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Abstract 
Accuracy of the results obtained by automated processing of brain magnetic resonance images has vital importance 

for diagnosis and evaluation of a progressive disease during treatment. However, automated processing methods 

such as segmentation, registration and comparison of these images are challenging issues. Because intensity values 

do not only depend on the underlying tissue type. They can change due to scanner-related artifacts and noise, 

which usually occurs in magnetic resonance images. In addition to intensity variations, low contrast and partial 

volume effects increases the difficulty in automated methods with these images. Intensity normalization has a 

significant role to increase performance of automated image processing methods. Because it is applied as a pre-

processing step and efficiency of the other steps in these methods is based on the results obtained from the pre-

processing step. The goal of intensity normalization is to make uniform the mean and variance values in images. 

Different methods have been applied for this purpose in the literature and each method has been tested with 

different kind of images. In this work; 1) The state-of-art normalization methods applied for magnetic resonance 

images have been reviewed. 2) A fully automated and adaptive approach has been proposed for intensity 

normalization in brain magnetic resonance images. 3) Comparative performance evaluations of the results obtained 

by four different normalization approaches using the same images have been presented. Comparisons of all 

methods implemented in this work indicate a better performance of the proposed approach for brain magnetic 

resonance images. 

Keywords: Brain MR images, Gaussian filtering, homomorphic filtering, intensity normalization, local 

normalization 

 
 

1. Introduction 

Automated processing of brain Magnetic Resonance (MR) 

images is a challenging issue due to intensity variations 

caused by scanner-related artifacts, noise and partial 

volume effects. Unclear edges between brain tissues, which 

are Cerebrospinal Fluid (CSF), Gray Matter (GM), White 

Matter (WM) (particularly between GM and WM),.and 

low-contrast increase this difficulty. An example brain MR 

image is presented in Figure 1.  

 

 
Figure 1. Brain MR image and tissues 

 

Intensity normalization is applied as an initial step to 

increase performance of automated image processing 

techniques. Because, the goal of intensity normalization is 

to make uniform the mean and variance of intensity values 

in images. Intensity normalization has an important 

influence in registration [1], longitudinal segmentation [2], 

cross-sectional segmentation [3], longitudinal 

quantification [4] and other measures [5,6]. Intensity 

normalization is also important for MR image comparison, 

which is usually required for disease diagnosis and 

evaluation of a progressive disease during treatment period. 

MR image datasets, which are taken at different times from 

the same patient, are usually compared to detect or quantify 

the changes in tissues. The time series analysis gives 

information about the stage or progression of the disease 

[7,8]. 

 

In this work, intensity normalization techniques applied 

with MR images have been reviewed. It has been observed 

that Gaussian filtering [9-14] and homomorphic filtering 
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have been mostly used [15-22]. In addition to these 

methods, there are some deterministic and probabilistic 

approaches applied with different image modalities in the 

literature (Section 2).  Also, in this work, a Fully Automated 

and Adaptive Intensity Normalization (FAIN) has been 

proposed for brain MR images. FAIN, which is an 

improved version of a recently published work [23], is a 

probabilistic approach. An important drawback of the 

method given in [23] is that users have to define three 

regions manually on brain images. However, users may 

define those regions with different sizes, which may cause 

undesired results. Because the size of a region has to be 

large enough (at least 20x20 pixels) to generate statistical 

information and obtain efficient results (Figure 2). Also, 

location of those regions are important since they have to 

be inside the brain borders and have to be defined 

separately. In this work, the regions have been defined 

automatically to overcome these drawbacks and to increase 

the efficiency of the method.  

 

 
Figure 2. Normalization result, which is almost the same 

with the original image given in Figure 1, obtained by [23] 

using three regions that have size less than 20x20 pixels on 

a reference image  

 

A recently published local normalization technique [24] 

seems efficient. Therefore, it has been applied to compare 

its results with the results of the proposed method. Also, the 

widely used methods (Gaussian and homomorphic 

filtering) have been applied to show their efficiency on the 

same images used in this work. Performances of these 

methods have been evaluated by comparing their results 

(Section 5). Contributions of this study can be given as: 1) 

Presentation of the state-of-the-art methods for intensity 

normalization in MR images. 2) Presentation of a full 

automatic and probabilistic method for brain MR image 

normalization. 3) Comparison of the results that have been 

obtained from four different intensity normalization 

approaches, which have been implemented in this work 

with the same MR images. The organization of the other 

sections of this paper is as follows. Intensity normalization 

methods applied in the literature are reviewed in Section 2. 

The normalization method [23], on which the work in this 

study is based, is explained in Section 3. The proposed 

FAIN algorithm is presented in Section 4. Results of four 

different intensity normalization approaches, which have 

been applied in this work, are given in Section 5. Finally, 

conclusions are presented in Section 6. 

 

2. Intensity Normalization Approaches in the 

Literature: A Survey 

Except the three works given in [25-27], which are not new 

and do not include the state-of-the-art techniques, 

according to our knowledge, there is not a survey type 

comprehensive work about intensity normalization 

techniques applied with MR images in the literature. 

Therefore, a survey, which can be useful for other 

researchers who are working in this area or interested in 

intensity normalization methods, is presented in this 

section. In addition to the methods given in the previous 

review works [25-27], several approaches have been 

proposed with different MR image datasets. For example, 

anatomical regions have been defined from an atlas and 

used to normalize intensity values in [28]. The 

normalization tool in [29] is based on a non-linear 

registration to register a brain atlas to the observed data. 

However, atlas based approaches may not always be 

efficient for an image, which is unlike those images 

available in the atlas. 

 

In [30], intensity landmarks, which can be represented as 

IL={pc1, ip10, ip20, ….ip90, pc2} where ip refers to the intensity 

at lth percentile, have been learned from a training set. The 

normalization is provided with transformation of the 

original gray level values between 2 landmarks to the 

learned landmarks. However, in this approach, 

normalization results may change depending on the defined 

training dataset. Histogram mapping has been applied for 

normalization using joint histogram [31]. It is based on 

matching the histogram of a reference image to the 

histogram of the input image. However, this method is 

unreliable for brain MR images [32]. Because, better prior 

knowledge based on the neighborhood is required [33]. 

However, this algorithm is based on a non-rigid registration 

method for histogram mapping, which also increases 

computational complexity and processing time.   

 

In [34,35], the integral of intensity values has been 

computed and the mean of the integral value has been used 

for normalization. Similarly, each image has been 

normalized individually in [36]. In this method, each voxel 

is set to the mean value of a set of the highest intensity 

voxels. This algorithm might not be efficient in case of the 
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maximum intensity value in some images. Because those 

images may have peak gray level values due to noise. A 

statistical active contour based model, which provides both 

intensity normalization and image segmentation, has been 

applied in [37]. However, results obtained by this method 

are changing according to the first location of the active 

contour [38].    

 

In the literature, intensity normalization is mostly 

performed by Gaussian filtering [10-14,39]. However, 

results obtained from an original image (Figure 3.a) by this 

method may not be efficient in case of a chosen small σ 

value (Figure 3.b). If a large σ value is chosen then edges 

between tissues and so valuable information may be lost 

(Figure 3.c). Therefore, the σ parameter should be chosen 

carefully.  

 

   

   
Figure 3. Original image (a); Image obtained by Gaussian 

filtering with σ=0.5 (b), σ=3 (c) and σ=5 (d)   

 

Another widely used normalization is homomorphic 

filtering [15-22]. Homomorphic filtering normalizes 

intensity values by removing multiplicative noise in 

images. The intensity value of a pixel can be defined as the 

product of the reflectance of the objects in the scene and the 

illumination of the scene. In other words, an image can be 

given with the following statement (i.e., with the 

illumination-reflectance model). 

 

( , ) (x, y) (x, y)I x y L R                       (1) 

 

In (1), the term I(x,y) corresponds to the image, R(x,y) 

corresponds to scene reflectance, L(x,y) corresponds to 

scene illumination. 

 

Illumination occurs due to the lighting conditions during 

image capturing. However, reflectance R(x,y) results from 

the features of the objects themselves. When illumination 

and reflectance is compared, it can be observed that 

illumination changes very slowly within the image. 

However, reflectance may vary suddenly at boundaries of 

objects. Separation of reflectance and illumination 

components is based on this difference. The idea to remove 

the non-uniform illumination effect is to keep only the 

reflectance component while removing the illumination 

component. If illumination is considered as the noise that 

should be removed in the image, then this model becomes 

similar to the model given in Equation (1). 

 

Homomorphic filtering is applied by transforming the 

multiplicative components to additive components with the 

following computations. 

 

   ln ( , ) ln (x, y) (x, y)I x y L R          (2) 

     ln ( , ) ln (x, y) ln (x, y)I x y L R       (3) 

 

The next step in homomorphic filtering is to apply high-

pass filtering in logarithm domain to avoid the effect of the 

illumination component that has low-frequency. This 

process also keeps the reflectance component that has the 

high-frequency. Experimental results obtained by this 

method are presented in Section 5. 

 

Recently, a local normalization technique [24] has been 

proposed to overcome two important problems in Gaussian 

filtering based normalization. The first problem in 

Gaussian filtering is that it is not clear how to choose the 

best σ value for an image. The second problem is that it is 

not guarantee that the chosen σ value will be best for 

remaining images in the dataset. Therefore, this technique 

in [20] uses a Sigma Adaptive Gaussian (SAG) filtering 

with the following equation. 

( , ) ( , )
( , )

( , )

g

N

I x y x y
I x y

x y






                      (4) 

The term ( , )gI x y  in Equation (4) corresponds to the 

original grayscale image. ( , )NI x y  corresponds to the 

image obtained after normalization. The terms ( , )x y  and 

( , )x y  correspond to the mean and variance computed by 

Gaussian filtering on the image, ( , )gI x y .  The σ value for 

each image is obtained using the distance map that is 
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generated by applying Euclidean distance transformation. 

Distance maps are constructed from binary images which 

are obtained from original grayscale images by adaptive 

thresholding given in [40]. The Euclidean transformation 

assigns a number, which is the distance value between that 

pixel and the nearest zero valued pixel in the binary image 

(It should be noted here that zero valued pixels correspond 

to background region and nonzero valued pixels 

correspond to foreground region in the binary image). If we 

assume maxD as the maximum value in the distance map, 

the sigma parameter of the Gaussian filter is computed by, 

 

min( ,maxD)Gauss T                         (5) 

 

where the threshold value T (T=100) is a constant value and 

found experimentally. The reason to use the term T and 

maxD is to provide smoothing on the maximum valued 

pixels as much as possible and to avoid blurring effects 

(over-smoothing), while simultaneously smoothing. If the 

term maxD is low then under-smoothing can occur. 

Therefore, to address both under- and over-smoothing 

cases, the sigma parameter of the Gaussian filter is 

computed by, 

 

Gauss

max( t ,maxD ), if maxD<t

min(T ,maxD ), otherwise



 


         (6) 

 

where t (t=50) is chosen experimentally. The algorithm of 

this method is given in Table 1 [24,41]. 

 

Table 1. Algorithm of the SAG filtering based local 

normalization method 

1. Get a grayscale image 
gI  and 

Gauss  

2. By assigning zero value to the 
Gauss  and mean, 

compute the mean value 
Gauss  with cumulative 

distribution function  

3. Obtain the first filtered image (
1fI ) by applying 

Gaussian filtering with the grayscale image, 
Gauss  

and 
Gauss  

4. Take difference between the grayscale image and 

filtered image ( 1fI ) to obtain an image, which is 

called as DifferenceI  corresponding to the nominator 

in (4) (i.e., 1Difference g fI I I  ) 

5. Generate a temporary image, tempI , by computing 

squares of intensity values in the DifferenceI  (i.e., 

Temp DifferenceI I ^2) 

6. Apply Gaussian filtering using the temporary image 

TempI , 
Gauss  and 

Gauss  terms to generate the 

second filtered image (
2fI ). 

7. Compute the square root of all intensity values in the 

2fI  to obtain a new image, which is 
DenominatorI  

and corresponds to the denominator in (4). 

8. Obtain the normalized image by dividing intensity 

values in 
DifferenceI  to the intensity values in 

DenominatorI . 

 

This technique seems efficient on pathological images [24, 

41]. To see its performance on brain MR images, it has been 

implemented and results have been presented (Section 5). 

In addition to the intensity normalization techniques given 

above, a novel approach proposed recently is based on 

varying distribution matching [23], on which the work in 

this study is based, is explained in the next section. 

 

3. Intensity Normalization Based on Varying 

Distribution Matching [23] 

Gray level values in MR images do not only depend on the 

underlying tissue types. These values also can change 

according to developmental processes, artifacts caused by 

scanners and disease progression. Therefore, normalization 

of intensity values should be based on spatially varying 

distribution matching. Because this approach brings an 

image into the coordinate system of a template using a 

coordinate transformation to make meaningful 

comparisons of spatially varying data. In a recently 

published work [23], a normalization method based on 

varying distribution matching has been implemented. It is 

a semi-automated method since it requires three different 

regions that are defined manually by users.  

 
The first step in this method is identification of the user-

defined regions (Figure 4.b,d) on an image, which is used 

as the reference image (Figure 4.a,c) that is selected by 

finding the most “typical” image in the dataset. 

 

 
Figure 4. Example reference images (a,c) and user defined 

partitions (b,d) [23] 
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After definition of the three regions, mean gray level values 

are computed from each region for each tissue components 

(WM, GM, CSF). For this purpose, gray level values are 

fitted to Gaussian Mixture Model (GMM) [42]. After this 

step, 1) the average of the mean gray level values of the 

WM, GM and CSF tissue in those regions, and 2) the 

average of the mean gray level values of the brain tissues 

in the observed image are computed. By using these 

average values, a transfer (mapping) function is generated. 

In the final step, normalization of intensities in the observed 

image is performed by using the mapping function. The 

steps of this method are given in Figure 5 [23]. 

 

 
Figure 5. The steps of the intensity normalization based on 

varying distribution matching [23] 

 
GMM mixtures three Gaussian models (for the three 

tissues; WM, GM, CSF) in the brain image. Expectation 

Maximization (EM) [43] has been applied to estimate the 

parameters of the GMM. To explain how these parameters 

are estimated iteratively with the EM approach, let I is an 

image that can be defined as 𝐼: 𝑈 → [0.1]𝑐  , where 𝑈 =
⟦0; 𝑛 − 1⟧ × ⟦0; 𝑚 − 1⟧ are pixels, the term m is the 

number of rows, the term n is the number of columns, and 

c refers to the numbers of color channels, which are usually 

given as {1,3}c .  

  

In GMM, image is modelled using the probability 

distribution that can be given with I(i), which refers to ith 

pixel in the image I, as 

 

𝑃(𝐼(𝑖)) = ∑ 𝑤𝑘𝑁(𝐼(𝑖)|𝜇𝑘 , 𝜎𝑘
2)𝐾

𝑘=1                  7 

 

where the term K corresponds to the number of clusters, 𝑤𝑘 

is a positive weight value, 2( ( ) | , )k kN I i    is the Gaussian 

function, the terms 𝜇𝑘 and 𝜎𝑘
2 refer to mean and variance 

values for cluster k. The EM algorithm is performed with 

1) initialization, 2) expectation, and 3) maximization steps. 

 

In the initialization step, 𝑤𝑘,𝜇𝑘, and 𝜎𝑘
2 parameters are 

initialized by k-means method for each cluster. K-means 

based clustering has been applied widely in different works 

[44, 47]. 

 

The main idea in the k-means algorithm is to find the best 

centers for k clusters. Each center should be placed 

properly. Because different locations of these centers lead 

to different results. Therefore, the most appropriate choice 

is to place centers far away from each other. For this 

purpose, separation of data points into clusters is provided 

by minimization of the function that is a squared error and 

given as 

2
(j)

1 1

k U

i j

j i

J x c
 

                         (8) 

where the term 
2

(j)

i jx c is the distance between cluster 

center (
jc ), which shows the distance of n data points from 

their cluster centers, and a data
(j)

ix . 

 

In the expectation step, conditional probability P(Ck|I(i)) is 

computed for each cluster Ck and pixel I(i). 

 

 
 

 

(t) ( ) 2( )

( )

(t) ( ) 2( )

1

( ) |
| ( )

( ) |

t t

t k k k

k K
t t

j j j

j

w N I i
P C I i

w N I i

 

 





           (9) 

 

In (2), t refers the number of iterations. In this stage, a 

posterior probability is assigned to each possible 

association.  

 

In the maximization step, the bound obtained in the 

previous stage is optimized to improve the estimate. In this 

step, 
(t)

kw , 
( )t

k  and 
2( )t

k  are maximized with 

probabilities P(Ck|I(i))  by the following statements;  
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 

 

( )

( 1)

( )

| ( ) ( )

| ( )

U
t

k
t i

k U
t

k

i

P C I i I i

P C I i

 







            (10) 

   

 

2( ) (t 1)

( 1)

( )

| ( ) ( )

| ( )

U
t

k k
t i

k U
t

k

i

P C I i I i

P C I i









 





       (11) 

 

 
( )

( 1)

| ( )
U

t

k
t i

k

P C I i

w
U

 


                    (12) 

 

The average of the mean gray level values in the regions 

and the average of the mean gray level values in a given 

image, whose intensity values will be normalized, are 

computed for each tissue. A mapping function is generated 

by using these average values. Normalization of intensity 

values in the given image is performed with the mapping 

function. Figure 6 shows the transfer functions (Figure 6.a) 

that have been generated with the chosen reference image 

(Figure 4.a) and an observed image (Figure 6.b) [23]. 

 

 
Figure 6. Transfer function (a); Observed (original) image 

(b)  

 

However, the results obtained by this method depend on 

experience and attention of users. Because users may 

define less number of regions on some images due to their 

limited time and intensive works. Also, size of the regions 

may not be equal or large enough to get statistical 

information about brain tissues. Moreover, the regions may 

be defined at outside (or partially outside the brain) or as 

overlapping regions.  

 

The number, size and locations of the user-defined regions 

are important factors that affect the performance of the 

method. Therefore, the regions should be defined carefully.  

 

To overcome the problems of the semi-automated 

normalization method and to increase its efficiency, it has 

been improved (Section 4) in this study. 

 

4. The Proposed FAIN Method  

The proposed FAIN method uses statistical features of five 

regions that are defined automatically at different lobes 

inside the brain. Also, the size of each region is calculated 

automatically according to the vertical and horizontal 

length of the brain. 

 

In this method, after choosing a reference image, it is 

clustered into two clusters, which correspond to foreground 

and background in the image, by k-means algorithm. Figure 

7.a shows the foreground obtained by clustering of the 

reference image given in Figure 4.a. 

 

The next step is to find boundaries (at the right, left, bottom 

and top side) of the brain to identify regions inside the 

brain. For this purpose, from the left, right, top and bottom 

side, the position of the first non-zero pixel (which is shown 

with blue and yellow colored lines in Figure 7.b) is found.   

 

Then, the horizontal and vertical length of the brain is 

calculated. The region at the left-hand side is defined with 

30% width (of the horizontal length of the brain) and 40% 

length (of the vertical length of the brain). The region 

should not include any background part (i.e., part including 

zero valued pixels close to boundaries in the binary image 

in Figure 7.a). Therefore, to be sure that the region includes 

only foreground part, the region is defined inside the brain 

by beginning from the position where 5% of the horizontal 

length of the brain. 

 

Similarly, the regions at the right-hand side, top and bottom 

side are defined. In addition to these four regions, one more 

region is defined at the center to get more information about 

intensity values of each tissue. To define the region at the 

center, the intersection of the middle of the horizontal and 

vertical length is used. The rectangular region at the center 

is defined by beginning from the intersection point to the 

position (at the right- and left-hand side) at the distance 

corresponding to 15% of the horizontal length. The height 

of this region is defined similarly by beginning from the 

intersection point to the position (at the top and bottom 

side) at the distance corresponding to 20% of the vertical 

length. By this way, the region is obtained with 30% width 

and 40% height. All identified regions are shown with red 

colored rectangular shapes in Figure 7.b. To increase 

visibility of the three tissues in those regions, they are also 

shown after magnification in Figure 7.c. 
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Figure 7. The foreground image obtained after clustering 

the reference image in Figure 4.a into two clusters (a); 

Brain borders (shown with yellow and blue colored lines) 

and identified five regions (shown with red colored 

rectangular shapes) (b); To increase visibility of the tissues 

in those regions, they are shown after magnification (c) 

 

Then the mapping function is generated with average gray 

level values and intensity normalization is performed 

according to this function.  

 

For an example, Figure 8.a shows the mapping function 

generated with the average of the mean gray level values 

obtained from the observed (original) image (Figure 8.b) 

and the five regions (Figure 7.b) in the reference image. 

The image obtained after this process is shown in Figure 

8.c.  

 

The efficiency of this approach is shown on the brain MR 

image data sets (Section 5). These images have been 

obtained from the database of the Laboratory of Neuro 

Imaging at the University of Southern California [48]. 

 

  
Figure 8. The mapping function (a); Observed image (b); 

The result obtained by the proposed FAIN approach (c) 

 

5. Results 

Experimental results of all methods implemented in this 

work are presented in Figure 9. Optimal parameters used in 

Gaussian and homomorphic filtering methods have been 

found experimentally. The σ parameter for Gaussian 

filtering has been chosen as 2, the cut-off frequency used in 

homomorphic normalization has been chosen as 0.5.  

 

6. Conclusions 

In this paper, a survey on the-state-of-the art techniques 

about intensity normalization in MR images has been 

presented. Mostly applied normalization methods 

(Gaussian filtering and homomorphic filtering) and 

recently applied SAG filtering based local normalization 

have been implemented to show their performances on the 

same brain MR images. Also, a fully-automated and 

adaptive normalization method has been proposed for brain 

MR images. The results obtained from four different 

intensity normalization approaches have been presented to 

compare their effect on the same brain MR images. 

 



 
 

  

Celal Bayar University Journal of Science 
Volume 14, Issue 1, p 125-134         E. Goceri 

 

132 

 

 

 

 

 
Figure 9. Original image (a); The result obtained by the Gaussian filtering (b), homomorphic filtering (c), local 

normalization with SAG filtering (d) and by the proposed FAIN method (e) 
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It has been observed that although there are various 

approaches for intensity normalization in the literature, 

they have been applied with different types of images. 

Every image has its own characteristics. Therefore, the best 

normalization technique should be chosen according to the 

properties of images. Intensity normalization should be 

efficient and easy to implement. The results obtained by 

Gaussian and homomorphic filtering based normalization 

methods are sensitive to the chosen user-defined 

parameters. Semi-automated methods are flexible but may 

not be robust or reliable since they need user-defined 

parameters, which may not always be chosen as the most 

appropriate values. 

 

The proposed normalization approach in this work uses 

tissue-specific intensity information since mean intensity 

values of each tissue are calculated separately. Properties 

of the proposed method are as follows. 1) There is no 

overlapping of the regions defined automatically on 

images. 2) Sizes of those regions are calculated adaptively 

for each image according to the horizontal and vertical 

length of the brain. 3) Region number (which is five) is 

always the same for each image. 4) Different lobes (e.g., 

left, right, bottom and top) of the brain are used to define 

regions. The proposed method can be applied with different 

medical images to see its performance. In this work, a 

model based classification has been used. Other 

classification methods, which can be developed according 

to properties of images, can be applied to increase the 

efficiency of the proposed approach. There is not real in-

homogeneity field (in other words ground truth data). 

Therefore, objective evaluation is not possible. Visual 

evaluation of results is performed by taking into account 

some features such as the visibility of tissues and their 

boundaries. Comparisons of the results (Figure 9) obtained 

by the methods implemented in this work show that the 

proposed FAIN algorithm gives more efficient results on 

the brain MR images used in this study. 
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