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ABSTRACT

In this paper, we study pointwise slant and pointwise semi-slant type-1,2,3 submanifolds
in para- Kaehler manifolds. We obtain some theorems, lemmas and examples for pointwise
slant and pointwise semi-slant type-1,2,3 submanifolds in para-Kaehler manifolds. We also
analyze integrability and foliation properties for distributions of pointwise semi-slant type-1,2,3
submanifolds in para-Kaehler manifolds.
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1. Introduction

R.K. Rashevski defined para-Kaehler manifold in 1948 [13]. Then, B.A. Rozenfeld studied Para-Kaehler
manifold in 1949 [12]. Rozenfeld compared Rashevskij’s description with kaehler’s description in the complex
status and founded the similarity between Kaehler and para- Kaehler ones.

B.Y. Chen explained slant submanifolds of an almost Hermitian manifold in 1990 [6]. He expressed almost
complex submanifolds and totaly real submanifolds as a generalization of an almost Hermitian manifold. Then,
some geometers studied slant submanifolds [1, 2, 3, 5, 10, 14, 15].

F. Etayo, expressed pointwise slant submanifolds of an almost Hermitian manifold down the noun of quasi-
slant submanifolds in 1998 [8]. B.Y. Chen and O.]. Garay studied pointwise slant submanifolds and they get
some theorems, lemmas and examples in 2012 [7]. B. Sahin studied pointwise semi-slant submanifolds of a
Kaehler manifold in 2013 [16]. Then, some authors studied pointwise semi-slant submanifolds in Riemannian
manifolds [4, 7, 9, 11].

This paper is organized as follows. In part 2, we give preliminaries for this article, In part 3, we explain
pointwise slant type-1,2,3 submanifolds in a para-Kaehler manifold and In part 4, we diagnose pointwise
semi-slant type-1,2,3 submanifolds in a para-Kaehler manifold and we get some examples, theorems, lemmas
and results. We also analyze integrability and foliation properties for distributions of pointwise semi-slant
type-1,2,3 submanifolds in para-Kaehler manifolds.

2. Preliminaries

Let (W, C, g) be a 2n-dimensional semi-Riemannian manifold. If there is a tensor field C of type (1,1) on N,
such that

for any vector fields X', ) on N, itis called a para-Hermitian manifold. In addition, it is said to be para-Kaehler
manifold, if it is satisfies VC = 0.
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Let A/ be a submanifold of (N, C, §). The Weingarten and Gauss equations are dedicated by

VaY =Va) + h(X, ), (2.2)
VaV = —ApX + V3V, (2.3)

forany X,y € T(TN) and V € T(TN™1). I is the fundamental form of A, Ay is te Weingarten endomorphism
connected with V and V+ is the normal connection.
For any tangent vector field X, we define

CX = BX + SX, 2.4)

where EX is the tangential component of CX and SX is the normal one.
For any normal vector field V, we get
CV =¢eV + sV, (2.5)

where eV and sV are the tangential and normal components of CV'.

3. Pointwise slant submanifolds of a para-Kaehler manifold

Definition 3.1. We call that a submanifold A of a para-Kaehler manifold (N,C,§) is pointwise slant, if
Gg(EX,EX)/g(CX,CX) is a function (non-constant) for all time-like or space-like tangent vector field X'.

Definition 3.2. If NV is a complex (holomorfik) submanifold, in that case CX = FX and above equation is
equal to 1. More over if is \V is totaly real (anti-invaryant), then C = 0, so CX = SX and above equation equals
0. Therefore, both totaly real and complex submanifolds are special sitation of slant submanifolds. A neither
totaly real nor complex slant submanifold can be called proper slant.

Definition 3.3. Let \ be a proper pointwise slant of a para-Kaehler manifold (N, C, §). So we call three different

types of proper pointwise slant submanifolds.
EX|

type 1; if for any time-like(space-like) vector field X, EX is space-like(time-like) and (757 > 1.

type 2; if for any time-like(space-like) vector field X, EX is space-like(time-like) and g—;(: <1
type 3; if for any time-like(space-like) vector field X, EX is time-like(space-like). So, g(EX, EX) = 0.

Theorem 3.1. Let N be a proper pointwise slant of a para-Kaehler manifold (N, C, §). So, there exists three cases.
(a) N is pointwise slant submanifold type-1 if and only if for any time-like (space-like) vector field X, EX is space-like
(time-like), and 1 € (1, +00) therefore

E? = puId, (3.1)
we get pn = cosh® o,  with a > 0.
(b) N is pointwise slant submanifold type-2 if and only if for any time-like (space-like) vector field X, EX is space-like
(time-like), and . € (0, 1) therefore

E? = puld, (3.2)

we get = cos®a, with 0<a < 2m.
(c) N is pointwise slant submanifold type 3 if and only if for any time-like (space-like) vector field X, EX is time-like
(space-like), and 11 € (—o0,0) therefore

E? = uld, (3.3)
we get = —sinh®*a, with a > 0.

Proof. Let A/ be a proper pointwise slant type-1 submanifold. For any space like tangent vector field X', CX’ is
time like. We get |[EX|/|CX| > 1 and o > 0.

[EX| _ /—9(EX, EX))

cosha = =
CX| —g(CX,CX)

(3.4)
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From (3.4), we get
G(FE*X,X) = — cosh® aj(CX,CX)
Using (2.1), we have
G(E*X, X) = cosh? ag(X, X)
E? = cosh? a.
Also, E2X and X are space-like. Because of E2X = uX, we get, E? = 1 = cosh? a.
By using a same way for any time-like tangent vector field Z and EZ, C'Z are space-like. Therefore, in place
of (3.4) we get
|EZ| _ V9(EZ,EZ))

cz|  \J3(CZ.CZ)’

Because of E?X = puX, for any space-like or time-like X it further provides for light-like vector fields.
Therefore we get E? = uld.

For second case, if NV is pointwise slant of type 2, for any space-like or time-like vector field X, |EX|/|CX| < 1.
So, we obtain o > 0 and

cosha =

|[EX|  /—g(EX,EX))
cx| /—g(Cx,CXx)
2

We can evidence that similar to the solution above. We get E? = yId and E? = p = cos® a.
Lastly, if V is pointwise slant of type-3, for any space-like vector field X', CX is further space-like and o > 0.
We obtain

CoOS x =

|[EX| _ VI(EX,EX))

ICx|  \/=§(Cx,Cx)

sinho =

We get E? = uId and E? = ;i = sinh® o

Remark 3.1. « angle is a founction and non-constant. Because N is pointwise slant submanifold. Lastly, for
both pointwise slant submanifolds of type-1 and type-2, if X is space-like, in that case C'X’ is time-like. Thus,
all pointwise slant submanifold of type-1 or type-2 must be a neutral semi-Riemann manifold.

Proposition 3.1. Let N be a proper pointwise slant submanifold of a para-Kaehler manifold (N, C,g). Then, N is a
proper pointwise slant submanifold of

*type-1, necessary and sufficent condition eSX = — sinh® aX' for every time-like (space-like) vector field X.

*type-2, necessary and sufficent condition eSX = —sin® aX for every time-like (space-like) vector field X.

*type-3, necessary and sufficent condition eSX = cosh® aX for every time-like (space-like) vector field X.

Proof. For all vector field, By using (2.4), (2.5) and by applying C' in (2.4), we obtain

C’X =CEX +CSX
X =F’X+SEX +eSX +sSX

Equalizing the normal and tangent componenets of the above equation, we get

E’X +eSX =X, SEX+sSX=0. (3.5)
Because of a pointwise slant type-1 submanifold, we obtain
eSX = X — F*X = (1 — cosh? )X = —sinh? aX
For a pointwise slant type-2 submanifold, we get
eSX =X — E?X = (1 — cos? a) X = sin® aX
and lately, for a pointwise slant type-3 submanifold, we get

eSX = X — EB*X = (1 4+ sinh? )X = cosh? aX.

For pointwise slant type-3 submanifold N;?, we can select an concerted orthonormal slant frame

*

*
A1y Oy, A5 -y Oy

dergipark.org.tr/en/pub/iejg 464


https://dergipark.org.tr/en/pub/iejg

S. Ayaz & Y. Giindiizalp

and a}, = ——Cay,. Recalled that both a,, and a;, get the same casual character.

sinh «

Also, the codimension corresponds with the dimension of the submanifold

1 1 1 1

* *

Sai, ... Sa Saj,...,———
cosh v " cosha” Y cosha” V7 coshal Y

is a concerted orthonormal frame in N1 E.

Theorem 3.2. Let N}Y be a pointwise slant type-3 submanifold of a para-Kaehler manifold N,Y. If VS =0, the
submanifold is minimal.

Proof. For a para-Kaehler manifold VC = 0. By using the normal parts in Weingarten and Gauss formulas, we
get VO =0, itisbe CVxY = V1 CY.
Then, R B

CVxY +Ch(X,Y)=Vx(EY+SY)

EVxY +8VaY +Ch(X,Y) = VxEY + VaSY
by using (2.4) and (2.5)

EVxY + SV2Y + eh(X,Y) + sh(X,Y) = VxEY + h(X,EY) — AgyX + VLSV

h(X,EY) 4+ V%5Y — SVxY — sh(X,Y) =0
IfVS =0, itisbe SVy)Y = vﬁsy, therefore, necessary and sufficient condition:

WX, EY) = sh(X,))

By using an adapted orthonormal frame and for type-3, s>V = — sinh® oV for every normal vector field V.
We get
h(a®,,a’,) = h( ! a L Ea )—;SQB(CL ) = —h(am, Q)
mytms T Rginha U sinha Y sinha e m o

Asaresult, H = 3" _ e (h(am,am) + h(ak,, az,)) = 0, that ¢, = §(am, a,,), and N is minimal.
Theorem 3.3. Let pointwise slant type-3 surfaces N of a para-Kaehler manifold N be minimal. If and only if V.S = 0.

Proof. We accept that V' is space-like. and we give orthonormal bases
a1,a2 = ——Faj and a3 = —%—Sa;, a4 = _——Sa; of TN andT*N.
We obtain that V'S = 0 necessary and sufficient condition h(X, EY) = sh(X,Y) and for any tangent vector
fields X,), A,VX = —Ay EX. For any X tangent and any V normal and using eguation SEX = —sSX, we get
eaz = coshaay, eayq = coshaas
sagz = sinh «way, say = sinh aag

Moreover, .
1 1 N
A X = ——Ag, X = — A X = X, FE
53 cosha #54 cosha ' 5P coshaeh(  Eax)
sinha -
= Coshaeh()(,az) (3.6)
We have used (VyE)Y = AgyX + eh(X,Y) = 0. Also,
1 1 .
Ay EX = —— Ag, EX — — WEX, ay). 7
3 cosha ™ 54 cosha ( @) (3.7)
For X = a;, from (3.6) and (3.7), it is be;
1 A sinha -
as Fay Coshaeh(Ral,al) Coshaeh(ag,al) saz 01
and for X = ao,
1 A 1 - 1 sinha -
A, Fas = — h(E = — h E2 =
3 /2 cosha® (Bag, a1) cosha” \sinha a1, 1) cosha® (a1,01)
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and -
Sin aeiL(QQ,QQ)

ASCL3 ag =

Because of AV is minimal, we obtain A, a2 = —Ay,Fas. S0, Asq, X = —A,, EX for any tangent vector field X.
Using in the similar way, it is proved for a4, then A,y X = —Ay EX for V normal and X tangent to V. Thus,
the proof is completed.

Let R?* be a semi-Riemannian submanifold of with the cartesian coordinates (1, ...,z4) and para-complex
structure

o . 0 o . 0

= , =
8]}2j 8.132]‘_1 6$2j_1 8$2j

thatj =1,...,k. Let Rﬁk be semi-Euclidian space of signature (4, —, +, —) with according to the canonical basis
(3%, 52 )

Now, we can give some examples of pointwise slant submanifolds.
Example 3.1. Let N be a pointwise slant submanifold of a para-Kaehler manifold V3 and for X : N' — N3,
X (u,v) = (u,sinh v, cosh v, v)

Xy —iandCX =
X, —coshvaa —l—smhvaz —|——andCX —coshva%l—l—a%g—i—sinhva%4

9(Xu, CX,) coshv coshv
cosha = = _
[[Xul| - [|CXo|| 1~\/cosh2v—sinh2v+1 V2
9(Xy, CXy) coshwv coshv
cosha = = — - _
[ Xl - |CXull V=1-v=2 V2
o= @, if v > 1, it is be pointwise slant type-1 submanifold.

Because of type-1, 11 € (1, 00).
Example 3.2. Let N be a pointwise slant submanifold of a para-Kaehler manifold V3. For X : N' — N3,
X (u,v) = (sinh u, sinh v, cosh u, cosh v)

X, = coshu(9 + sinh uﬁ and CX, = coshuam + smhuam4
X, = Coshva + smhfua— and CX, = coshva + smhva

cos o — 9(X,,CX,) coshu - coshv + sinhu - sinh V
[ Xull - [ICXo|| \/cosh2 w+ sinh? u - \/cosh2 v —sinh?v
~ cosh(u +v)
v/cosh 2uy/cosh 2v
IZL = W, ifu#v and w=0, v=1,itisbepointwise slant type-2 submanifold. Because of type-
weE

Example 3.3. Let N be a pointwise slant submanifold of a para-Kaehler manifold N}. For X : N' — N3,
X (a,b) = (asina, absin «, a cos a, ab cos @)

Xa_s,maa 4—bs1noz(9 4—(:osaa +bcosaﬁand

CX—bbanéa —|—51na6 —|—bc050¢8 —|—c05a66
Xb—asmaaa +acosaai and
C’Xb—asmaa —l—acosaa‘?c
: G(Xa, CXp)
sinhoy = ———"———
|| Xall - ||CX|
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asin? a + acos? a

\/Sin2 a—b2sin® a+ cos? a + —b2 cos? a - \/a2 sin? a + a2 cos? a
- a _ 1
V1-0b2va?2 V1 -—b2

=14, if1-02<0, 1<?b% itisbe pointwise slant type-3 submanifold. Because of type-3, i € (—o0,0).

4. Pointwise semi-slant submanifolds in a para-Kaehler manifold

Definition 4.1. Let (N, C, §) be a para-Kaehler manifold and A a semi-Riemannian submanifold of N. Thus,
we call that \V is a pointwise semi-slant submanifold if there obtain two orthogonal distributions D?" and D.
Then,

1) TN = DT @ D>

2) The distribution D7 is an invaryant (holomorphic) distribution, CDT = DT

3) The distribution D* is a pointwise slant with slant function «.

Then, we say the angle « the slant function of the pointwise semi-slant submanifold N. The invaryant
distribution DT of a pointwise semi-slant submanifold is a pointwise slant distribution with slant function
a = 0. If we indicate the dimension of D” and D by k; and k,, therefore we get the following:

a) If k; = 0, in that case V is invaryant (holomorphic) submanifold.
b) If k1 = 0, in that case \ is pointwise slant submanifold.
o) If v is constant, in that case AV is proper semi-slant submanifold with slant angle «.
d) If @ = %, in that case NV is a CR-submanifold.
If k1 # 0 and « is not a constant, we call that a pointwise semi-slant submanifold.

Let V be a pointwise semi-slant submanifold of a N para-Kaehler manifold. we indicate the projections on
the distributions DT and D* by Cy and Cs. Therefore, we obtain

X = C1 X + CoX @.1)

X € 4(TN). Using C in (4.1), we get
CX =CC1X +CCrX.

Using (2.4)
CX = CC1X + ECoX + SCo X, (4.2)
cc X er(DY), SCx =0, 4.3)
ECyX € T(D?), SCyX € T(TN?), (4.4)
EX = CC1X + ECoX. 4.5)

It is accepted that A is pointwise semi-slant type-1,2,3 submanifold of V. Necassary and sufficient condition;

For type-1,
E? = cosh?® al. (4.6)

For type-2,
E? = cos® al. 4.7)

For type-3,
E? = —sinh? ol. 4.8)

Theorem 4.1. Let N be a submanifold of a para-Kaehler manifold N and N is a proper pointwise semi-slant type-1,2,3
submanifold. Then, D = {X € T(TN) | (Ip)* = uX}and «is a function.

For type-1 ju = cosh® o,

for type-2 u = cos? a,

for type-3 = —sinh? a.
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Proof. (For type-1) Let \/ be a proper pointwise semi-slant submanifold of V.

. §(CX,EX) EX + SX,EX J(EX,EX)
cosno = = =
CX|[-[|EX]]  J/g(Cx,CX)-||Ex| ||XI-|EX]|
g(X,E*X)
coshay = —~—~—
X - [|EX]]
and using cosha = %,
J(X,E*X)
ha = .
COSLEZ 1R coshal|CA|
Using [|CX]| = |||
g(X,EQX)
cosha =

[[A2]] - cosh
cosh? - §(X, X) = §(X, E*X)
G(X, cosh? aX) = (X, E*X)
E*X =cosh® X and E? = cosh®al
E? == cosh? o,

(For type-2), we get
p = cos® a,
(For type-3), we get
1 = —sinh? .

Thus, we obtain the following results.

Corollary 4.1. Let N be a proper pointwise semi-slant type-1 submanifold of para-Kaehler manifold (N, C, ). In that

case, we get

G(EX,EY) = —cosh’a  §(X,)), (4.9)
G(SX,8Y) =sinh?’a  §(X, V). (4.10)
Proof. For X, € D¢
Using (2.4),
Using EY in Y
J(EX,EY) = —j(X,cosh? o))
G(EX,EY) = —cosh’a §(X,))
Therefore, we prove (4.9).
G(EX +SX,EY+5Y) = —g(X,))
J(SX,8Y) = —g(X,Y)+ cosh’ ag(X, )
G(SX,8Y) = §(X,¥)- (=14 cosh? )
g(Sx,8Y) sinh®a g(&,))
In this case, we get (4.10).
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Corollary 4.2. Let N be a proper pointwise semi-slant type-2 submanifold of para-Kaehler manifold (N

case, we get
G(EX,EY) = —cos’a §(X,))
§(5X,8Y) = —sin’a  §(X,))

Proof. For type-2, The proof is obtained, using a method similar to the above proof.

Corollary 4.3. Let N be a proper pointwise semi-slant type-3 submanifold of para-Kaehler manifold (N

case, we get
J(EX,EY) =sinh’a  §(X,)),
G(SX,8Y) = —cosh?a  §(X,)).
Proof. (For type-3) using similarly method, the proof is obtained.

Theorem 4.2. Let N be a proper pointwise type-1,2,3 submanifold of a para-Kaehler manifold.
1) The distribution D™ is integrable necessary and sufficient condition,

G(h(X,CY),SV) = §(h(CX,¥),SV) X, Y eT(D") and V €T (D)
2) The distribution D® is integrable necessary and sufficient condition,
J(AspwZ — AspzW, X) = §g(AswZ — AszW,CX)

X en(DT),Z, W e I'(D%)

Proof. 1) (For type-1)

g([X,y],V) = g(v?(y_vyxvv)
= G(Vad,V)—g(VyX,V).

Using (2.1), (2.2), (2.3), (2.4) and (2.5), we get

9([X, V), V) = —g(CVxY,CV)+ g(CVyX,CV)
—§(CVxY,EV + SV) + G(CVyX,EV + SV)
—§(CVxY, EV) = §(CVxY,SV) + §(CVy X, EV)

+ §(CVyx,SV))
= §(VxY,CEV) - §(VxCY,SV) - §(VyX,CEV)
+ §(VyCx,SV))
= §(VaY —VyX,E*V + SEV) — §(V2CY,SV)
+ §(VyCx,SV))
= §([x,Y],cosh> aV) + §(|X, V], SEV) — §(h(X,CY),SV)
+ §(h(Y,CX),SV))
31X, V), V) = cosh® ag([X, V], V) = —§(h(X,CY),SV) + §(h(Y,CX),SV))

—sinh® ag([X, V], V) = g(h(X,CY), V) - §(h(CX,Y),SV))

In this case,
—sinh®a#0, V#0, [X,V]=0

Thus, part 1 of the proof is completed.

C,g). In that

4.11)
4.12)

C, g). In that

(4.13)
(4.14)
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2) (For type-1)

2, W],CX)
CVZW,CX) + §(CVwZ,CX)
VzCW,CX) + §(VwCZ,CX)
Vz(EW + SW),CX) + §(Vw(EZ + SZ),CX)
—§(VZ2EW,CX) — §(VzSW,CX) + §(VwEZ,CX)

—4(C
—4(
—4(
—4(
(

+ §(VwSZ,CX)
= G(VzCEW,X) - g(VzSW,CX) — §(VwCEZ, X)
+ §(VwSZ,CX)

(

G(VZ2E*W, X + §(VzSEW, X) — §(VzSW,CX)
— §(VwE?*Z,X) - §(VwSEZ,X) + §(VwSZ,CX)
cosh? ag(VzW, X) — §(Aspw Z, X) + §(Asw Z,CX)
cosh? af(Vw Z, X) + §(Asez W, X) — §(Asz W, CX)
(1 —cosh® )§([Z, W], X) = §(AspzW — Aspw Z, X) — §(AszW — Asw Z,CX)
—sinh? a§([Z, W], X) = —§(Aspw Z — AspzW, X) + §(AswZ — Asz W, CX)
Because of [Z, W] = 0, we get part 2) of the proof.

(For type-2 and type-3) using similar method, we get proof.

Theorem 4.3. Let N be a proper pointwise semi-slant type-1,2,3 submanifold of a para-Kaehler manifold.
1) The holomorphic distribution DT describes a totaly geodesic foliation necessary and sufficient conditions

G(h(X,Y),SEV) = §(h(X,CY),5V) (4.15)
forxX, Y e (DY) and V €T(D®)

2) The slant distribution (D) describes a totaly geodesic foliation on N necessary and sufficient conditions
§(h(U, X),SEV) = §(h(U,CX), SV) (4.16)
forx e T(DT) and U,V € T(D%).

Proof. (For type-1)
1) forX,Y e (DT) and V €T(D%)
Let \V be a proper pointwise semi-slant submanifold of a N para-Kaehler manifold. Therefore, we get

3V, V) = —§(VxCY,CV)

Using (2.4) and (2.5)
GV, V) = —§(VxCY,EV +SV)
= —§(VxCY,EV) — §(V4CY,SV)
= §(VxY,CEV)—g(V2CY,SV)
= §(VaY,E*V + SEV) — §(V+CY,SV)
= GV, E’V)+§(Vad,SEV) — g(VxCY,SV)
Using (2.2) and (4.6)

(1 —cosh® )G(VaY, V) = §(h(X, V), SEV) — §(h(X,CY),SV)
(—sinh® 0)§(Va D, V) =§(E(X7y) SEV) — ( (X,CY),8V)

Thus the first part of the theorem is obtained and in a similar way the second part of the theorem is obtained.
(For type-2 and type-3), using similar method, we get proof.

Therefore, the following result is obtained.
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Corollary 4.4. Let N be a proper pointwise semi-slant type-1,2,3 submanifold of a N para-Kaehler manifold. Therefore
N is a locally Riemannian product manifold N' = myp x m,, necessary and sufficient condition;

AsEVX = AgVCX

forX eT(D*) and V eT(D®), that mq is a holomorphic submanifold and m. is a pointwise semi-slant
submanifold of N'.

Let NV be submanifold of a semi-Riemannian manifold (N, §). We say N a totaly umbilic submanifold of

(N g)-1¢

WX, Y)=g(X, V)H for X,¥eT(TN) (4.17)
that H is the mean curvature vector field of N in NV.

Lemma 4.1. Let N be a pointwise semi-slant totally umbilic submanifold of para-Kaehler manifold (N, C, ). Suppose
that N is a para-Kaehler manifold, C is a para-complex structure, g is a semi-Riemannian metric. Then for type-1, type-2
and type-3;

H e T(SD,). (4.18)

Proof. Let \ be a para-Kaehler manifold.
N is g -invaryant (5(N) = N).For X, Y € I'(D1), Z € I'(N)

VaBY +h(X, 5Y) = VaBY
=BVaY
= EVaY + SV + eh(X, V) + sh(X, D)
therefore by taking the inner product of both sides with Z,

g(h(X, BY), 2) = §(sh(X. ), Z). (4.19)
From (4.15) and (4.17), we get
9(X, BY)§(H, Z) = —g(X, Y)§(H, BZ). (4.20)
Interchanging X and )
9V, BX)§(H, Z) = —g(¥, X)§(H, BZ). (4.21)
Comparing (4.20) with (4.21), we get
9(X,Y)g(H,Z) =0 (4.22)

that means H € I'(SD3)

Therefore, the following result is obtained.

Corollary 4.5. Let N be a pointwise semi-slant totaly umbilic submanifold of para-Kaehler manifold (N, C, §) with the
semi-slant function c. B
If « = 0 on N, therefore N is a totaly geodesic submanifold of N

Let R?* be a semi-Riemannian submanifold, the cartesian coordinates (z1,...,z2;) and para-complex
structure

g, 0 0 0
81‘2j 8562]‘_1 ’ 8332]'_1 8332]'
that j = (1, ..., k). Let R?* be semi-Euclidian space of signature (+, —, +, —, ...) with according to the canonical
basis (ai,..., 3‘9 ).
1 T2k

Now, we give some examples of proper pointwise semi-slant submanifolds.
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Example 4.1. Let \V be a proper pointwise semi-slant submanifold of a para-Kaehler manifold V3, defined by
the X : N — R
X (u,v,t,8) = (v,sinh u, coshu, u, t, s)

Xu —coshua —l—smhu(3 + 500 and CX, :coshuai—i—é)i—&—sinhuai
T3 L1 T3 Tq

X, = % and CX =

Xt = and CXt 19936 = XS

XS:T%anchs—Ts:Xt

DT = span{X;, X} is a holomorphic distribution and D® = span{X,, X, } is a neutral proper pointwise semi-
slant distribution with slant function .

9(Xy,CX,) cosh u coshu
cosha = = —
[[Xv|| - [|CX.|| 1~\/cosh2u—sinh2u+1 V2
9(X,,CXy) cosh u coshu
cosha = =

XX~ Volv=2 2

. . . _ —1/coshu
semi-slant function is & = cosh (7)

E*=pu= M, if (u>1), it is be proper pointwise semi-slant (type-1) submanifold. Because of type-1,
p € (1,00).
Example 4.2. Let \V be a proper pointwise semi-slant submanifold of a para-Kaehler manifold V3, defined by
the X : N3 — RS
X(t,s,u,v) = (t,s,sinhu, sinh v, cosh u, cosh v)
X = and CX; =2 =X,
st( )andCX 5er = Xt
Xy = coshu6 + sinh “T and CX, = coshua + smhuax
Xy = coshvaz + sinh v— and CX, = coshvad + smhvam

We find DT = span{X;, X} is a holomorphic distribution and D* = span{X,, X, } is a neutral proper
pointwise semi-slant distribution type-2 with semi-slant function a.
9( Xy, CXy) coshu - coshv + sinhu - sinh v
[ Xull - [|C Xy \/cosh2 u + sinh? u - \/cosh2 v+ sinh?v

Cosx =

B cosh(u + v)
V/cosh 2u - v/cosh 2v

cosh(u+v) )
v/ cosh 2u-v/cosh 2v

if, (u,v € R™), it is be proper pointwise semi-slant (type-2) submanifold. Because of

semi-slant function is o = cos™!(
cosh” (u+v
E? = H = Cosh 2u(cosh)2v
type-2, € (0,1).
Example 4.3. Let N be a proper pointwise semi-slant submanifold of a para-Kaehler manifold N, defined by
the X : NVt — RO
X(a,b,c,d) = (asine, bsine, asind, bsina, acosc¢,bcosc, acosd, bcosd, ¢, d)

o] 9
X, —smcaz —|—smd o Tcosca- —i—cosdaz
Xb—smca —+—smd——|—cosca —|—cosd a

) ) )
X, 7acosca ercosca fasmcam5 7bSln078r1:6+78m9
. ) . 2
Xd—aCObd ercosél—fasmd—fbsmddw8 + Zurs

CXa—bIIlCa —ﬁ—blndaz —|—coscaw +cosd6l
C’Xb—smc@a +sindz - a —I—Cosca +cosdz - a

el 9
CX. —bcosc8 —l—acosca——bsmcﬁ—asmcaxﬁ—i—

dx10
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_ 9 9 paindl- — geindf_ 4+ 9
C’debcosdam3+acosdam4 bsmda_167 asind + 525

Oxg

We find DT = span{X,,X,} is a holomorphic distribution and D* = span{X., Xy} is a neutral proper
pointwise semi-slant distribution with semi-slant function a.

semi-slant function is a = sinh™*(

E2

§(Xs,CX,) -1
[[Xall - [ICXel] Va2 =02 —1-Vb2 —a2 -1

sinho =

—1
\/aszzfl-\/bzftﬂfl)

= b= = 1)1(b2_a2_1) = (a2_b21)2_1. if (a®* —0v*>>1), it is be proper pointwise semi-slant (type-3)

submanifold. Because of (type-3), 1 € (—o0,0).
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