INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY

VOLUME 18 No. 2 PAGE 462-474 (2025)

DOI: https://doi.org/10.36890/iejg.1608345

RESEARCH ARTICLE

A Note on Pointwise Semi-Slant Submanifolds in a Para-Kaehler Manifold

Sedat Ayaz* and Yılmaz Gündüzalp

(Communicated by Ion Mihai)

ABSTRACT

In this paper, we study pointwise slant and pointwise semi-slant type-1,2,3 submanifolds in para- Kaehler manifolds. We obtain some theorems, lemmas and examples for pointwise slant and pointwise semi-slant type-1,2,3 submanifolds in para-Kaehler manifolds. We also analyze integrability and foliation properties for distributions of pointwise semi-slant type-1,2,3 submanifolds in para-Kaehler manifolds.

Keywords: Para-Kaehler manifold, slant submanifold, pointwise semi-slant submanifold.

AMS Subject Classification (2020): Primary: 53C43; Secondary: 53C15; 53C40.

1. Introduction

R.K. Rashevski defined para-Kaehler manifold in 1948 [13]. Then, B.A. Rozenfeld studied Para-Kaehler manifold in 1949 [12]. Rozenfeld compared Rashevskij's description with kaehler's description in the complex status and founded the similarity between Kaehler and para- Kaehler ones.

B.Y. Chen explained slant submanifolds of an almost Hermitian manifold in 1990 [6]. He expressed almost complex submanifolds and totaly real submanifolds as a generalization of an almost Hermitian manifold. Then, some geometers studied slant submanifolds [1, 2, 3, 5, 10, 14, 15].

F. Etayo, expressed pointwise slant submanifolds of an almost Hermitian manifold down the noun of quasislant submanifolds in 1998 [8]. B.Y. Chen and O.J. Garay studied pointwise slant submanifolds and they get some theorems, lemmas and examples in 2012 [7]. B. Şahin studied pointwise semi-slant submanifolds of a Kaehler manifold in 2013 [16]. Then, some authors studied pointwise semi-slant submanifolds in Riemannian manifolds [4, 7, 9, 11].

This paper is organized as follows. In part 2, we give preliminaries for this article, In part 3, we explain pointwise slant type-1,2,3 submanifolds in a para-Kaehler manifold and In part 4, we diagnose pointwise semi-slant type-1,2,3 submanifolds in a para-Kaehler manifold and we get some examples, theorems, lemmas and results. We also analyze integrability and foliation properties for distributions of pointwise semi-slant type-1,2,3 submanifolds in para-Kaehler manifolds.

2. Preliminaries

Let $(\bar{\mathcal{N}},C,\check{g})$ be a 2n-dimensional semi-Riemannian manifold. If there is a tensor field C of type (1,1) on $\bar{\mathcal{N}}$, such that

$$C^2 \mathcal{X} = \mathcal{X}, \quad \breve{g}(C\mathcal{X}, \mathcal{Y}) = -\breve{g}(\mathcal{X}, C\mathcal{Y})$$
 (2.1)

for any vector fields \mathcal{X} , \mathcal{Y} on $\bar{\mathcal{N}}$, it is called a para-Hermitian manifold. In addition, it is said to be para-Kaehler manifold, if it is satisfies $\bar{\nabla}C=0$.

Received: 27-12-2024, Accepted: 15-09-2025

^{*} Corresponding author

Let \mathcal{N} be a submanifold of $(\bar{\mathcal{N}}, C, \check{g})$. The Weingarten and Gauss equations are dedicated by

$$\bar{\nabla}_{\mathcal{X}}\mathcal{Y} = \nabla_{\mathcal{X}}\mathcal{Y} + \hat{h}(\mathcal{X}, \mathcal{Y}),\tag{2.2}$$

$$\bar{\nabla}_{\mathcal{X}}V = -A_{V}\mathcal{X} + \nabla_{\mathcal{X}}^{\perp}V,\tag{2.3}$$

for any $\mathcal{X}, \mathcal{Y} \in \Gamma(T\mathcal{N})$ and $V \in \Gamma(T\mathcal{N}^{\perp})$. \hat{h} is the fundamental form of \mathcal{N} , A_V is te Weingarten endomorphism connected with V and ∇^{\perp} is the normal connection.

For any tangent vector field X, we define

$$C\mathcal{X} = E\mathcal{X} + S\mathcal{X},\tag{2.4}$$

where EX is the tangential component of CX and SX is the normal one.

For any normal vector field V, we get

$$CV = eV + sV, (2.5)$$

where eV and sV are the tangential and normal components of CV.

3. Pointwise slant submanifolds of a para-Kaehler manifold

Definition 3.1. We call that a submanifold \mathcal{N} of a para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$ is pointwise slant, if $\breve{g}(E\mathcal{X}, E\mathcal{X})/g(C\mathcal{X}, C\mathcal{X})$ is a function (non-constant) for all time-like or space-like tangent vector field \mathcal{X} .

Definition 3.2. If \mathcal{N} is a complex (holomorfik) submanifold, in that case $C\mathcal{X} = E\mathcal{X}$ and above equation is equal to 1. More over if is \mathcal{N} is totaly real (anti-invaryant), then C=0, so $C\mathcal{X}=S\mathcal{X}$ and above equation equals 0. Therefore, both totaly real and complex submanifolds are special sitation of slant submanifolds. A neither totaly real nor complex slant submanifold can be called proper slant.

Definition 3.3. Let \mathcal{N} be a proper pointwise slant of a para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$. So we call three different types of proper pointwise slant submanifolds.

type 1; if for any time-like(space-like) vector field \mathcal{X} , $E\mathcal{X}$ is space-like(time-like) and $\frac{|E\mathcal{X}|}{|C\mathcal{X}|} > 1$. type 2; if for any time-like(space-like) vector field \mathcal{X} , $E\mathcal{X}$ is space-like(time-like) and $\frac{|E\mathcal{X}|}{|C\mathcal{X}|} < 1$.

type 3; if for any time-like(space-like) vector field \mathcal{X} , $E\mathcal{X}$ is time-like(space-like). So, $\dot{q}(E\mathcal{X}, E\mathcal{X}) = 0$.

Theorem 3.1. Let \mathcal{N} be a proper pointwise slant of a para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{\mathbf{g}})$. So, there exists three cases. (a) N is pointwise slant submanifold type-1 if and only if for any time-like (space-like) vector field \mathcal{X} , $E\mathcal{X}$ is space-like (time-like), and $\mu \in (1, +\infty)$ therefore

$$E^2 = \mu I d, (3.1)$$

we get $\mu = \cosh^2 \alpha$, with $\alpha > 0$.

(b) \mathcal{N} is pointwise slant submanifold type-2 if and only if for any time-like (space-like) vector field \mathcal{X} , $E\mathcal{X}$ is space-like (time-like), and $\mu \in (0,1)$ therefore

$$E^2 = \mu I d, (3.2)$$

we get $\mu = \cos^2 \alpha$, with $0 < \alpha < 2\pi$.

(c) \mathcal{N} is pointwise slant submanifold type 3 if and only if for any time-like (space-like) vector field \mathcal{X} , $E\mathcal{X}$ is time-like (space-like), and $\mu \in (-\infty, 0)$ therefore

$$E^2 = \mu I d, (3.3)$$

we get $\mu = -\sinh^2 \alpha$, with $\alpha > 0$.

Proof. Let \mathcal{N} be a proper pointwise slant type-1 submanifold. For any space like tangent vector field \mathcal{X} , $C\mathcal{X}$ is time like. We get $|E\mathcal{X}|/|C\mathcal{X}| > 1$ and $\alpha > 0$.

$$\cosh \alpha = \frac{|E\mathcal{X}|}{|C\mathcal{X}|} = \frac{\sqrt{-\check{g}(E\mathcal{X}, E\mathcal{X}))}}{\sqrt{-\check{g}(C\mathcal{X}, C\mathcal{X})}}$$
(3.4)

$$-\breve{g}(E\mathcal{X}, E\mathcal{X}) = \breve{g}(E^2\mathcal{X}, \mathcal{X}).$$

From (3.4), we get

$$\ddot{q}(E^2\mathcal{X}, \mathcal{X}) = -\cosh^2 \alpha \ddot{q}(C\mathcal{X}, C\mathcal{X})$$

Using (2.1), we have

$$\check{g}(E^2 \mathcal{X}, \mathcal{X}) = \cosh^2 \alpha \check{g}(\mathcal{X}, \mathcal{X})$$

$$E^2 = \cosh^2 \alpha.$$

Also, $E^2\mathcal{X}$ and \mathcal{X} are space-like. Because of $E^2\mathcal{X} = \mu X$, we get, $E^2 = \mu = \cosh^2 \alpha$.

By using a same way for any time-like tangent vector field Z and EZ, CZ are space-like. Therefore, in place of (3.4) we get

$$\cosh \alpha = \frac{|EZ|}{|CZ|} = \frac{\sqrt{\check{g}(EZ, EZ))}}{\sqrt{\check{g}(CZ, CZ)}}.$$

Because of $E^2X = \mu X$, for any space-like or time-like X it further provides for light-like vector fields. Therefore we get $E^2 = \mu Id$.

For second case, if \mathcal{N} is pointwise slant of type 2, for any space-like or time-like vector field \mathcal{X} , $|E\mathcal{X}|/|C\mathcal{X}| < 1$. So, we obtain $\alpha > 0$ and

$$\cos\alpha = \frac{|E\mathcal{X}|}{|C\mathcal{X}|} = \frac{\sqrt{-\check{g}(E\mathcal{X}, E\mathcal{X}))}}{\sqrt{-\check{g}(C\mathcal{X}, C\mathcal{X})}}.$$

We can evidence that similar to the solution above. We get $E^2 = \mu Id$ and $E^2 = \mu = \cos^2 \alpha$.

Lastly, if \mathcal{N} is pointwise slant of type-3, for any space-like vector field \mathcal{X} , $C\mathcal{X}$ is further space-like and $\alpha > 0$. We obtain

$$\sinh \alpha = \frac{|E\mathcal{X}|}{|C\mathcal{X}|} = \frac{\sqrt{\check{g}(E\mathcal{X}, E\mathcal{X}))}}{\sqrt{-\check{g}(C\mathcal{X}, C\mathcal{X})}}.$$

We get $E^2 = \mu Id$ and $E^2 = \mu = \sinh^2 \alpha$.

Remark 3.1. α angle is a founction and non-constant. Because N is pointwise slant submanifold. Lastly, for both pointwise slant submanifolds of type-1 and type-2, if \mathcal{X} is space-like, in that case $C\mathcal{X}$ is time-like. Thus, all pointwise slant submanifold of type-1 or type-2 must be a neutral semi-Riemann manifold.

Proposition 3.1. Let \mathcal{N} be a proper pointwise slant submanifold of a para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$. Then, \mathcal{N} is a proper pointwise slant submanifold of

Proof. For all vector field, By using (2.4), (2.5) and by applying C in (2.4), we obtain

$$C^{2}\mathcal{X} = CE\mathcal{X} + CS\mathcal{X}$$
$$\mathcal{X} = E^{2}\mathcal{X} + SE\mathcal{X} + eSX + sS\mathcal{X}$$

Equalizing the normal and tangent componenets of the above equation, we get

$$E^2 \mathcal{X} + eS \mathcal{X} = \mathcal{X}, \quad SE \mathcal{X} + sS \mathcal{X} = 0.$$
 (3.5)

Because of a pointwise slant type-1 submanifold, we obtain

$$eSX = X - E^2X = (1 - \cosh^2 \alpha)X = -\sinh^2 \alpha X$$

For a pointwise slant type-2 submanifold, we get

$$eSX = X - E^2X = (1 - \cos^2 \alpha)X = \sin^2 \alpha X$$

and lately, for a pointwise slant type-3 submanifold, we get

$$eSX = X - E^2X = (1 + \sinh^2 \alpha)X = \cosh^2 \alpha X.$$

For pointwise slant type-3 submanifold \mathcal{N}^{2y}_{2x} , we can select an concerted orthonormal slant frame

$$a_1, ..., a_y, a_1^*, ..., a_u^*$$

^{*}type-1, necessary and sufficent condition $eS\mathcal{X} = -\sinh^2\alpha\mathcal{X}$ for every time-like (space-like) vector field \mathcal{X} . *type-2, necessary and sufficent condition $eS\mathcal{X} = -\sin^2\alpha\mathcal{X}$ for every time-like (space-like) vector field \mathcal{X} . *type-3, necessary and sufficent condition $eS\mathcal{X} = \cosh^2\alpha\mathcal{X}$ for every time-like (space-like) vector field \mathcal{X} .

and $a_m^* = \frac{1}{\sinh \alpha} C a_m$. Recalled that both a_m and a_m^* get the same casual character. Also, the codimension corresponds with the dimension of the submanifold

$$\frac{1}{\cosh \alpha} Sa_1, ..., \frac{1}{\cosh \alpha} Sa_y, \frac{1}{\cosh \alpha} Sa_1^*, ..., \frac{1}{\cosh \alpha} Sa_y^*$$

is a concerted orthonormal frame in $\mathcal{N}^{\perp}E$.

Theorem 3.2. Let \mathcal{N}_{2x}^{2y} be a pointwise slant type-3 submanifold of a para-Kaehler manifold $\bar{\mathcal{N}}_{2x}^{4y}$. If $\nabla S=0$, the submanifold is minimal.

Proof. For a para-Kaehler manifold $\bar{\nabla}C=0$. By using the normal parts in Weingarten and Gauss formulas, we get $\bar{\nabla}C = 0$, it is be $C\bar{\nabla}_{\mathcal{X}}\mathcal{Y} = \bar{\nabla}_{\mathcal{X}}C\mathcal{Y}$. Then,

$$C\nabla_{\mathcal{X}}\mathcal{Y} + C\hat{h}(\mathcal{X}, \mathcal{Y}) = \bar{\nabla}_{\mathcal{X}}(E\mathcal{Y} + S\mathcal{Y})$$
$$E\nabla_{\mathcal{X}}\mathcal{Y} + S\nabla_{\mathcal{X}}\mathcal{Y} + C\hat{h}(\mathcal{X}, \mathcal{Y}) = \bar{\nabla}_{\mathcal{X}}E\mathcal{Y} + \bar{\nabla}_{\mathcal{X}}S\mathcal{Y}$$

by using (2.4) and (2.5)

$$E\nabla_{\mathcal{X}}\mathcal{Y} + S\nabla_{\mathcal{X}}\mathcal{Y} + e\hat{h}(\mathcal{X}, \mathcal{Y}) + s\hat{h}(\mathcal{X}, \mathcal{Y}) = \nabla_{\mathcal{X}}E\mathcal{Y} + \hat{h}(\mathcal{X}, E\mathcal{Y}) - A_{S\mathcal{Y}}\mathcal{X} + \nabla_{\mathcal{X}}^{\perp}S\mathcal{Y}$$
$$\hat{h}(\mathcal{X}, E\mathcal{Y}) + \nabla_{\mathcal{X}}^{\perp}S\mathcal{Y} - S\nabla_{\mathcal{X}}\mathcal{Y} - s\hat{h}(\mathcal{X}, \mathcal{Y}) = 0$$

If $\nabla S = 0$, it is be $S\nabla_{\mathcal{X}}\mathcal{Y} = \nabla_{\mathcal{X}}^{\perp}S\mathcal{Y}$, therefore, necessary and sufficient condition:

$$\hat{h}(\mathcal{X}, E\mathcal{Y}) = s\hat{h}(\mathcal{X}, \mathcal{Y})$$

By using an adapted orthonormal frame and for type-3, $s^2V = -\sinh^2 \alpha V$ for every normal vector field V. We get

$$\hat{h}(a_m^*, a_m^*) = \hat{h}(\frac{1}{\sinh \alpha} E a_m, \frac{1}{\sinh \alpha} E a_m) = \frac{1}{\sinh^2 \alpha} s^2 \hat{h}(a_m, a_m) = -\hat{h}(a_m, a_m))$$

As a result, $H = \sum_{m=1}^n \epsilon_m(\hat{h}(a_m, a_m) + \hat{h}(a_m^*, a_m^*)) = 0$, that $\epsilon_m = \breve{g}(a_m, a_m)$, and $\mathcal N$ is minimal.

Theorem 3.3. Let pointwise slant type-3 surfaces $\mathcal N$ of a para-Kaehler manifold $\bar{\mathcal N}_2^4$ be minimal. If and only if $\nabla S=0$.

Proof. We accept that
$$\mathcal N$$
 is space-like. and we give orthonormal bases $a_1, a_2 = \frac{1}{\sinh \alpha} E a_1$ and $a_3 = \frac{1}{\cosh \alpha} S a_1$, $a_4 = \frac{1}{\cosh \alpha} S a_2$ of $T \mathcal N$ and $T^\perp \mathcal N$.

We obtain that $\nabla S = 0$ necessary and sufficient condition $\hat{h}(\mathcal{X}, E\mathcal{Y}) = s\hat{h}(\mathcal{X}, \mathcal{Y})$ and for any tangent vector fields $\mathcal{X}, \mathcal{Y}, A_s V X = -A_V E \mathcal{X}$. For any \mathcal{X} tangent and any V normal and using equation $SE \mathcal{X} = -sS \mathcal{X}$, we get

$$ea_3 = \cosh \alpha a_1, \quad ea_4 = \cosh \alpha a_2$$

$$sa_3 = \sinh \alpha a_4, \quad sa_4 = \sinh \alpha a_3$$

Moreover,

$$A_{sa_3}\mathcal{X} = \frac{1}{\cosh \alpha} A_{sSa_1}\mathcal{X} = -\frac{1}{\cosh \alpha} A_{SEa_1}\mathcal{X} = \frac{1}{\cosh \alpha} e\hat{h}(\mathcal{X}, Ea_1)$$
$$= \frac{\sinh \alpha}{\cosh \alpha} e\hat{h}(\mathcal{X}, a_2)$$
(3.6)

We have used $(\nabla_{\mathcal{X}} E)\mathcal{Y} = A_{S\mathcal{Y}}\mathcal{X} + e\hat{h}(\mathcal{X},\mathcal{Y}) = 0$. Also,

$$A_{a_3}E\mathcal{X} = \frac{1}{\cosh \alpha} A_{Sa_1}E\mathcal{X} = -\frac{1}{\cosh \alpha} e\hat{h}(E\mathcal{X}, a_1). \tag{3.7}$$

For $\mathcal{X} = a_1$, from (3.6) and (3.7), it is be;

$$A_{a_3}Ea_1 = -\frac{1}{\cosh \alpha}e\hat{h}(Ra_1, a_1) = -\frac{\sinh \alpha}{\cosh \alpha}e\hat{h}(a_2, a_1) = -A_{sa_3}a_1$$

and for $\mathcal{X} = a_2$,

$$A_{a_3}Ea_2 = -\frac{1}{\cosh \alpha}e\hat{h}(Ea_2, a_1) = -\frac{1}{\cosh \alpha}e\hat{h}(\frac{1}{\sinh \alpha}E^2a_1, a_1) = \frac{\sinh \alpha}{\cosh \alpha}e\hat{h}(a_1, a_1)$$

and

$$A_{sa_3}a_2 = \frac{\sinh \alpha}{\cosh \alpha} e\hat{h}(a_2, a_2)$$

Because of $\mathcal N$ is minimal, we obtain $A_{sa_3}a_2=-A_{a_3}Ea_2$. So, $A_{sa_3}\mathcal X=-A_{a_3}E\mathcal X$ for any tangent vector field $\mathcal X$. Using in the similar way, it is proved for a_4 , then $A_{sV}\mathcal X=-A_VE\mathcal X$ for V normal and $\mathcal X$ tangent to $\mathcal N$. Thus, the proof is completed.

Let \mathcal{R}_k^{2k} be a semi-Riemannian submanifold of with the cartesian coordinates $(x_1,...,x_4)$ and para-complex

$$C(\frac{\partial}{\partial x_{2j}}) = \frac{\partial}{\partial x_{2j-1}}, \quad C(\frac{\partial}{\partial x_{2j-1}}) = \frac{\partial}{\partial x_{2j}}$$

that j=1,...,k. Let \mathcal{R}_k^{2k} be semi-Euclidian space of signature (+,-,+,-) with according to the canonical basis $(\frac{\partial}{\partial x_1},...,\frac{\partial}{\partial x_{2k}})$.

Now, we can give some examples of pointwise slant submanifolds.

Example 3.1. Let $\mathcal N$ be a pointwise slant submanifold of a para-Kaehler manifold $\bar{\mathcal N}_2^4$ and for $X:\mathcal N\to\mathcal N_2^4$,

$$X(u, v) = (u, \sinh v, \cosh v, v)$$

$$\begin{array}{l} X_u = \frac{\partial}{\partial x_1} \text{ and } CX_u = \frac{\partial}{\partial x_2} \\ X_v = \cosh v \frac{\partial}{\partial x_2} + \sinh v \frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_4} \text{ and } CX_v = \cosh v \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_3} + \sinh v \frac{\partial}{\partial x_4} \end{array}$$

$$\cosh \alpha = \frac{\breve{g}(X_u, CX_v)}{||X_u|| \cdot ||CX_v||} = \frac{\cosh v}{1 \cdot \sqrt{\cosh^2 v - \sinh^2 v + 1}} = \frac{\cosh v}{\sqrt{2}}$$

$$\cosh \alpha = \frac{\breve{g}(X_v, CX_u)}{||X_v|| \cdot ||CX_u||} = -\frac{\cosh v}{\sqrt{-1} \cdot \sqrt{-2}} = -\frac{\cosh v}{\sqrt{2}}$$

 $\mu=rac{\cosh^2 v}{2}$, if v>1, it is be pointwise slant type-1 submanifold. Because of type-1, $\mu\in(1,\infty)$.

Example 3.2. Let \mathcal{N} be a pointwise slant submanifold of a para-Kaehler manifold $\bar{\mathcal{N}}_2^4$. For $X: \mathcal{N} \to \mathcal{N}_2^4$,

$$X(u, v) = (\sinh u, \sinh v, \cosh u, \cosh v)$$

$$\begin{array}{l} X_u = \cosh u \frac{\partial}{\partial x_1} + \sinh u \frac{\partial}{\partial x_2} \text{ and } CX_u = \cosh u \frac{\partial}{\partial x_2} + \sinh u \frac{\partial}{\partial x_4} \\ X_v = \cosh v \frac{\partial}{\partial x_2} + \sinh v \frac{\partial}{\partial x_4} \text{ and } CX_v = \cosh v \frac{\partial}{\partial x_1} + \sinh v \frac{\partial}{\partial x_3} \end{array}$$

$$\cos \alpha = \frac{\breve{g}(X_u, CX_v)}{||X_u|| \cdot ||CX_v||} = \frac{\cosh u \cdot \cosh v + \sinh u \cdot \sinh V}{\sqrt{\cosh^2 u + \sinh^2 u} \cdot \sqrt{\cosh^2 v - \sinh^2 v}}$$

$$- \cosh(u+v)$$

 $\begin{array}{l} \mu = \frac{\cosh^2(u+v)}{\cosh 2u \cdot \cosh 2v}, \\ \mathbf{2,} \ \mu \in (0,1). \end{array}$ if $u \neq v$ and u = 0, v = 1, it is be pointwise slant type-2 submanifold. Because of type-

Example 3.3. Let \mathcal{N} be a pointwise slant submanifold of a para-Kaehler manifold $\overline{\mathcal{N}}_2^4$. For $X: \mathcal{N} \to \mathcal{N}_2^4$,

$$X(a,b) = (a \sin \alpha, ab \sin \alpha, a \cos \alpha, ab \cos \alpha)$$

$$\begin{split} X_a &= \sin \alpha \frac{\partial}{\partial x_1} + b \sin \alpha \frac{\partial}{\partial x_2} + \cos \alpha \frac{\partial}{\partial x_3} + b \cos \alpha \frac{\partial}{\partial x_4} \text{ and } \\ CX_a &= b \sin \alpha \frac{\partial}{\partial x_1} + \sin \alpha \frac{\partial}{\partial x_2} + b \cos \alpha \frac{\partial}{\partial x_3} + \cos \alpha \frac{\partial}{\partial x_4} \\ X_b &= a \sin \alpha \frac{\partial}{\partial x_2} + a \cos \alpha \frac{\partial}{\partial x_4} \text{ and } \\ CX_b &= a \sin \alpha \frac{\partial}{\partial x_1} + a \cos \alpha \frac{\partial}{\partial x_3} \end{split}$$

$$CX_b = a\sin\alpha \frac{\partial}{\partial x_1} + a\cos\alpha \frac{\partial}{\partial x_3}$$

$$\sinh \alpha = \frac{\breve{g}(X_a, CX_b)}{||X_a|| \cdot ||CX_b||}$$

$$=\frac{a\sin^2\alpha+a\cos^2\alpha}{\sqrt{\sin^2\alpha-b^2\sin^2\alpha+\cos^2\alpha+-b^2\cos^2\alpha}\cdot\sqrt{a^2\sin^2\alpha+a^2\cos^2\alpha}}$$
$$=\frac{a}{\sqrt{1-b^2}\sqrt{a^2}}=\frac{1}{\sqrt{1-b^2}}$$

 $\mu = \frac{1}{1-b^2}$, if $1-b^2 < 0$, $1 < b^2$. it is be pointwise slant type-3 submanifold. Because of type-3, $\mu \in (-\infty,0)$.

4. Pointwise semi-slant submanifolds in a para-Kaehler manifold

Definition 4.1. Let $(\bar{\mathcal{N}}, C, \check{g})$ be a para-Kaehler manifold and \mathcal{N} a semi-Riemannian submanifold of $\bar{\mathcal{N}}$. Thus, we call that \mathcal{N} is a pointwise semi-slant submanifold if there obtain two orthogonal distributions D^T and D^{α} . Then,

- 1) $T\mathcal{N} = D^T \oplus D^{\alpha}$
- **2)** The distribution D^T is an invaryant (holomorphic) distribution, $CD^T = D^T$
- **3)** The distribution D^{α} is a pointwise slant with slant function α .

Then, we say the angle α the slant function of the pointwise semi-slant submanifold \mathcal{N} . The invaryant distribution D^T of a pointwise semi-slant submanifold is a pointwise slant distribution with slant function $\alpha = 0$. If we indicate the dimension of D^T and D^{α} by k_1 and k_2 , therefore we get the following:

- a) If $k_2 = 0$, in that case \mathcal{N} is invaryant (holomorphic) submanifold.
- **b)** If $k_1 = 0$, in that case \mathcal{N} is pointwise slant submanifold.
- c) If α is constant, in that case \mathcal{N} is proper semi-slant submanifold with slant angle α .
- **d)** If $\alpha = \frac{\pi}{2}$, in that case \mathcal{N} is a CR-submanifold.

If $k_1 \neq \bar{0}$ and α is not a constant, we call that a pointwise semi-slant submanifold.

Let \mathcal{N} be a pointwise semi-slant submanifold of a $\overline{\mathcal{N}}$ para-Kaehler manifold. we indicate the projections on the distributions D^T and D^{α} by C_1 and C_2 . Therefore, we obtain

$$\mathcal{X} = C_1 \mathcal{X} + C_2 \mathcal{X} \tag{4.1}$$

 $\mathcal{X} \in \gamma(T\mathcal{N})$. Using *C* in (4.1), we get

$$C\mathcal{X} = CC_1\mathcal{X} + CC_2\mathcal{X}.$$

Using (2.4)

$$C\mathcal{X} = CC_1\mathcal{X} + EC_2\mathcal{X} + SC_2\mathcal{X},\tag{4.2}$$

$$CC_1 \mathcal{X} \in \Gamma(D^T), \quad SC_1 \mathcal{X} = 0,$$
 (4.3)

$$EC_2\mathcal{X} \in \Gamma(D^\alpha), \quad SC_2\mathcal{X} \in \Gamma(T\mathcal{N}^\perp),$$
 (4.4)

$$E\mathcal{X} = CC_1\mathcal{X} + EC_2\mathcal{X}. (4.5)$$

It is accepted that N is pointwise semi-slant type-1,2,3 submanifold of \bar{N} . Necassary and sufficient condition;

For type-1,

$$E^2 = \cosh^2 \alpha I. \tag{4.6}$$

For type-2,

$$E^2 = \cos^2 \alpha I. (4.7)$$

For type-3,

$$E^2 = -\sinh^2 \alpha I. \tag{4.8}$$

Theorem 4.1. Let \mathcal{N} be a submanifold of a para-Kaehler manifold $\bar{\mathcal{N}}$ and \mathcal{N} is a proper pointwise semi-slant type-1,2,3 submanifold. Then, $D = \{\mathcal{X} \in \Gamma(T\mathcal{N}) \mid (T_D)^2 = \mu \mathcal{X}\}$ and α is a function.

For type-1
$$\mu = \cosh^2 \alpha$$
,

for type-2
$$\mu = \cos^2 \alpha$$
,

for type-3
$$\mu = \cos^2 \alpha$$
,

Proof. (For type-1) Let \mathcal{N} be a proper pointwise semi-slant submanifold of $\bar{\mathcal{N}}$.

$$\cosh \alpha = \frac{\breve{g}(C\mathcal{X}, E\mathcal{X})}{||CX|| \cdot ||E\mathcal{X}||} = \frac{E\mathcal{X} + S\mathcal{X}, E\mathcal{X}}{\sqrt{\breve{g}(C\mathcal{X}, C\mathcal{X})} \cdot ||E\mathcal{X}||} = \frac{\breve{g}(E\mathcal{X}, E\mathcal{X})}{||\mathcal{X}|| \cdot ||E\mathcal{X}||}$$
$$\cosh \alpha = \frac{\breve{g}(\mathcal{X}, E^2\mathcal{X})}{||\mathcal{X}|| \cdot ||E\mathcal{X}||}$$

and using $\cosh \alpha = \frac{|E\mathcal{X}|}{|S\mathcal{X}|}$,

$$\cosh \alpha = \frac{\breve{g}(\mathcal{X}, E^2 \mathcal{X})}{||\mathcal{X}|| \cdot \cosh \alpha ||C \mathcal{X}||}.$$

Using $||C\mathcal{X}|| = ||\mathcal{X}||$

$$\cosh \alpha = \frac{\breve{g}(\mathcal{X}, E^{2}\mathcal{X})}{||\mathcal{X}^{2}|| \cdot \cosh \alpha}$$

$$\cosh^{2} \alpha \cdot \breve{g}(\mathcal{X}, \mathcal{X}) = \breve{g}(\mathcal{X}, E^{2}\mathcal{X})$$

$$\breve{g}(\mathcal{X}, \cosh^{2} \alpha \mathcal{X}) = \breve{g}(\mathcal{X}, E^{2}\mathcal{X})$$

$$E^{2}\mathcal{X} = \cosh^{2} \mathcal{X} \quad and \quad E^{2} = \cosh^{2} \alpha I$$

$$E^{2} = \mu = \cosh^{2} \alpha,$$

(For type-2), we get

$$\mu = \cos^2 \alpha$$
,

(For type-3), we get

$$\mu = -\sinh^2 \alpha.$$

Thus, we obtain the following results.

Corollary 4.1. Let \mathcal{N} be a proper pointwise semi-slant type-1 submanifold of para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$. In that case, we get

$$\breve{g}(E\mathcal{X}, E\mathcal{Y}) = -\cosh^2 \alpha \quad \breve{g}(\mathcal{X}, \mathcal{Y}),$$
(4.9)

$$\breve{g}(S\mathcal{X}, S\mathcal{Y}) = \sinh^2 \alpha \quad \breve{g}(\mathcal{X}, \mathcal{Y}).$$
(4.10)

Proof. For $\mathcal{X}, \mathcal{Y} \in D^{\alpha}$

$$\breve{g}(C\mathcal{X},\mathcal{Y}) = -\breve{g}(\mathcal{X},C\mathcal{Y})$$

Using (2.4),

$$\check{g}(E\mathcal{X} + S\mathcal{X}, \mathcal{Y}) = -\check{g}(\mathcal{X}, E\mathcal{Y} + S\mathcal{Y})
 \check{g}(E\mathcal{X}, \mathcal{Y}) = -\check{g}(\mathcal{X}, E\mathcal{Y})$$

Using $E\mathcal{Y}$ in \mathcal{Y}

$$\ddot{g}(E\mathcal{X}, E\mathcal{Y}) = -\ddot{g}(\mathcal{X}, E^{2}\mathcal{Y})
 \ddot{g}(E\mathcal{X}, E\mathcal{Y}) = -\ddot{g}(\mathcal{X}, \cosh^{2}\alpha\mathcal{Y})
 \ddot{g}(E\mathcal{X}, E\mathcal{Y}) = -\cosh^{2}\alpha \quad \ddot{g}(\mathcal{X}, \mathcal{Y})$$

Therefore, we prove (4.9).

$$\begin{split} \breve{g}(C\mathcal{X},C\mathcal{Y}) &= -\breve{g}(\mathcal{X},\mathcal{Y}) \\ \breve{g}(E\mathcal{X} + S\mathcal{X}, E\mathcal{Y} + S\mathcal{Y}) &= -\breve{g}(\mathcal{X},\mathcal{Y}) \\ \breve{g}(EX,E\mathcal{Y}) + \breve{g}(S\mathcal{X},S\mathcal{Y}) &= -\breve{g}(\mathcal{X},\mathcal{Y}) \\ \breve{g}(S\mathcal{X},S\mathcal{Y}) &= -\breve{g}(\mathcal{X},\mathcal{Y}) + \cosh^{2}\alpha\breve{g}(\mathcal{X},\mathcal{Y}) \\ \breve{g}(S\mathcal{X},S\mathcal{Y}) &= \breve{g}(\mathcal{X},\mathcal{Y}) \cdot (-1 + \cosh^{2}\alpha) \\ \breve{g}(S\mathcal{X},S\mathcal{Y}) &= \sinh^{2}\alpha \quad \breve{g}(\mathcal{X},\mathcal{Y}) \end{split}$$

In this case, we get (4.10).

Corollary 4.2. Let \mathcal{N} be a proper pointwise semi-slant type-2 submanifold of para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$. In that case, we get

$$\breve{g}(E\mathcal{X}, E\mathcal{Y}) = -\cos^2 \alpha \quad \breve{g}(\mathcal{X}, \mathcal{Y})$$
(4.11)

$$\breve{g}(S\mathcal{X}, S\mathcal{Y}) = -\sin^2 \alpha \quad \breve{g}(\mathcal{X}, \mathcal{Y})$$
(4.12)

Proof. For type-2, The proof is obtained, using a method similar to the above proof.

Corollary 4.3. Let \mathcal{N} be a proper pointwise semi-slant type-3 submanifold of para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$. In that case, we get

$$\breve{g}(E\mathcal{X}, E\mathcal{Y}) = \sinh^2 \alpha \quad \breve{g}(\mathcal{X}, \mathcal{Y}),$$
(4.13)

$$\breve{g}(S\mathcal{X}, S\mathcal{Y}) = -\cosh^2 \alpha \quad \breve{g}(\mathcal{X}, \mathcal{Y}).$$
(4.14)

Proof. (For type-3) using similarly method, the proof is obtained.

Theorem 4.2. Let \mathcal{N} be a proper pointwise type-1,2,3 submanifold of a para-Kaehler manifold. **1)** The distribution D^T is integrable necessary and sufficient condition,

$$\check{q}(\hat{h}(\mathcal{X}, C\mathcal{Y}), SV) = \check{q}(\hat{h}(C\mathcal{X}, \mathcal{Y}), SV) \quad \mathcal{X}, \mathcal{Y} \in \Gamma(D^T) \quad and \quad V \in \Gamma(D^{\alpha})$$

2) The distribution D^{α} is integrable necessary and sufficient condition,

$$\check{g}(A_{SEW}Z - A_{SEZ}W, \mathcal{X}) = \check{g}(A_{SW}Z - A_{SZ}W, C\mathcal{X})$$

$$\mathcal{X} \in \Gamma(D^T), Z, W \in \Gamma(D^\alpha)$$

,

Proof. 1) (For type-1)

$$\begin{split} \breve{g}([\mathcal{X},\mathcal{Y}],V) &= g(\bar{\nabla}_{\mathcal{X}}\mathcal{Y} - \bar{\nabla}_{\mathcal{Y}}\mathcal{X},V) \\ &= \breve{g}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y},V) - \breve{g}(\bar{\nabla}_{\mathcal{Y}}\mathcal{X},V). \end{split}$$

Using (2.1), (2.2), (2.3), (2.4) and (2.5), we get

$$\breve{g}([\mathcal{X}, \mathcal{Y}], V) - \cosh^{2} \alpha \breve{g}([\mathcal{X}, \mathcal{Y}], V) = -\breve{g}(\hat{h}(\mathcal{X}, C\mathcal{Y}), SV) + \breve{g}(\hat{h}(\mathcal{Y}, C\mathcal{X}), SV))
- \sinh^{2} \alpha \breve{g}([\mathcal{X}, \mathcal{Y}], V) = \breve{g}(\hat{h}(\mathcal{X}, C\mathcal{Y}), SV) - \breve{g}(\hat{h}(C\mathcal{X}, \mathcal{Y}), SV))$$

In this case,

$$-\sinh^2 \alpha \neq 0, \quad V \neq 0, \quad [\mathcal{X}, \mathcal{Y}] = 0$$

Thus, part 1 of the proof is completed.

2) (For type-1)

$$\begin{split} \breve{g}([Z,W],\mathcal{X}) &= -\breve{g}(C[Z,W],C\mathcal{X}) \\ &= -\breve{g}(C\bar{\nabla}_ZW,C\mathcal{X}) + \breve{g}(C\bar{\nabla}_WZ,C\mathcal{X}) \\ &= -\breve{g}(\bar{\nabla}_ZCW,C\mathcal{X}) + \breve{g}(\bar{\nabla}_WCZ,C\mathcal{X}) \\ &= -\breve{g}(\bar{\nabla}_ZCW,C\mathcal{X}) + \breve{g}(\bar{\nabla}_WCZ,C\mathcal{X}) \\ &= -\breve{g}(\bar{\nabla}_ZEW,C\mathcal{X}) - \breve{g}(\bar{\nabla}_ZSW,C\mathcal{X}) + \breve{g}(\bar{\nabla}_WEZ,C\mathcal{X}) \\ &+ \breve{g}(\bar{\nabla}_WSZ,C\mathcal{X}) \\ &= \breve{g}(\bar{\nabla}_ZCEW,\mathcal{X}) - \breve{g}(\bar{\nabla}_ZSW,C\mathcal{X}) + \breve{g}(\bar{\nabla}_WCEZ,\mathcal{X}) \\ &+ \breve{g}(\bar{\nabla}_WSZ,C\mathcal{X}) \\ &= \breve{g}(\bar{\nabla}_ZCEW,\mathcal{X}) - \breve{g}(\bar{\nabla}_ZSW,C\mathcal{X}) - \breve{g}(\bar{\nabla}_ZSW,C\mathcal{X}) \\ &- \breve{g}(\bar{\nabla}_ZE^2W,\mathcal{X} + \breve{g}(\bar{\nabla}_ZSEW,\mathcal{X}) - \breve{g}(\bar{\nabla}_ZSW,C\mathcal{X}) \\ &- \breve{g}(\bar{\nabla}_WE^2Z,\mathcal{X}) - \breve{g}(\bar{\nabla}_WSEZ,\mathcal{X}) + \breve{g}(A_{SW}Z,C\mathcal{X}) \\ &= \cosh^2\alpha\breve{g}(\bar{\nabla}_ZW,\mathcal{X}) - \breve{g}(A_{SEW}Z,\mathcal{X}) + \breve{g}(A_{SZ}W,C\mathcal{X}) \\ &- \cosh^2\alpha\breve{g}(\bar{\nabla}_WZ,\mathcal{X}) + \breve{g}(A_{SEZ}W,\mathcal{X}) - \breve{g}(A_{SZ}W,C\mathcal{X}) \\ &- \sinh^2\alpha\breve{g}([Z,W],\mathcal{X}) = \breve{g}(A_{SEZ}W - A_{SEW}Z,\mathcal{X}) + \breve{g}(A_{SZ}W - A_{SW}Z,C\mathcal{X}) \\ &- \sinh^2\alpha\breve{g}([Z,W],\mathcal{X}) = -\breve{g}(A_{SEW}Z - A_{SEZ}W,\mathcal{X}) + \breve{g}(A_{SW}Z - A_{SZ}W,C\mathcal{X}) \end{split}$$

Because of [Z, W] = 0, we get part 2) of the proof.

(For type-2 and type-3) using similar method, we get proof.

Theorem 4.3. Let \mathcal{N} be a proper pointwise semi-slant type-1,2,3 submanifold of a para-Kaehler manifold. **1)** The holomorphic distribution D^T describes a totaly geodesic foliation necessary and sufficient conditions

$$\check{g}(\hat{h}(\mathcal{X}, \mathcal{Y}), SEV) = \check{g}(\hat{h}(\mathcal{X}, C\mathcal{Y}), SV)$$
(4.15)

 $for \mathcal{X}, \mathcal{Y} \in \Gamma(D^T)$ and $V \in \Gamma(D^{\alpha})$

2) The slant distribution (D^{α}) describes a totaly geodesic foliation on $\mathcal N$ necessary and sufficient conditions

$$\check{g}(\hat{h}(U,\mathcal{X}), SEV) = \check{g}(\hat{h}(U,C\mathcal{X}), SV)$$
(4.16)

 $for \mathcal{X} \in \Gamma(D^T)$ and $U, V \in \Gamma(D^{\alpha})$.

Proof. (For type-1)

1)
$$for \mathcal{X}, \mathcal{Y} \in \Gamma(D^T)$$
 and $V \in \Gamma(D^{\alpha})$

Let \mathcal{N} be a proper pointwise semi-slant submanifold of a $\overline{\mathcal{N}}$ para-Kaehler manifold. Therefore, we get

$$\ddot{q}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y}, V) = -\ddot{q}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y}, CV)$$

Using (2.4) and (2.5)

$$\begin{split} \breve{g}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y},V) &= -\breve{g}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y},EV+SV) \\ &= -\breve{g}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y},EV) - \breve{g}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y},SV) \\ &= \breve{g}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y},CEV) - \breve{g}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y},SV) \\ &= \breve{g}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y},E^{2}V+SEV) - \breve{g}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y},SV) \\ &= \breve{g}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y},E^{2}V) + \breve{g}(\bar{\nabla}_{\mathcal{X}}\mathcal{Y},SEV) - \breve{g}(\bar{\nabla}_{\mathcal{X}}C\mathcal{Y},SV) \end{split}$$

Using (2.2) and (4.6)

$$(1 - \cosh^{2} \alpha) \breve{g}(\bar{\nabla}_{\mathcal{X}} \mathcal{Y}, V) = \breve{g}(\hat{h}(\mathcal{X}, \mathcal{Y}), SEV) - \breve{g}(\hat{h}(\mathcal{X}, C\mathcal{Y}), SV)$$
$$(-\sinh^{2} \alpha) \breve{g}(\bar{\nabla}_{\mathcal{X}} \mathcal{Y}, V) = \breve{g}(\hat{h}(\mathcal{X}, \mathcal{Y}), SEV) - \breve{g}(\hat{h}(\mathcal{X}, C\mathcal{Y}), SV)$$

Thus the first part of the theorem is obtained and in a similar way the second part of the theorem is obtained. (For type-2 and type-3), using similar method, we get proof.

Therefore, the following result is obtained.

Corollary 4.4. Let $\mathcal N$ be a proper pointwise semi-slant type-1,2,3 submanifold of a $\bar{\mathcal N}$ para-Kaehler manifold. Therefore $\mathcal N$ is a locally Riemannian product manifold $\mathcal N=m_T\times m_\alpha$ necessary and sufficient condition;

$$A_S EVX = A_S V C \mathcal{X}$$

 $for \mathcal{X} \in \Gamma(D^{\perp})$ and $V \in \Gamma(D^{\alpha})$, that m_T is a holomorphic submanifold and m_{α} is a pointwise semi-slant submanifold of $\bar{\mathcal{N}}$.

Let \mathcal{N} be submanifold of a semi-Riemannian manifold $(\bar{\mathcal{N}}, \check{g})$. We say \mathcal{N} a totaly umbilic submanifold of $(\bar{\mathcal{N}}, \check{g})$. If

$$\hat{h}(\mathcal{X}, \mathcal{Y}) = \check{g}(\mathcal{X}, \mathcal{Y})H \quad for \quad \mathcal{X}, \mathcal{Y} \in \Gamma(T\mathcal{N})$$
 (4.17)

that H is the mean curvature vector field of \mathcal{N} in $\overline{\mathcal{N}}$.

Lemma 4.1. Let \mathcal{N} be a pointwise semi-slant totally umbilic submanifold of para-Kaehler manifold $(\bar{\mathcal{N}}, C, \check{g})$. Suppose that $\bar{\mathcal{N}}$ is a para-Kaehler manifold, C is a para-complex structure, \check{g} is a semi-Riemannian metric. Then for type-1, type-2 and type-3;

$$H \in \Gamma(SD_2). \tag{4.18}$$

Proof. Let $\overline{\mathcal{N}}$ be a para-Kaehler manifold.

N is β -invaryant $(\beta(N) = N)$. For $\mathcal{X}, \mathcal{Y} \in \Gamma(D_1), Z \in \Gamma(N)$

$$\nabla_{\mathcal{X}}\beta Y + \hat{h}(\mathcal{X}, \beta \mathcal{Y}) = \bar{\nabla}_{\mathcal{X}}\beta \mathcal{Y}$$
$$= \beta \bar{\nabla}_{\mathcal{X}}\mathcal{Y}$$
$$= E\nabla_{\mathcal{X}}\mathcal{Y} + S\nabla_{\mathcal{X}}\mathcal{Y} + e\hat{h}(\mathcal{X}, \mathcal{Y}) + s\hat{h}(\mathcal{X}, \mathcal{Y})$$

therefore by taking the inner product of both sides with Z,

$$\ddot{g}(\hat{h}(\mathcal{X}, \beta \mathcal{Y}), Z) = \ddot{g}(\hat{sh}(\mathcal{X}, \mathcal{Y}), Z).$$
(4.19)

From (4.15) and (4.17), we get

$$\breve{g}(\mathcal{X}, \beta \mathcal{Y})\breve{g}(H, Z) = -\breve{g}(\mathcal{X}, \mathcal{Y})\breve{g}(H, \beta Z).$$
(4.20)

Interchanging X and Y

$$\breve{g}(\mathcal{Y}, \beta \mathcal{X})\breve{g}(H, Z) = -\breve{g}(\mathcal{Y}, \mathcal{X})\breve{g}(H, \beta Z).$$
(4.21)

Comparing (4.20) with (4.21), we get

$$\breve{g}(\mathcal{X}, \mathcal{Y})\breve{g}(H, \beta Z) = 0$$
(4.22)

that means $H \in \Gamma(SD_2)$

Therefore, the following result is obtained.

Corollary 4.5. Let N be a pointwise semi-slant totaly umbilic submanifold of para-Kaehler manifold (\bar{N}, C, \check{g}) with the semi-slant function α .

If $\alpha = 0$ *on* \mathcal{N} , therefore \mathcal{N} is a totaly geodesic submanifold of $\overline{\mathcal{N}}$.

Let \mathcal{R}_k^{2k} be a semi-Riemannian submanifold, the cartesian coordinates $(x_1,...,x_{2j})$ and para-complex structure

$$C(\frac{\partial}{\partial x_{2i}}) = \frac{\partial}{\partial x_{2i-1}}, \quad C(\frac{\partial}{\partial x_{2i-1}}) = \frac{\partial}{\partial x_{2i}}$$

that j=(1,...,k). Let \mathcal{R}_k^{2k} be semi-Euclidian space of signature (+,-,+,-,...) with according to the canonical basis $(\frac{\partial}{\partial x_1},...,\frac{\partial}{\partial x_{2k}})$.

Now, we give some examples of proper pointwise semi-slant submanifolds.

Example 4.1. Let $\mathcal N$ be a proper pointwise semi-slant submanifold of a para-Kaehler manifold $\bar{\mathcal N}_2^4$, defined by the $X:\mathcal N_2^4\to R_3^6$

$$X(u, v, t, s) = (v, \sinh u, \cosh u, u, t, s)$$

$$X_{u} = \cosh u \frac{\partial}{\partial x_{2}} + \sinh u \frac{\partial}{\partial x_{3}} + \frac{\partial}{\partial x_{4}} \text{ and } CX_{u} = \cosh u \frac{\partial}{\partial x_{1}} + \frac{\partial}{\partial x_{3}} + \sinh u \frac{\partial}{\partial x_{4}}$$

$$X_{v} = \frac{\partial}{\partial x_{1}} \text{ and } CX_{v} = \frac{\partial}{\partial x_{2}}$$

$$X_{t} = \frac{\partial}{\partial x_{5}} \text{ and } CX_{t} = \frac{\partial}{\partial x_{6}} = X_{s}$$

$$X_{s} = \frac{\partial}{\partial x_{6}} \text{ and } CX_{s} = \frac{\partial}{\partial x_{5}} = X_{t}$$

 $D^T = span\{X_t, X_s\}$ is a holomorphic distribution and $D^{\alpha} = span\{X_u, X_v\}$ is a neutral proper pointwise semi-slant distribution with slant function α .

$$\cosh \alpha = \frac{\breve{g}(X_u, CX_v)}{||X_U|| \cdot ||CX_v||} = \frac{\cosh u}{1 \cdot \sqrt{\cosh^2 u - \sinh^2 u + 1}} = \frac{\cosh u}{\sqrt{2}}$$

$$\cosh \alpha = \frac{\breve{g}(X_v, CX_u)}{||X_v|| \cdot ||CX_u||} = -\frac{\cosh u}{\sqrt{-1} \cdot \sqrt{-2}} = -\frac{\cosh u}{\sqrt{2}}$$

semi-slant function is $\alpha = \cosh^{-1}(\frac{\cosh u}{\sqrt{2}})$

 $E^2 = \mu = \frac{\cosh^2 u}{2}$, if $(u \ge 1)$, it is be proper pointwise semi-slant (type-1) submanifold. Because of type-1, $\mu \in (1, \infty)$.

Example 4.2. Let \mathcal{N} be a proper pointwise semi-slant submanifold of a para-Kaehler manifold $\bar{\mathcal{N}}_2^4$, defined by the $X:\mathcal{N}_2^4\to R_3^6$

$$X(t, s, u, v) = (t, s, \sinh u, \sinh v, \cosh u, \cosh v)$$

$$\begin{split} X_t &= \frac{\partial}{\partial x_1} \text{ and } CX_t = \frac{\partial}{\partial x_2} = X_s \\ X_s &= \left(\frac{\partial}{\partial x_2}\right) \text{ and } CX_s = \frac{\partial}{\partial x_1} = X_t \\ X_u &= \cosh u \frac{\partial}{\partial x_3} + \sinh u \frac{\partial}{\partial x_5} \text{ and } CX_u = \cosh u \frac{\partial}{\partial x_4} + \sinh u \frac{\partial}{\partial x_6} \\ X_v &= \cosh v \frac{\partial}{\partial x_4} + \sinh v \frac{\partial}{\partial x_6} \text{ and } CX_v = \cosh v \frac{\partial}{\partial x_3} + \sinh v \frac{\partial}{\partial x_5} \end{split}$$

We find $D^T = span\{X_t, X_s\}$ is a holomorphic distribution and $D^{\alpha} = span\{X_u, X_v\}$ is a neutral proper pointwise semi-slant distribution type-2 with semi-slant function α .

$$\cos \alpha = \frac{\breve{g}(X_u, CX_v)}{||X_u|| \cdot ||CX_v||} = \frac{\cosh u \cdot \cosh v + \sinh u \cdot \sinh v}{\sqrt{\cosh^2 u + \sinh^2 u} \cdot \sqrt{\cosh^2 v + \sinh^2 v}}$$
$$= \frac{\cosh(u+v)}{\sqrt{\cosh 2u} \cdot \sqrt{\cosh 2v}}$$

semi-slant function is $\alpha = \cos^{-1}(\frac{\cosh(u+v)}{\sqrt{\cosh 2u} \cdot \sqrt{\cosh 2v}})$

 $E^2=\mu=rac{\cosh^2(u+v)}{\cosh 2u\cdot\cosh 2v}.$ if, $(u,v\in R^+),$ it is be proper pointwise semi-slant (type-2) submanifold. Because of type-2, $\mu\in(0,1).$

Example 4.3. Let \mathcal{N} be a proper pointwise semi-slant submanifold of a para-Kaehler manifold $\bar{\mathcal{N}}_2^4$, defined by the $X:\mathcal{N}_2^4\to R_5^{10}$

$$X(a,b,c,d) = (a\sin c, b\sin c, a\sin d, b\sin a, a\cos c, b\cos c, a\cos d, b\cos d, c, d)$$

$$\begin{split} X_a &= \sin c \frac{\partial}{\partial x_1} + \sin d \frac{\partial}{\partial x_3} + \cos c \frac{\partial}{\partial x_5} + \cos d \frac{\partial}{\partial x_7} \\ X_b &= \sin c \frac{\partial}{\partial x_2} + \sin d \frac{\partial}{\partial x_4} + \cos c \frac{\partial}{\partial x_6} + \cos d \frac{\partial}{\partial x_8} \\ X_c &= a \cos c \frac{\partial}{\partial x_1} + b \cos c \frac{\partial}{\partial x_2} - a \sin c \frac{\partial}{\partial x_5} - b \sin c \frac{\partial}{\partial x_6} + \frac{\partial}{\partial x_9} \\ X_d &= a \cos d \frac{\partial}{\partial x_3} + b \cos 4 \frac{\partial}{\partial x_4} - a \sin d \frac{\partial}{\partial x_7} - b \sin d \frac{\partial}{\partial x_8} + \frac{\partial}{\partial x_{10}} \\ CX_a &= \sin c \frac{\partial}{\partial x_2} + \sin d \frac{\partial}{\partial x_4} + \cos c \frac{\partial}{\partial x_6} + \cos d \frac{\partial}{\partial x_8} \\ CX_b &= \sin c \frac{\partial}{\partial x_1} + \sin d \frac{\partial}{\partial x_3} + \cos c \frac{\partial}{\partial x_5} + \cos d \frac{\partial}{\partial x_7} \\ CX_c &= b \cos c \frac{\partial}{\partial x_1} + a \cos c \frac{\partial}{\partial x_2} - b \sin c \frac{\partial}{\partial x_5} - a \sin c \frac{\partial}{\partial x_6} + \frac{\partial}{\partial x_{10}} \end{split}$$

$$CX_d = b\cos d\frac{\partial}{\partial x_3} + a\cos d\frac{\partial}{\partial x_4} - b\sin d\frac{\partial}{\partial x_7} - a\sin d\frac{\partial}{\partial x_8} + \frac{\partial}{\partial x_9}$$

We find $D^T = span\{X_a, X_b\}$ is a holomorphic distribution and $D^{\alpha} = span\{X_c, X_d\}$ is a neutral proper pointwise semi-slant distribution with semi-slant function α .

$$\sinh \alpha = \frac{\breve{g}(X_d, CX_c)}{||X_d|| \cdot ||CX_c||} = \frac{-1}{\sqrt{a^2 - b^2 - 1} \cdot \sqrt{b^2 - a^2 - 1}}$$

semi-slant function is $\alpha = \sinh^{-1}(\frac{-1}{\sqrt{a^2-b^2-1}\cdot\sqrt{b^2-a^2-1}})$ $E^2 = \mu = \frac{1}{(a^2-b^2-1)(b^2-a^2-1)} = \frac{-1}{(a^2-b^2)^2-1}.$ if $(a^2-b^2>1)$, it is be proper pointwise semi-slant (type-3) submanifold. Because of (type-3), $\mu \in (-\infty,0)$.

Acknowledgements

The authors would like to thank the editor and the referees for some useful comments and their hepful suggestions that have improved the quality of this article.

Funding

Authors are not supported.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] Akyol M.A., Beyendi S.: A note on Quasi bi-slant submanifolds of cosymplectic manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math Stat. 69 (2), 1508-1521 (2020). https://doi.org/10.31801/cfsuasmas.729545
- [2] Alegre P., Carriazo A.: Slant submanifolds of para Hermitian manifolds. Mediterr. J. Math. 14 (5), 214-221 (2017). https://doi.org/10.1007/s00009-017-1018-3
- [3] Arslan K., Ezentaş R., Mihai I., Murathan C., Özgür C.: Ricci curvature of submanifolds in kenmotsu space forms. International Journal of Mathematics and Mathematical Sciences, 29 (12), 719-726 (2002). https://doi.org/10.1155/S0161171202012863
- [4] Ayaz S., Gündüzalp Y.: Warped product pointwise hemi-slant submanifolds whose ambient spaces are nearly para-Kaehler manifolds. Turkish Journal of Mathematics, 48 (3), 477-497, (2024). https://doi.org/10.55730/1300-0098.3520
- [5] Cabrerizo J.L., Carriazo A., Fernandez L.M., Fernandez M.: Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 42 (01) 125-138, (2000). https://doi.org/10.1017/S0017089500010156
- [6] Chen B. -Y.: Geometry of slant submanifolds. Katholieke Universiteit Leuven, (1990).
- [7] Chen B. -Y., Garay O.J.: Pointwise slant submanifolds in almost Hermitian manifolds. Turk. J. Math. 36 (4), 630-640 (2012). https://doi.org/10.3906/mat-1101-34
- [8] Etayo F.: On quasi slant submanifold of an almost Hermitian manifolds. Publ. Math. Debrecen, 53 (1-2), 217-223 (1998).
- [9] Gündüzalp Y.: Neutral slant submanifolds of a para-Kaehler manifold. Hindawi Publishing Corporation Abstract and Applied Analysis, 2013 (2), 1-8 (2013). https://doi.org/10.1155/2013/752650
- [10] Gündüzalp Y.: Riemannian submersions from framed metric manifolds. International Electronic Journal of Geometry. 6 (1), 89-99 (2013).
- [11] Park K.S.: Pointwise slant and pointwise semi-slant submanifolds in almost contact metric manifolds. Mathematics, 8 (6), 985-1018 (2020). https://doi.org/10.3390/math8060985
- [12] Rozenfeld B.A.: On unitary and stratified spaces. Trudy Sem. Vektor. Tenzor. Anal. 7, 260-275 (1949).
- [13] Rashevskij P.K.: The scalar field in a stratified space. Trudy Sem. Vektor. Tenzor. Anal. 6, 225-248 (1948).
- [14] Sular S., Özgür C., Murathan C.: Pseudoparalell anti-invariant submanifolds of kenmotsu manifolds. Hacettepe Journal of Mathematics and Statics, 39 (4), 535-543 (2010).
- [15] Sahin B.: Slant submanifold of quaternion Kaehler manifolds. Commum. Korean Math. Soc. 22 (22), 123-135 (2007). https://doi.org/10.4134/CKMS.2007.22.1.123
- [16] Sahin B.: Warped product pointwise semi-slant submanifolds of Kaehler manifolds. Port. Math. 70 (3), 251-268 (2013). https://doi.org/10.4171/PM/1934

Affiliations

SEDAT AYAZ

Address: Ministry of National Education, 13200, Tatvan, Bitlis-Turkey.

E-MAIL: ayazsedatayaz@gmail.com ORCID ID: 0000-0002-8225-5503

Yılmaz Gündüzalp

Address: Dicle University, Dept. of Mathematics, 21280, Sur, Diyarbakır-Turkey.

E-MAIL: ygunduzalp@dicle.edu.tr ORCID ID: 0000-0002-0932-949X