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1. Introduction 

 
Tuberculosis is an airborne disease caused by Mycobacterium tuberculosis 

Ullah et al. [8] discuss a gener

transmission of infectious disease. 

found in relics from ancient Egypt, 

second leading cause of morbidity and mortality in the world from a single infectious agent, 

after the human immunodeficiency virus (HIV)

one third of the world’s population

approximately nine million people developing active tuberculosis and up to nearly two 

million people worldwide die from the disease every year
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This study proposed a mathematical model of tuberculosis with drug resistance to a first and second 

The basic reproduction number for the model using next generation method is obtained. T

was investigated and also found the global stability of the disease free 

brium and endemic equilibrium for the model. This study shows the effect of resistance rate of

treatment to the infected and resistant population. If basic reproduction number is less than one,

the disease free equilibrium is globally asymptotically stable and if basic reproduction number is greater than 

, then the endemic equilibrium is a globally asymptotically stable.  

obacterium tuberculosis bacteria [Mtb], developed multi-drug resistant [MDR], 

Basic reproduction number, Stability. 

Tuberculosis is an airborne disease caused by Mycobacterium tuberculosis 

a general SIR epidemic model which represents

transmission of infectious disease. It is an ancient disease with evidence of its existence being 

s from ancient Egypt, India and China [1]. Today, this disease ranks as the 

se of morbidity and mortality in the world from a single infectious agent, 

after the human immunodeficiency virus (HIV)
 
according to Daniel. [10] I

one third of the world’s population is infected with Mycobacterium tuberculosis bacteria

approximately nine million people developing active tuberculosis and up to nearly two 

million people worldwide die from the disease every year. Approximately 480,000 people 
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Tuberculosis is an airborne disease caused by Mycobacterium tuberculosis bacteria (Mtb). 

al SIR epidemic model which represents the direct 

disease with evidence of its existence being 

Today, this disease ranks as the 

se of morbidity and mortality in the world from a single infectious agent, 

Interestingly, about 

with Mycobacterium tuberculosis bacteria with 

approximately nine million people developing active tuberculosis and up to nearly two 
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developed multidrug resistant (MDR) tuberculosis globally with 210,000 of those who 

developed MDR tuberculosis succumbing to it. In addition to posing a, major health concern 

to low and middle income countries, tuberculosis affect economic growth negatively. [3] 

Psycho-social distress that communities go through is enormous. This involves thinking 

about the loss of their loved ones and the economic impact of taking care of sick ones 

especially among the low income individuals. This impacts not only the individuals, but also 

the economic progress of the country. Zaman [7] gives, another category of people largely at 

risk of contracting tuberculosis are those who work closely or live close to a person with 

active tuberculosis and they could include health care workers, people living in crowded 

living spaces or confined places such as schools or prisons. According to Semenza et al. [5] 

over the last twenty five years, the mortality rate of tuberculosis has greatly decreased by 

45% since and this is largely due to effective diagnosis and treatment. However, the world is 

still far from defeating the disease. About 8 billion US dollars per year is needed for a full 

response to the global tuberculosis epidemic in low and middle income countries by the year 

2015 with a funding gap of 2 billion US dollars per year. This amount excluded resources 

required for research and development, which was estimated to be about 2 billion US dollars 

yearly. Clearly, this reveals that the current investment in tuberculosis falls below the low and 

middle income country’s needs. 

 

Tuberculosis is responsible for more deaths worldwide than any other infectious agent. 

Waaler and Anderson [4] developed a first tuberculosis model for the transmission dynamics 

of tuberculosis. The enormous progress in prevention and treatment, tuberculosis disease 

remains a leading cause of death worldwide and one of the major sources of concern is the 

drug resistant strain, MDR-TB (multidrug resistant tuberculosis) and XDR-TB (extensively 

drug resistant tuberculosis). Young et al. [2]
 
studies, tuberculosis is curable provided an early 

diagnosis is made and one follows the proper treatment regimen which would take six months 

upto two years for the active tuberculosis to clear. Sharma et al. [9] given that the infected 

population is similar on the sociological and psychological effect rate. Cohen and Murray 

[11]
 
modelled epidemics of multi-drug resistant tuberculosis of heterogeneous fitness. 

 

 

2.  Model Analysis 
 

This study will first extend the standard SEIRS mathematical model for the transmission of 

tuberculosis which will demonstrate the transmission of the Mycobacterium tuberculosis in 

human hosts taking into account the multidrug resistant (MDR) tuberculosis. 

       

2.1. The Model Equations 

 

This study presents a simple model that can easily be analysed so as to properly understand 

the dynamics of this disease. Humans can contract MTB tuberculosis through contact with 

individuals who are infected with the disease after which they enter the exposed phase where 

a proportion of this class develop active tuberculosis thus moving into the infectious class. If 

treatment is administered promptly, those who recover from the disease will move to the 

recovered class and those who delay treatment and develop MDR tuberculosis will move to 

the resistant class. Those who recover from MDR tuberculosis will move to the recovered 

class. Given that there is no permanent immunity to tuberculosis, the recovered can lose their 

immunity and become susceptible again. Figure represent the flow of individuals into the 

different compartments and it has been constructed with these assumptions: recruitment is by 
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birth only, a variable population, a constant mortality rate, no permanent immunity to 

tuberculosis, no immediate infectively.  

 
  

 

    

        

                                        

                                                                                                             

                          

        ��          

  

          

 

The human population is categorized into six classes such that at time t≥0 there are �, 

susceptible humans, �, exposed humans to tuberculosis, �, infected humans with active 

tuberculosis, ��, resistant humans to the first line of treatment , �	, resistant humans to the 

second line of treatment, �, recovered humans. Thus the size of the human population is 

given as 
 = � + � + � + �� + �. In our model, the recruitment into the susceptible human 

population is by birth �. The size of the human population is further increased by the partial 

immune humans in R after they lose their immunity at the rate �. The size of human 

population is decreased by natural deaths (�) and exposure to Mtb. The exposed susceptible 

to Mtb move to the exposed classes � with the force of infection being � resulting in an  

increase in the exposed class.  The exposed class is further decreased by natural death(�) and 

the proportion who move to the infected class I after developing active tuberculosis. The 

infected class � is also reduced by natural deaths (�), disease induced death (��), those who 

recover (�) and also by those resistance rate to the first and second line of treatment ��and �	 respectively. Thus the infected class (�), and the resistant classes (����� �	) gain partial 

immunity at the rates (�) and (�) respectively thus moving to the recovered class R thus 

reducing their respective classes and also increasing the recovered class. The resistant classes 

21, RR also reduced by natural deaths (�) and disease induced deaths while the recovered class 

is reduced by natural deaths )(µ and those who lose their partial immunity at the rate �. 

 

Following Table (1) and (2) gives the description of variables and parameters 

 

                            
Table 1 

 

Description of variables �(�)     =    Susceptible humans �(�)     =   exposed humans �(�)     =    infected humans ��(�)   =   resistant to the first line of treatment �	(�)   =    resistant to the second line of treatment 

R(t)     =    Recovered humans 
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                                                          Table 2 

 

Description of Parameters � =  Rate at which the susceptible become exposed to Mtb � = Infection rate �� = Disease induced death rate � = Rate of natural death �� = Resistance rate of first line treatment �	 = Resistance rate of second line treatment � = Recovery after first line of treatment � = Recovery after second line of treatment � = Rate at which recovered loss their immunity 

α2, α3 = Disease induced death rate after first and second resistance respectively 

     

2.2. Differential Equations 

 

From the above discussion, we get the following system of ordinary differential equations 

 

                     !
         "�"# = �
 − �� − ��� + ��,""# = ��� − (� + �)�,               "&"# = �� − (� + �� + �� + �	)�,        "'("# = ��� − (� + �	 + �)��,        "')"# = �	� − (� + �� + �)�	,        "'"# = ��� + *�	 − (� + �)� +,

,,
-
,,,
.

                                                          (1) 

 

2.3. Equilibrium Points 

 

To obtain the equilibrium points for the system of differential equation (1) by equating each 

of the equations to 0 as shown in below 

 

                            !
 "�"# = �
 − �� − ��� + �� = 0, ""# = ��� − (� + �)� = 0,      "&"# = �� − (� + �� + �� + �	)� = 0,"'("# = ��� − (� + �	 + �)�� = 0,"')"# = �	� − (� + �� + �)�	 = 0,"'"# = ��� + ��	 − (� + �)� = 0, +,

,,
-
,,,
.

                                                   (2) 

 

Solving system (2), to get two equilibrium points, one being the diseases free equilibrium 

while the other being the endemic equilibrium. Disease free equilibrium 

Point 0�, �, �, ��, �	 ,�1 is expressed as follows: 23 = (�, �, �, ��, �	, �) = 4567 , 0,0,0,0,08 

and endemic equilibrium point (�∗, �∗, �∗, ��∗, �	∗  �∗) is expressed as follows: 

 

                                    �∗ = (7:;)(7:<(:=(:=))>; ,       �∗ = >?(7:@)(56A7?)(7:;)(>?(7:@)AB), 
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                        �∗ = (7:@)(56A7?)>?(7:@)AB ,               ��∗ = =((7:@)(56A7?)(7:<):C)(>?(7:@)AB)                    (3) 

                         �	∗ = =)(7:@)(56A7?)(7:<D:E)(>?(7:@)AB),     �∗ = (56A7?)B(>?(7:@)AB)@ 

 

where F = �∗  and   G = � 4 C=(7:<):C + E=)7:<D:E8. 

   

2.4. Condition of Existence/Positivity of Equilibrium 

 

The system will remain positive provided this condition holds: 

 �
 − �F�F(� + �) − G > 0 ⇔ �
 − �F > 0 ⇔ �
 > �F 
Substituting for x 

 

⇔ �
 > � (� + �)(� + �� + �� + �	)��  

⇔ �
�� > �(� + �)(� + �� + �� + �	) 

�
���(� + �)(� + �� + �� + �	) > 1 

 

This expression is the condition of existence. 

 

2.5. The Basic Reproduction Number 0R  

 

Let us look at the following system of differential equations. 

 

                                     
""# = ��� − (� + �)�, 

                                     
"&"# = �� − (� + �� + �� + �	)�, 

                                                 
"'("# = ��� − (� + �	 + �)��, 

                                    
"')"# = �	� − (� + �� + �)�	, 

 

Let 2 = (�, �, ��, �	)K then above system can be represented in matrix form as shown below: 

( ) ( )
dX

F X V X
dt

= −  

where  
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1 1 2

1 2 1

2 3 2

( )

( )
( ) 0 ,     ( )

( )
0

( )
0

E r r I
SI

E
F X V X

r R

r R

γ µ α
β

µ γ

µ α δ

µ α π

 
− + + + +  
   +  = =
 − + + + 
   − + +  

 

 

 

The Jacobian matrix of ( )F X and ( )V X at the disease free equilibrium 0X are,  

 

1 10 0
( ) ,  ( )

0 0 0 0
o o

F V
DF X DV X

   
= =   
   

 respectively, 

where 

 

1

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

N

F

βλ

µ

 
 
 
 =
 
 
 
   

and 

1 1 2

1

1 2

2 3

0 0 0

0 0
.

0 0

0 0 ( )

r r
V

r

r

µ γ

γ µ α

µ α δ

µ α π

+ 
 

− + + + =
 − + +
 

− + + 

 

Now  

 

1
0 0 0

1
0 0

( )( ) ( )1 1 1 2 1 1 2
.1 11 1

0

( )( )( ) ( )( )1 1 2 2 1 1 2 2 2

12 2
0

( )( )( ) ( )( )1 1 2 3 1 1 2 3 3

r r r r
V

r r

r r r r

r r

r r r r

µ γ

γ

µ γ µ α µ α

γ

µ γ µ α µ α δ µ α µ α δ µ α δ

γ

µ γ µ α µ α π µ α µ α π µ α π

+

+ + + + + + +−
=

+ + + + + + + + + + + + +

−
+ + + + + + + + + + + + +

 
 
 
 
 
 
 
 
  
 

 

 

The next generation matrix of the system is given by  

 

1

1 1 2 1 1 2

1

0 0
( )( ) ( )

1
0 0 0 0

0 0 0 0

0 0 0 0

N N

r r r r

FV

βγλ βλ

µ µ γ µ α µ µ α+ + + + + + +
−

=
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Now, to obtain the spectral radius of 1

1 1FV −  , which is defined as the largest eigen value of 
1

1 1FV −  and the spectral radius for the above system is the basic reproduction number and its 

expression is given by  

 

1 1 2
0

( )( )

N
R

r r

βγλ

µ µ γ µ α
=

+ + + +
 

 

2.6. Stability Analysis 

 

In this section this study will determine the stability of the diseases free equilibrium point. 

This study can easily establish the local stability of the equilibriums by Routh Hurwitz 

criteria, so left it. This study will discuss only on the global stability of the disease free and 

endemic equilibrium. 

 

Global Stability of the Disease Free Equilibrium 

 

The local dynamics of a general SEIRS model is determined by the reproduction number 0R . 

If  0R ≤ 1, then each infected individual in its entire period of infectiousness will produce less 

than one infected individual on average. This means that the disease will be wiped out of the 

population. If 0R > 1, then each infected individual in its entire infectious period having 

contact with susceptible individuals will produce more than one infected individual implying 

that the disease persist in the population. If 0R = 1 and this is defined as the disease 

threshold, then one individual infects one more individual. For 0R ≤ 1, the disease free 

equilibrium is locally asymptotically stable while for 0R > 1 the disease free equilibrium 

becomes unstable. The disease free equilibrium point is (�, �, �, ��, �	, �) = 4567 , 0,0,0,08. 

 

Theorem 1. If 0R ≤ 1, then the disease free equilibrium is of the system (�, �, �, ��, �	, �) =4567 , 0,0,0,0,08 of the system is globally asymptotically stable on Ω. 
 

Proof. Construct the following Lasalle-Lyapunov function  N(�, �, �, ��, �	, �) on the 

positively invariant compact set Ω. 

  

Define 

                    N(�, �, �, ��, �	, �) = �� + (� + �)�.                                                                (4) 

 

Differentiate (4) and using the second and third equations of the system (1), we get 

 

                                         
"O"# = � ""# + (� + �) "&"# 
�N�� = P��� − (� + �)(� + �� + �� + �	)Q�. 
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 �N�� = (� + �)(� + �� + �� + �	)(�R − 1)�, 
 

which is strictly decreasing when 0R < 1. 
 

Define the set Define the set � = {(�, �, ��, �	) ∈ Ω ∕ (�, �, ��, �	 = 0).The largest invariant 

set is contained in the set E for which � = 0 or � = 0 or �� = 0, �	 = 0 Thus by Lasalle 

invariant principal the disease free equilibrium is globally asymptotically stable on Ω. 

 

Global Stability of The Endemic Equilibrium Theorem 2. The endemic equilibrium ∅ = (�∗, �∗, ��∗, �	∗) given by equation (3) is globally asymptotically stable on Ω. 

Proof. To establish the global stability of the endemic equilibrium ∅,  so construct the 

Lyapunov function N�: Ω → � where Ω = {(�(�), �(�), ��(�), �	(�)/�(�) > 0, �(�) >0, �� > 0, �	 > 0} as described by Ullah, Zaman and Islam
10

 and it is given as  

N�(�, �, ��, �	) = ]� ^� − �∗ ln 4 ∗8a + ]	 ^� − �∗ ln 4 &&∗8a + ]� ^�� − ��∗ ln 4 '('∗(8a +
]bP�	 − �∗	ln ( ')'∗))Q                                                                                                             (5)                            

Where ]�, ]	, ]�,]b are positive constant to be later considered. 

Taking the derivative of the Lyapunov function N�as given in equation (5) yields 

"O("# =
]� ^� − �∗ c>�& − (� + �)da + ]	 ^� − �∗ c;& − (� + �� + �� + �	)da + ]� e *

11 RR − f 1r &'( −
(� + �	 + �)gh + ]bP�	 − �	∗(=)&') − (� + �� + �))Q                                                       (6) 

Choosing L1 = L2 = L3 = L4 = 1, equation (6) becomes 

= (� − �∗)(� + �)(i��3 − 1) + (� − �∗)(� + �� + �� + �	)(i	�3 − 1)
+ �1(�� − �∗�) c�∗�� − ���∗���∗� d + �	(�	 − �∗	)(�∗	� − �	�∗�	�∗	 ) 

Thus 
"O("# ≤ 0 jkk �3 < 1 ��� �∗�� < ���∗  and �∗	� < �	�∗ 

To have that 
"O("# = 0 jkk � = �∗, � = �∗ 
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 �� < �∗�  
�� = �∗� 

�	 = �∗	 

Or when �3 = 1 ��� �∗�� = ���∗ 

�∗	� = �	�∗ 

Define the set ∅ = {�∗, �∗, �∗�, �∗	} ∈ Ω/ "O("# = 0} 

Therefore the largest compact invariant set is singletone set Φ which is the endemic 

equilibrium. By Lasalle invariant principle Φ is globally asymptotically stable on Ω. 

 

3. Numerical Simulation 
 

Explain this result through graphically. Consider the parameters as: 

1 20.001, 1,000, 0.398, 1, 0.4, 0.5, 0.7,N r rλ β γ µ= = = = = = =
1 2 30.8, 0.4, 0.3,α α α= = =  

1, 1.2, 0.4.δ π ρ= = =  Then this study give 0 0.1395 1R = <  and if the initial values of 

susceptible, exposed, infected, resistant of first and second line treatment population are 1, 2, 

1, 1, 1 and 1 respectively. The susceptible population goes to its steady state value while 

exposed, infected, resistant of first and second line treatment population approach to zero as 

time increase as shown in Figure 1. So that the disease free equilibrium is globally 

asymptotically stable.

 

 

 
Figure 1. When 0 0.1395 1.R = <  
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Again if, we take the parameters of the system as: 0.015, 1,000, 0.398, 1,Nλ β γ= = = =

1 0.4,r = 2 1 2 30.5, 0.7, 0.8, 0.4, 0.3,r µ α α α= = = = = 1, 1.2, 0.4.δ π ρ= = =  Then 

)84,.45,.38,.2,8.4,25.10(),,,,,(
**

2

*

1

**** =RRRIESE and 0 2.091 1.R = > If the initial values 

of susceptible, exposed, infected, resistant of first and second line treatment population are 1, 

2, 1, 1, 1 and 1 respectively. Therefore by theorem (2), the endemic equilibrium is a global 

asymptotically stable as shown in Figure 2. 

 

Figure 2. When 0 2.091 1.R = >  

 

Let us take all the parameters are fixed except the resistance rate of the first and second line 

of treatments, found that the infected population decreases as the resistance rate of the first 

and second line of treatment increases which is shown in figure 3(a) and (b). Therefore 

infected population moves to resistant population of the first line of treatment and to the 

resistant population of the second line of treatment, as resistant rate increases respectively.  

                                          
 

Figure.3(a) Changes in the infected population with respect to resistance rate of the first line treatment, keeping 

all other parameters are fixed. 
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Figure.3(b) Changes in the infected population with respect to resistance rate of the second line treatment, 

keeping all other parameters are fixed. 

 

Similarly again we take all parameters are fixed except the resistance rate of the first line and 

the second line of treatment, found that the resistant population of the first line treatment 

decreases when resistance rate of the first line treatment increases i.e. resistant population   

�1 moves to recovered population while the resistant population of the second line treatment 

increases when the resistance rate of the second line of treatment increases i.e. after the 

second line treatment, the infected population comes into resistant population which  shown 

in figure 4(a) and 4(b) respectively. 

 
Figure. 4(a) Changes in the resistant population with respect to resistance rate of the first line of treatment, 

keeping all the other parameters are fixed. 
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Figure. 4(b) Changes in the resistant population with respect to resistance rate of the second line of treatment, 

keeping all the other parameters are fixed. 

 

 4. Conclusion  

 
This study analyzed the local and global stability of the equilibrium points, found that when 

the basic reproduction number 1
o

R < , then disease dies out and when the basic reproduction 

number 1,
o

R > then disease persists.  

 

Conflict of Interests 

 
The authors declare that there is no conflict of interests regarding the publication of this 

paper. 

 

References 

 
[1] D. Morse, Brothwell and PJ. Ucko, (1964), Tuberculosis in Ancient Egypt, Am Rev 

Respir. Dis., 90: 524-541. 

[2] D. Young, J. Stark and D. Kirschner, (2008), System Biology of Persistent Infection: 

Tuberculosis as a Case Study, Nature Reviews Microbiology, 6: 520-528.  

[3] E. Klein, R. Laxminarayan, D. Smith and C. Gilligan, (2007), Economic incentives and    

Mathematical Models of Disease, Environment and Development Economics, 12: 707-

732. 

[4] H. Waaler, and S. Anderson, (1962), The Use of Mathematical Models in the Study of the 

Epidemiology of Tuberculosis, American Journal of Public Health, 52: 1002-1013. 

[5] J. Semenza, J. Suk and S. Tsolova, (2010), Social Determinants of Infectious Diseases: A 

Public Health Priority, Euro Surveil, 15 : 1-3. 

[6] J. Trauer, J. Denholm and E. McBryde, (2014), Construction of a Mathematical Model for 

Tuberculosis Transmission in Highly Endemic Regions of the Asia-Pacific. Journal of 

Theoretical Biology, 358 : 74-84.   



Journal of New Theory 21 (2018) 94 - 106                                                                                                                     106 

 

[7] K. Zaman, (2010), Tuberculosis: A Global Health Problem. Journal of Health Population 

and Nutrition, 28: 111-113. 

[8] R. Ullah, G. Zaman , and S. Islam, (2013), Stability Analysis of a General SIR Epidemic 

Model, VFAST Transaction on Mathematics, 1: 16-20.  

[9] S. Sharma, V.H. Badshah, and V.K. Gupta,  (2017), Analysis of a SIRI Epidemic Model 

with Modified Nonlinear incidence Rate and Latent Period, Asian journal of  

Mathematics and statistics, 10: 1-12. 

[10] T. M. Daniel, (2006), History of Tuberculosis, Respiratory Medicine, 100: 1862-1870. 

[11] T. Cohen, and M. Murray, (2004) Modelling Epidemics of Multidrug-Resistant m.           

Tuberculosis of Heterogeneous Fitness. Nature Medicine, 10: 1117-1121. 

 

 


