⊆
r. ann(M)∩ l. ann(M), where r. ann(M) and l. ann(M) denote the right annihilator

and the left annihilator of M , respectively. The variety W3 corresponds to the T -

ideal of F generated by the two monomials (x1x2)x3 and x1(x2x3) of degree 3. As

a k-vector space, this T -ideal is the direct sum of all the homogeneous components

of degree ≥ 3 of the graded algebra F .

(4) The variety W4 of all associative k-algebras, that is, the k-algebras M for

which (x, y, z) = 0 for all x, y, z ∈ M .

(5) The variety W5 of all k-algebras M for which (xy)z = (zy)x and x(yz) =

z(yx) for all x, y, z ∈ M .

(6) Then we have a number of varieties in which the 12 terms in Identity (3)

annihilates in pair. The first example of such a variety is the variety W6 of all

commutative (not-necessarily associative) k-algebras. This variety corresponds to

the principal T -ideal of F generated by the homogeneous polynomial x1x2−x2x1 of

degree two. Clearly, every commutative algebra is Lie-admissible (they are exactly

the algebras for which the sub-adjacent Lie algebra is abelian).

(7) The variety W7 of all k-algebras M for which (x, y, z)+(y, z, x)+(z, x, y) = 0

for all x, y, z ∈ M . Notice that an algebra that satisfies x(yz)+y(zx)+z(xy) = 0 is

not necessarily Lie-admissible [6, pp. 287–288]. Clearly, every Lie algebra belongs

to W7.

(8) The variety W8 of all Lie-admissible k-algebras, that is, the k-algebras in

which Identity (2) holds.

(9) The variety V1 of all k-algebrasM for which (xy)z = (xz)y and x(yz) = z(yx)

for all x, y, z ∈ M .

(10) The variety V∗
1 of all k-algebras M for which x(yz) = y(xz) and (xy)z =

(zy)x for all x, y, z ∈ M .

(11) The variety V2 of all k-algebras M for which (x, y, z) = (y, x, z) + (z, y, x)

for all x, y, z ∈ M . These algebras are our main object of study in this paper.

Let us prove that:

Lemma 2.2. Let M be a commutative k-algebra and assume that the abelian group

M is 3-torsion-free (that is, that x ∈ M and 3x = 0 imply x = 0). Then the k-

algebra M is of type V2 if and only if M is associative.
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Proof. Trivially, associative algebras are of type V2. Conversely assume M 3-

torsion-free and of type V2. Then (x, y, z) = (y, x, z) + (z, y, x) for all x, y, z ∈ M ,

that is, (xy)z − x(yz) = (yx)z − y(xz) + (zy)x − z(yx). From commutativity, it

follows that

2(yz)x− (xz)y − (xy)z = 0. (4)

Exchanging x and y in this identity, we get that

2(xz)y − (yz)x− (yx)z = 0 (5)

for every x, y, z ∈ M . Subtracting these two identities, we get 3(yz)x− 3(xz)y = 0.

But M is 3-torsion-free, so (yz)x = (xz)y. Because of commutativity, this identity

can be written (yz)x = y(zx). This proves that M must be associative. □

We have thus shown that V2∩W6 =W4∩W6. We will show in Theorem 3.6 and

Example 3.7 that the class V2 is properly contained in the class W7.

(12) The variety V∗
2 of all k-algebras M for which (z, y, x) = (z, x, y) + (x, y, z)

for all x, y, z ∈ M .

(13) The variety V3 of all left-symmetric (or pre-Lie) algebras, that is, the k-

algebras M for which (x, y, z) = (y, x, z) for all x, y, z ∈ M .

Lemma 2.3. The intersection of the class of all algebras of type V2 and the class

V3 of all pre-Lie algebras is the class W4 of all associative algebras.

Proof. It is clear that W4 ⊆ V2 ∩ V3, because an algebra M is associative if and

only if (x, y, z) = 0 for every x, y, z ∈ M . Conversely, if M is of type V2, then

(x, y, z) = (y, x, z)+ (z, y, x); and if M is pre-Lie, we know that (x, y, z) = (y, x, z).

Subtracting these two equalities, we get that (z, y, x) for every x, y, z ∈ M , as

desired. □

(14) The variety V∗
3 of all right-symmetric algebras, that is, the k-algebras M

for which (x, y, z) = (x, z, y) for all x, y, z ∈ M .
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W8

W7

V1 V∗
1 V2 V∗

2 W5V3 V∗
3 W6

W3

W4

W4 ∩W6 =W5 ∩W6

W2

W1

3. Algebras of type V2

We have already seen some elementary properties of algebras of type V2 in Lem-

mas 1.1, 2.2 and 2.3. In this section we will give further properties of these algebras.

We begin with the following proposition.

Proposition 3.1. Let k be a field. Every k-algebra of dimension ≤ 2 and of type

V2 is associative.

Proof. The proof is rather long, but it only consists in elementary calculations.

Here, we just give a quick sketch of it. LetM be a k-algebra of dimension ≤ 2 and of

type V2. Let U(M) be its sub-adjacent Lie algebra. If U(M) is abelian, we conclude

by Lemma 2.2. Hence we can suppose U(M) non-abelian, and there is only one

such algebra up to isomorphism. It is the Lie algebra of dimension 2 in which a

basis can be chosen to be of the type {v, w} with [v, w] = v. As a consequence, in

M we have the k-basis {v, w} subject to the relation vw−wu = v. Elementary but

rather long calculations show that there are exactly two algebras M satisfying this

relation and Identity (1). They are the two algebras whose multiplication tables
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are given by 
vv = 0

vw = 0

wv = −v

ww = −w

and


vv = 0

vw = v

wv = 0

ww = w.

Thus there are at most two non-commutative algebras of type V2 up to isomorphism.

Another easy calculation shows that both of them are associative. □

Proposition 3.2. Let M be an algebra of type V2 over a commutative ring k with

identity.

(a) If M is 2-torsion-free, then M is right alternative, that is, (xy)y = x(yy)

for every x, y ∈ M .

(b)

(z, x, y) + (z, y, x) = 0 (6)

for every x, y, z ∈ M .

Proof. Let (M, ·) be an algebra of type V2, so that Identity (1) holds. Exchanging

the two variables x and y in Identity (1), we get that

(y, x, z) = (x, y, z) + (z, x, y), (7)

and summing up the two identities (1) and (7) we get that (z, x, y) + (z, y, x) = 0.

This proves (b). In particular, for x = y, we get that 2(z, x, x) = 0. If M is 2-

torsion-free, it follows that (z, x, x) = 0, that is, (zx)x = z(xx). This proves (a). □

Remark 3.3. In the proof of Proposition 3.2 we have shown that if M is any

2-torsion-free k-algebra, then Identity (6) implies that M is right alternative. But

it is easy to see that the converse of this implication is also true, that is, Identity

(z, x, y) + (z, y, x) = 0 holds in every right alternative k-algebra M . To see this,

let M be any right alternative k-algebra. Then 0 = (x, y + z, y + z) = (x, y, y) +

(x, y, z) + (x, z, y) + (x, z, z) = (x, y, z) + (x, z, y), and Identity (6) holds.

Corollary 3.4. Every 2-torsion-free k-algebra M of type V2 is power-associative,

that is, xn · xm = xn+m for every x ∈ M and every pair of positive integers n,m.

Here xn is defined by induction on n ≥ 1 setting x1 = x and xn+1 = xn · x.
Moreover, (xn)m = xnm.

The corollary follows immediately from [8, p. 343, Theorem 1]. Recall that an

algebra is power-associative if and only if all its cyclic subalgebras are associative.

In particular we have:
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Theorem 3.5. Let k be a field of characteristic ̸= 2. The free k-algebra of type V2

on one object x is the k-algebra

k[x] = kx⊕ kx2 ⊕ kx3 ⊕ kx4 ⊕ . . .

In order to illustrate the previous theorem, let us give an explicit computation of

the first four homogeneous component of the algebra. The free non-associative k-

algebra on one object x is an N-graded k-algebra F whose homogeneous component

of degree 0 is 0, the homogeneous component of degree 1 has dimension one and

basis {x}, the homogeneous component of degree 2 has dimension one and basis

{x2}, the homogeneous component of degree 3 has dimension two and basis {x ·
x2, x2 · x}, and so on. The free k-algebra of type V2 on one object x is a quotient

Q of this k-algebra F . In Q one has x · x2 = x2 · x, because of Proposition 3.2(a).

We denote this element by x3. Then the homogeneous component of Q of degree

1, 2, 3 have all dimension one and basis {x}, {x2} and {x3}, respectively. The

homogeneous component of Q of degree 4 is generated by {x · x3, x2 · x2, x3 · x}.
From Proposition 3.2(a) we find that

x3 · x = (x2 · x) · x = x2(x · x) = x2 · x2. (8)

Finally, from Identity (1) we get that (x2, x, x) = (x, x2, x) + (x, x, x2). In this

equation, the term on the left is (x2, x, x) = x3 · x − x2 · x2, and this is zero

because of (8). Therefore (x, x2, x) + (x, x, x2) = 0. This equality can be written

as x3 · x− x · x3 + x2 · x2 − x · x3. From (8), 2(x3 · x− x · x3) = 0, so x3 · x = x · x3.

Therefore x · x3 = x2 · x2 = x3 · x, and the homogeneous component of Q of degree

four is also one-dimensional.

The next theorem gives another, maybe more natural, presentation of the class

of algebras of type V2.

Theorem 3.6. Let M be a 2-torsion-free algebra over a commutative ring k with

identity. Then M is of type V2 if and only if (z, x, y) + (z, y, x) = 0 and (x, y, z) +

(y, z, x) + (z, x, y) = 0 for every x, y, z ∈ M .

Proof. Let M be a 2-torsion-free algebra over a commutative ring k with identity.

Assume M of type V2. Then (z, x, y) + (z, y, x) = 0 for every x, y, z ∈ M by

Proposition 3.2(b). Then (x, y, z)+(x, z, x) = 0 and (y, z, x)+(y, x, z) = 0 for every

x, y, z ∈ M . Since algebras of type V2 are Lie-admissible, identity (2) holds, so that

(x, y, z) + (y, z, x) + (z, x, y) = −(y, z, x)− (x, y, z)− (z, x, y) for every x, y, z ∈ M .

But M is 2-torsion-free, hence (x, y, z) + (y, z, x) + (z, x, y) = 0. This proves one

of the two mutually inverse implications. Conversely, (z, x, y) + (z, y, x) = 0 and
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(x, y, z) + (y, z, x) + (z, x, y) = 0 imply (x, y, z) − (y, x, z) − (z, y, x) = 0. Thus M

is of type V2. □

Example 3.7. Consider the cross product × of vectors in R3. Let {i, j, k} be

the standard basis of R3. This algebra (R3,×) is a three-dimensional Lie real

algebra, hence it belongs to W7. But R3 does not satisfy the identity (x, y, z) =

(y, x, z) + (z, y, x), as can be seen taking x = y = i and z = k, in which case

the identity becomes (i, i, j) = (i, i, j) + (j, i, i), equivalently (j, i, i) = 0, while

(j, i, i) = (j × i) × i − j × (i × i) = −k × i = −j. This proves that the algebra R3

does not belong to V2.

This example can be immediately adapted to any commutative ring k with iden-

tity 1 ̸= 0, getting the free k-module k3 with free set of generators {i, j, k} and the

same multiplication table as (R3,×), showing that for any such ring k the class of

k-algebras V2 is not contained in W7.

Theorem 3.6 and Example 3.7 show that the class W7 properly contains the class

V2.

We conclude this section with an example of an algebra of type V2 that is not

associative, i.e., that the class W4 is properly contained in V2.

Example 3.8. Here is an example of a non-associative algebra of type V2. The

example is given in https://math.stackexchange.com/a/4505089. It is an example

of a right alternative algebra that is not left alternative. The example was obtained

with MAGMA by Thomas Preu. Let k be any commutative ring with identity and

M be a free k-module of rank 3 with free set of generators {x, y, z}. This is a

k-algebra with respect to the multiplication defined, for every α, β, γ, α′, β′, γ′ ∈ k,

by

(αx+ βy + γz)(α′x+ β′y + γ′z) = αα′x+ βα′y + αβ′z.

Since M is right alternative but not left alternative, the k-algebra M is not asso-

ciative. If

A := αx+ βy + γz

A′ := α′x+ β′y + γ′z

A′′ := α′′x+ β′′y + γ′′z

are three arbitrary elements of M , then

(A,A′, A′′) = (αα′β′′ − αβ′α′′)z,

which also shows that M is not associative. Then Identity (1), that is

(A,A′, A′′) = (A′, A,A′′) + (A′′, A′, A),
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becomes (αα′β′′ − αβ′α′′)z = (α′αβ′′ − α′βα′′)z + (α′′α′β − α′′β′α)z, which is

trivially true. Hence M is of type V2.

4. Modules

This section is devoted to the study of modules over our algebras. Our motivation

is the following. As we saw in Proposition 3.2(b), our algebras of type V2 satisfy

the identity

(z, x, y) + (z, y, x) = 0. (9)

This identity is very similar, except for the sign, to the identity (z, x, y) = (z, y, x)

that defines right-symmetric algebras, the right/left dual of pre-Lie algebras. Iden-

tity (9) can be written explicitly as (zx)y − z(xy) + (zy)x − z(yx) = 0. Now the

concept of pre-Lie algebras is strictly connected to the study of modules of pre-Lie

algebras, and similarly for anti-pre-Lie algebras and Jordan algebras. Let us briefly

review the concept of modules over these algebras.

If M is an associative algebra over a commutative ring k, its left modules are

the pairs (N,λ), where N is a k-module and λ : M → End(Nk) is a k-algebra

morphism. If M is a Lie k-algebra, its left modules are the pairs (N,λ), where N

is a k-module and λ : M → U(End(Nk)) is a k-algebra morphism. The morphism

λ is usually called the adjoint. If M is a pre-Lie algebra, its left modules are the

pairs (N,λ), where N is a k-module and λ : U(M) → U(End(Nk)) is a k-algebra

morphism [2, Section 4.1]. Notice that there is not a natural concept of left module

over an arbitrary non-associative k-algebra M . Cf. [7], where the following notion

of module over a Jordan k-algebra M is also developed. For a Jordan algebra M , let

M ′ be M with unity adjoined and let E be the subalgebra of Endk(M
′) generated

by all right multiplications rx for x in M . A k-module N is an M -module if N

is an E-module and there is a k-module morphism ρ : M → End(Nk) such that

nρ(x) = nrx for all n ∈ N and x ∈ M .

Making use of the mapping ρ : M → Endk-Mod(M), ρ : x 7→ ρx (right multiplica-

tion by x), Identity (9) can be equivalently written as

ρxρy − ρxy + ρyρx − ρyx = 0,

that is, ρxρy + ρyρx = ρxy + ρyx for every x, y ∈ M . Via the Jordan product

◦, this can be written as ρx ◦ ρy = ρx◦y. That is, right multiplication ρ : M →
Endk-Mod(Mk) in (M, ·) is a Jordan homomorphism, that is, a k-algebra morphism

ρ : (M, ◦) → (Endk-Mod(Mk), ◦).
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Also recall that an algebra M is Lie-admissible if and only if

U(ρ− λ) : (U(M), [−,−]) → (U(End(kM)), [−,−]) (10)

is a k-algebra morphism [1, p. 573]. (Notice that here, in Equation (10), what we

write in not completely correct, because we write U(ρ − λ), while ρ − λ : M →
End(kM) is not a morphism in the category Algk, but only in the category of k-

modules. Nevertheless we simply mean that the mapping ρ− λ : M → End(kM) is

a k-algebra morphism (U(M), [−,−]) → (U(End(kM)), [−,−]).)

Identity (1), which defines algebras M of type V2, can be also expressed in

terms of left mutiplication λ : Mk → End(Mk) and right multiplication ρ : Mk →
End(Mk). In fact, exchanging x and y in (1), one sees that M is of type V2 if and

only if (x, z, y) = (z, x, y) + (y, z, x), that is, if and only if (xy)z + y(xz)− z(yx) =

x(xz) + (yx)z + (zy)x. This can be re-written as

λxy − λy ◦ λx − ρyx = λx ◦ λy + λyx + ρy ◦ ρx. (11)

Here ◦ denotes composition of mappings (written on the left, as usual). Finally,

(11) is equivalent to

λ[x,y] − [λx, λy] = ρy ◦ ρx + ρyx.

Notice the similarity between this formula and the formula in [2, Theorem 16(b)].
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