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 ABSTRACT  

 

The energy consumption of Bitcoin mining has emerged as a critical topic in cryptocurrency 

research, influenced by the significant environmental and economic impacts of blockchain 

activities. This study examines the energy consumption of Bitcoin mining with a dataset that 

includes essential blockchain variables such as overall hash rate, network difficulty, daily 

confirmed transactions, mempool size, average block size, and daily Bitcoin output. A new 

energy consumption indicator is proposed to contribute to the research domain. The proposed 

indicator better accurately reflects the dynamics of blockchain energy utilization. Various 

machine learning models, such as Random Forest, Gradient Boosting, Support Vector 

Regression, and Multi-layer Perceptron, are evaluated, with particular emphasis on k-Nearest 

Neighbors Regression (k-NNR). The k-NNR model surpassed all other models, with a 𝑅2 value 

of 0.80427 and a Mean Squared Error (MSE) of 0.00441, indicating its high prediction accuracy. 

Analysis of feature importance indicated that daily Bitcoin production and block size are 

significant determinants of energy use. The findings underscore the efficacy of k-NNR in energy 

modeling, offering insights into Bitcoin's energy dynamics and establishing a foundation for 

more energy-efficient blockchain systems. 

 

 
Keywords: Bitcoin, Energy consumption, Hash rate, k-Nearest neighbor regression, 

Machine learning.  

 

1 INTRODUCTION 

Blockchain is a disruptive form of distributed ledgers, developed by Satoshi Nakamoto 

[1] in 2008. A blockchain is a distributed, decentralized, and securely maintained peer-to-peer 
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network that facilitates the management of information and trust among users without requiring 

a trusted third party [2]. This could diminish the influence of central authorities within financial 

ecosystems, consequently lessening the necessity for intermediaries like banks or government 

agencies to maintain trust. Blockchain technology, as a distributed database, facilitates the 

sharing of digital events among all members in the blockchain. The information included in 

each block is encrypted with a "hash" value. Every block in a blockchain encompasses the hash 

value of the preceding block [2], [3]. This approach can diminish fraud attempts by enhancing 

transparency, thereby significantly reducing the likelihood of data manipulation. The 

cryptocurrency market has experienced substantial growth in recent years [4]. This growth 

could require the implementation of new regulations within financial markets. Since 2009, 

various cryptocurrencies have developed, beginning with Bitcoin, the initial prominent 

implementation of Satoshi Nakamoto's blockchain technology announced in 2008 [5]. Bitcoin, 

as articulated by Satoshi Nakamoto, is a decentralized peer-to-peer electronic cash system that 

employs a consensus protocol to avoid double spending across different nodes [5]. 

Bitcoin mining is a decentralized computing procedure in which transactions are 

authenticated and included into the public ledger, referred to as the blockchain. The procedure 

for generating bitcoins is termed mining, and the individuals involved are referred to as miners. 

All transactions are executed and recorded on a decentralized ledger: the blockchain [6]. This 

may result in heightened individual engagement within the financial system, motivating users 

to actively participate in the blockchain, thereby assisting in the mitigation of fraud and data 

manipulation. The energy consumption of cryptocurrencies has emerged as a prominent topic 

of discourse in recent years [6]. An increased electricity cost per bitcoin mining indicates 

increased consumption of energy [7]. Substantial discrepancies exist in the calculations of 

bitcoin's energy usage because to numerous uncertainties in the process, including the type of 

hardware utilized in mining and its operational duration. Estimating future energy consumption 

for Bitcoin mining is challenging, as Bitcoin values directly influence mining activities and, 

consequently, energy usage [6]. A significant number of recent studies have been released, all 

of which anonymously emphasize the escalating energy issue associated with bitcoin mining 

[4], [6], [8]–[10]. Several significant studies in the literature examine bitcoin mining and energy 

consumption, which we addressed in our research. 

Maiti [7] examined the non-linear correlation between Bitcoin prices and energy 

consumption from 2010 to 2021 with a Threshold Regression  model. It delineates six regimes 

of price fluctuations influenced by energy consumption thresholds, revealing substantial effects 
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just in high consumption regimes, hence highlighting the disparate impact of energy on Bitcoin 

price dynamics. Sapra and Shaikh [4] examined the influence of market indices and Ethereum 

prices on Bitcoin energy use, employing Autoregressive Distributed Lag modeling with data 

from 2018 to 2023. The study indicates that rising Ethereum prices and cryptocurrency indices 

lead to increased Bitcoin energy consumption and emissions, implying the necessity for green 

investments in cryptocurrencies that employ alternatives to proof-of-work (PoW) techniques. 

Kevser [11] analyzed the correlation of geopolitical dangers, global economic policy 

uncertainty, and Bitcoin energy use. Analysis of data from 2011 to 2022, employing Hatemi-J 

causality tests, indicates that global concerns elevate Bitcoin demand and energy consumption, 

positioning Bitcoin as a safeguard in times of uncertainty while exacerbating its environmental 

consequences. Tissaoui et al.  [12] utilized the Quantile Nonlinear Autoregressive Distributed 

Lags (QNARDL) model and Extreme Gradient Boosting (XGBoost) to evaluate the influence 

of Bitcoin prices on energy consumption. Short-term price increases result in rapid energy 

surges, however long-term impacts diminish energy consumption, with XGBoost surpassing 

conventional forecasting techniques. Sapra et al. [13] analyzed the causal relationships among 

Bitcoin's energy use, pricing, and market volatility. The study concludes that Bitcoin prices 

Granger-cause energy use, whereas the reverse is not true, positioning price as a net contributor 

and consumption as a recipient in market dynamics. Syzdykova [14] analyzed the energy 

requirements of Bitcoin mining, emphasizing its substantial contribution to world electricity 

usage, amounting to 204.5 Terawatt hours (TWh) per year by 2022. The research highlights the 

shortcomings of the PoW process and promotes the incorporation of renewable energy in 

mining operations. Kohli et al. [5] compared the energy usage of cryptocurrencies with 

centralized systems such as Visa, highlighting Bitcoin's environmental impact comparable to 

that of national energy usage. The research commends Ethereum 2.0's shift to proof-of-stake as 

a significant achievement in sustainability. Zaghdoudi et al. [15]employed machine learning 

methods, including XGBoost, to forecast energy usage affected by uncertainty indices. The 

results underscore economic policy uncertainty and geopolitical risks as major predictors, 

illustrating the effectiveness of sophisticated modeling tools. Bublyk et al. [16] projected 

Bitcoin's energy consumption would attain 142 TWh by 2026, incurring substantial 

environmental consequences. It advocates for the association of mining activities with 

renewable energy sources to reduce their environmental impact. Adewuyi et al. [17] conducted 

an investigation into Bitcoin's energy consumption employing structural break and non-linear 

analytics. It recognizes bubbles associated with market activities and advocates for sustainable 

investments and policies to mitigate the environmental impact of cryptocurrency mining.  
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Table 1 indicates summary of literature on Bitcoin energy consumption. 

Table 1. Literature on Bitcoin Energy Consumption. 

Study Objective Methodology Variables 

Time 

Period 

(Frequency) 

Key Findings Contribution 

Maiti [7] 

Investigate the 

non-linear 

relationship 

between Bitcoin 

prices and energy 

consumption. 

Threshold 

Regression 

Model 

Bitcoin price 

November 

2010 - 

October 

2021 

(Monthly) 

Bitcoin prices are 

significantly influenced 

by energy consumption 

only in high-consumption 

regimes, highlighting 

uneven impacts. 

Explores complex 

price-energy 

dynamics and 

identifies energy-

related thresholds 

in price 

fluctuations. 

Sapra & 

Shaikh [4] 

Assess the impact 

of crypto indices 

and Ethereum 

prices on Bitcoin 

energy usage. 

Autoregressive 

Distributed Lag 

(ARDL) 

CBECI, Average 

Block size, Hash 

rate, No of 

transactions, 

Cix200, 

Etherium price 

December 

2018 - 

January 

2023 

(Monthly) 

Rising Ethereum prices 

and crypto indices drive 

Bitcoin energy 

consumption and 

emissions. Suggests green 

investment in non-PoW 

mechanisms. 

Advocates for 

environmentally 

sustainable crypto 

practices through 

alternative 

technologies. 

Kevser [11] 

Analyze the link 

between 

geopolitical risks, 

global policy 

uncertainty, and 

Bitcoin energy 

use. 

Hatemi-J 

Causality Test 

Global 

economic 

political 

uncertainty, 

geopolitical risk 

May 2011 - 

February 

2022 

(Monthly) 

Global uncertainties 

increase Bitcoin demand 

and energy consumption, 

positioning Bitcoin as a 

hedge but exacerbating 

environmental concerns. 

Highlights 

Bitcoin’s dual role 

as a financial hedge 

and an 

environmental 

burden in uncertain 

scenarios. 

Tissaoui et al. 

[12] 

Evaluate Bitcoin 

price effects on 

energy 

consumption. 

QNARDL 

Model, 

XGBoost 

Bitcoin price 

1 July 2010 

- 1 

December 

2022 (Daily) 

Short-term price increases 

lead to energy surges, but 

long-term effects reduce 

consumption. XGBoost 

excels in prediction. 

Demonstrates 

XGBoost's 

predictive accuracy 

in energy 

modeling. 

Sapra et al. 

[13] 

Explore causal 

relationships 

between Bitcoin 

energy use, prices, 

and market 

volatility. 

Vector Auto 

Regression 

based Granger 

Causality, 

Diebold-Yilmaz 

Connectedness  

Analysis 

CBECI, Crypto 

volatility index, 

bitcoin closing 

price 

31 March  

2019 - 30 

March 2023 

(Daily) 

Bitcoin prices Granger-

cause energy use; prices 

act as net contributors, 

while energy use is a 

recipient in market 

dynamics. 

Provides insights 

into Bitcoin’s 

market energy 

feedback loops. 

Syzdykova 

[14] 

Examine Bitcoin’s 

energy 

consumption and 

mining 

inefficiencies. 

Literature 

Review 
- - 

Bitcoin’s annual 

electricity usage reached 

204.5 TWh by 2022. 

Advocates for renewable 

energy in mining. 

Emphasizes PoW 

inefficiencies and 

recommends 

renewable energy 

adoption. 

Kohli et al. 

[5] 

Compare 

cryptocurrency 

energy use with 

centralized 

systems like Visa. 

Comparative 

Analysis 
- - 

Bitcoin’s energy use is 

equivalent to that of some 

nations. Ethereum 2.0’s 

shift to proof-of-stake is 

highlighted as a 

sustainability milestone. 

Stresses the need 

for transitions to 

proof-of-stake and 

energy-efficient 

practices. 

Zaghdoudi et 

al. [15] 

Predict CBECI 

influenced by 

uncertainty 

indices using 

machine learning. 

Machine 

Learning 

(XGBoost, 

Support Vector 

Regression, 

CatBoost) 

CBECI, 

Economic 

politicy 

uncertainty 

index, 

geopolitical risk 

index, energy 

uncertainty 

index 

1 July 2010 

– 1 

December 

2022 

(Quarterly) 

Economic and 

geopolitical risks are 

significant predictors of 

Bitcoin energy use. 

XGBoost outperforms 

other models. 

Demonstrates the 

utility of advanced 

machine learning 

tools for energy 

prediction. 
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Table 1 (Continued). Literature on Bitcoin Energy Consumption. 

Study Objective Methodology Variables 

Time 

Period 

(Frequency) 

Key Findings Contribution 

Bublyk et al. 

[16] 

Forecast spending 

on digital 

transformation 

technologies and 

services 

worldwide 

Regression 

Analysis 

Total 

cryptocurrency 

market cap, 

bitcoin energy 

consumption, 

etherium energy 

consumption 

2017 – 2022 

(Quarterly) 

Bitcoin energy 

consumption projected to 

reach 142 TWh by 2026; 

recommends linking 

mining to renewable 

energy sources. 

Proposes 

renewable energy 

integration in 

mining operations. 

Adewuyi et 

al. [17] 

Investigate 

Bitcoin’s energy 

use and carbon 

footprint, focusing 

on bubbles and 

structural breaks. 

Structural Break 

and Non-Linear 

Analytics 

Maximum and 

optimal 

electricity 

consumption, 

maximum and 

optimal average 

emissions, 

global economic 

policy index, no 

of transactions, 

the level of 

credit risk, VIX 

index, google 

trend, 

geopolitical risk, 

volatility, 

volume, bitcoin 

energy 

consumption, 

bitcoin carbon 

footprint 

7 July 2010 

– 4 

December 

2021 (Daily) 

Identifies market-driven 

energy bubbles and 

advocates for sustainable 

investments and policies 

to reduce the 

environmental impact of 

mining. 

Calls for regulatory 

and investment 

measures to 

mitigate crypto 

mining's ecological 

footprint. 

 

Research gaps identified in literature and our contributions are as follows: 

• Many studies utilize restricted factors such as price, market indices, or geopolitical 

threats, yet fail to comprehensively incorporate blockchain data (e.g., hash rate, network 

difficulty, mempool size). We employ various blockchain parameters, including hash 

rate, network difficulty, mempool size, block size, and daily confirmed transactions, to 

enhance our analysis of energy consumption. 

• Current research frequently employs long-term aggregate data (monthly, yearly), but 

short-term, granular analyses (daily data) are infrequently conducted. We concentrate 

on detailed, short-term blockchain data (61 days), providing new insights into daily 

energy consumption trends. 

• Limited studies emphasis on developing supplementary measures for energy 

consumption related to particular blockchain activities. We introduce an extra indicator 

for energy consumption, facilitating improved analysis of blockchain energy dynamics. 

The estimated energy consumption indicator, which is based on daily total hash rate and 

daily electricity usage, reflects the energy requirements of systems in a more dynamic 
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and realistic way. This approach not only refines energy estimations but also provides 

valuable insights for policymakers and researchers studying sustainable blockchain 

operations. 

• Our study is distinguished by its comparative investigation of various machine learning 

techniques to model and forecast Bitcoin's energy consumption. We assess the efficacy 

of multiple algorithms, including prevalent methods such as Random Forest, Gradient 

Boosting, Support Vector Regression, and Multi-layer Perceptron. We concentrate on 

the k-Nearest Neighbors Regression (k-NNR), which remains inadequately examined 

in the current literature. 

This paper is organized as follows: after the introduction, the Material and Method 

section elucidates the data collection and preprocessing procedures, the feature selection 

process, the development of an additional energy consumption metric, and detailed analysis of  

k-NNR. The Results and Discussion section delineates the findings from the model 

comparisons, underscores the preeminence of k-NNR, and elucidates the ramifications of the 

results within the framework of blockchain energy dynamics. Conclusion encapsulates the 

principal contributions of the study, delineates its limits, and proposes avenues for further 

research. 

2 MATERIAL AND METHOD 

This section outlines the processes of data collection and preprocessing, the feature 

selection stage, the calculation of an additional metric energy consumption, data normalization, 

k-NNR, and model evaluation. The stages applied in this section is summarized in Figure 1. 

The dataset used in this study was obtained from publicly available blockchain data 

[18], including metrics such as total hash rate, network difficulty, daily confirmed transactions, 

mempool size, average block size, and daily Bitcoin output. The dataset was cleaned by 

removing any unnecessary spaces in column names and filtering out rows with missing data. 

The hash rate, an indicator of the processing power allocated to protecting a blockchain via 

proof-of-work consensus, is essential for thwarting various attacks [19]. In Bitcoin mining, 

difficulty quantifies the challenge miners face in locating a valid block, which is standardized 

across the whole network and is recalibrated every 2016 blocks [20]. Daily confirmed 

transactions indicates the daily volume of processed confirmed transactions. The mempool 

effectively illustrates the increase in transactions pending confirmation, serving as a leading 
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signal of prospective cash flows that may influence bitcoin's trading volumes and market prices 

[21]. Block size denotes the quantity of transactions contained within the block [22]. Namely, 

the Bitcoin block size denotes the maximum data capacity of an individual block within the 

Bitcoin blockchain. Each block encompasses transaction data, and its size dictates the number 

of transactions that can be incorporated within a single block. Daily Bitcoin output denotes the 

total quantity of Bitcoin processed each day. Data for the specified entries was gathered from 

blockchain.com [18] over a period of 61 days, from October 4 to December 5. Bitcoin mining 

and energy consumption are influenced by variables such as market volatility, mining difficulty, 

and transaction volume. A 61-day dataset provides a sufficient time frame to analyze changes 

in these variables. In the literature, datasets spanning 30 to 90 days are frequently used for short- 

and medium-term forecasts [23], [24]. A 61-day period strikes a suitable balance for effective 

model training and testing in short-term predictions. These entries were recognized as essential 

for comprehending energy consumption within the blockchain network. Table 2 presents the 

sample data from our investigation, encompassing a duration of 14 days. 

 

Figure 1. Methodological stages of the study. 
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Table 2. Sample Data from Bitcoin Mining Dataset. 

Date 
Total hash 

rate (TH/s) 

Network 

difficulty 

Daily 

confirmed 

transactions 

Mempool 

size 

Average 

block 

size 

(MB) 

Daily 

Bitcoin 

output 

5 November 

2024 

702351988.69

2 

101646843652

784 
501641 

111112.22

4 
1.740 

1268937.22

3 

6 November 

2024 

773092476.76

2 

101646843652

784 
553047 

109742.37

5 
1.670 902154.559 

7 November 

2024 

788251152.77

7 

101646843652

784 
497146 

117335.38

0 
1.700 953404.938 

8 November 

2024 

717510664.70

7 

101646843652

784 
577146 

133364.32

3 
1.630 551065.648 

9 November 

2024 

702351988.69

2 

101646843652

784 
558278 

137806.07

8 
1.550 808961.400 

10 November 

2024 

747828016.73

7 

101646843652

784 
462458 

141248.55

7 
1.640 

1204667.96

6 

11 November 

2024 

687193312.67

7 

101646843652

784 
503677 

143844.45

8 
1.630 

1383872.63

1 

12 November 

2024 

737722232.72

7 

101646843652

784 
570979 

169088.87

5 
1.610 

1222908.30

6 

13 November 

2024 

697299096.68

7 

101646843652

784 
503566 

186026.77

1 
1.560 

1058121.42

2 

14 November 

2024 

641717284.63

3 

101646843652

784 
562223 

186044.26

6 
1.570 928123.081 

15 November 

2024 

757933800.74

7 

101646843652

784 
602655 

168264.26

0 
1.610 524803.198 

16 November 

2024 

793304044.78

2 

101646843652

784 
598496 

157410.71

9 
1.670 444772.304 

17 November 

2024 

757933800.74

7 

101646843652

784 
673308 

179352.19

3 
1.710 888920.856 

18 November 

2024 

789177471.48

0 

101766294632

436 
810805 

190610.73

4 
1.600 943414.474 

 

The supplied data delineates daily indicators pertaining to the Bitcoin network from 

November 5 to November 18, 2024. In previous studies (see Table 1), the major indicators - the 

total hash rate, network difficulty, daily confirmed transactions, mempool size, and daily 

Bitcoin output – have been used extensively to evaluate the energy consumption of the Bitcoin 

network. This dataset offers an overview of the Bitcoin network's performance and activity, 

emphasizing the relationship among hash rate, difficulty, transaction volume, and mining 

rewards over time. In this study, we add another indicator, namely energy consumption, which 

measures the energy needs of systems by looking at the daily total hash rate and daily power 

usage. This gives a more accurate and updated picture of energy use.  

2.1 Energy Consumption Analysis of Bitcoin Mining 

The energy usage of Bitcoin mining is closely associated with the processing power 

necessary for its PoW method. The energy requirement can be assessed by integrating the 
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network's hash rate with the energy efficiency of mining equipment [6]. There are considerable 

differences in the calculations of bitcoin's energy consumption because to numerous 

uncertainties in the process, including the type of device utilized in mining and the duration of 

its operation [6]. 

We utilized data from the Cambridge Bitcoin Electricity Consumption Index (CBECI)  

[25]. CBECI offers current estimates of Bitcoin's daily energy requirements and an annualized 

electricity consumption prediction. Due to the decentralized structure of the network, the exact 

power demand cannot be ascertained; therefore, numerous assumptions were made, including 

hypothetical lower-bound and upper-bound estimates. These two borders represent an informed 

estimate, providing a more precise representation of the real power demand. The lower-bound 

estimate represents the potential minimum overall power requirement predicated on the optimal 

scenario that all miners consistently utilize the most energy-efficient equipment. The upper-

bound estimate represents the theoretical maximum total power requirement predicated on the 

worst-case scenario wherein all miners consistently utilize the least energy-efficient hardware, 

provided that operating the equipment stays economically viable concerning electricity 

expenses. The estimate is predicated on the more plausible premise that miners utilize a blend 

of profitable hardware [25]. The data obtained from the CBECI on December 27, 2024, is as 

follows: Theoretical Lower Bound: an annual consumption of 92.610 TWh, Estimated 

Consumption: with an annual consumption of 180.970 TWh, Theoretical Upper Bound: with 

an annual consumption of 417.520 TWh. TWh refers terawatt-hour. The formula for daily 

electricity consumption is presented in Equation 1. 

𝐷𝑎𝑖𝑙𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑇𝑊ℎ) =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑇𝑊ℎ)

365
 (1) 

This study assessed daily electricity usage by utilizing estimated electrical consumption 

data in accordance with Equation 1. 

𝐷𝑎𝑖𝑙𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑇𝑊ℎ) =
180.970

365
= 0.496  

The rationale for utilizing estimated energy consumption data is its enhanced realism. 

Daily energy consumption is determined by multiplying the daily total hash rate by the daily 

electricity usage, as specified in Equation 2. 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =

𝑇𝑜𝑡𝑎𝑙 ℎ𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 (𝑇𝑊ℎ) ∗ 𝑑𝑎𝑖𝑙𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑇𝑊ℎ) (2)
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The determined energy consumption factor will serve as the dependent variable in the 

proposed study. 

The purpose of this study's proposed extra indicator is to improve the precision of 

estimates regarding the energy usage of Bitcoin mining. This metric incorporates essential 

blockchain metrics that impact energy consumption, such as hash rate, block size, and 

transaction volume. This indication offers a more dynamic approach to energy estimation by 

reflecting fluctuations in network conditions, as opposed to traditional methods that focus 

exclusively on mining difficulty or electricity costs. 

2.2 k- Nearest Neighbors Regression (k-NNR) 

k-NNR is one of the most ancient and straightforward regression techniques [26]. k-

NNR is a form of supervised learning technique. Supervised learning deduces a function 

(learner) from a dataset, which comprises a collection of training instances referred to as 

samples. Each sample consists of a pair including an input vector (instance) and the 

corresponding output value. Upon completing the training set, the learner aims to accurately 

ascertain the output for novel situations. [27]. k-NNR generates estimates by analyzing the 

results of the k nearest neighbors to the specified position. Consequently, to facilitate 

predictions using k-NNR, a metric for assessing the distance between the query point and 

instances from the sample cases is required [28]. The method calculates the distance between a 

query point and all data points in the training set to make a prediction. The Euclidean distance 

is one of the most prevalent methods for measuring this distance. Therefore, Euclidean distance 

is utilized in this study. The algorithm determines the 𝑘 nearest neighbors to the query point 

utilizing the selected distance measure. In regression, the predictions are the mean of the 

outcomes of the k nearest neighbors [28]. Equation 3 is the formula for generating predictions. 

𝑦 =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 (3) 

where 𝑦 is the predicted value, 𝑘 is the number of neighbors, 𝑦𝑖 is the energy 

consumption value at index i. 

First, all features are normalized to a range of 0 to 1 using Min-Max scaling in order to 

guarantee comparability across variables of different scales. This action enhanced the results' 

interpretability and lessened bias in the regression models. Network difficulty, daily confirmed 

transactions, mempool size, average block size, and daily Bitcoin output are utilized as input 
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variables to predict the energy consumption. Using equations 1 and 2, the dependent variable, 

energy consumption, is calculated by multiplying the daily electricity usage by the overall hash 

rate. To assess model performance, the dataset is split into subsets for testing (20%) and training 

(80%). k-NNR is utilized as the modeling technique because of its interpretability and efficacy 

in analyzing linear relationships. Through trial and error, we determine that the number of 

neighbors, 𝑘, is 8. Figure 2 demonstrates the impact of varying the number of neighbors (𝑘) on 

the test R² score k-NNR across different training set sizes (85, 80, and 75). 

 

Figure 2. Test R2 score vs. number of neighbors(𝑘) for k-NNR. 

This analysis highlights that the optimal number of neighbors for k-NNR lies around     

k = 7 to 9, depending on the training set size. Based on this trend, we selected k=8 as the optimal 

value, as it provides a strong balance between generalization and performance across different 

training sizes. 

To ensure the reproducibility of our study, we use a fixed random seed (42) for train-test 

splits and model training. Features are normalized using Min-Max scaling, and energy cost per 

transaction is calculated. Python programming software is utilized for analysis. Experiments 

are performed on a system with an 11th Gen Intel Core i7-11370H processor (3.30GHz) and 

16GB RAM. 
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3 RESULTS AND DISCUSSION 

This section delineates the outcomes of the k-NNR model employed to forecast energy 

consumption in Bitcoin mining. The k-NNR model produced a 𝑅2 (coefficient of determination) 

value of 0.804, signifying that the model accounts for 80% of the variance in energy 

consumption. This elevated 𝑅2 indicates the efficacy of the k-NNR model in elucidating the 

correlation between the chosen features network difficulty, daily confirmed transactions, 

mempool size, average block size, and daily Bitcoin output and the goal variable, energy 

consumption. The Mean Squared Error (MSE), which quantifies the average squared deviation 

between anticipated and actual values, is determined as 0.004. The little error underscores the 

model's accuracy in predictions and its capacity to generalize effectively to novel inputs. The 

conjunction of a high 𝑅2 and low MSE substantiates the dependability and precision of the k-

NNR model in evaluating energy consumption within blockchain networks. These results 

confirm the significance of preprocessing operations, including normalization and feature 

selection, which assured the model efficiently utilized the input data. 

The results are corroborated by feature importance analysis and comparisons of 

anticipated and actual performance. These visuals and data elucidate the model's efficacy and 

the significance of each feature. Figure 3 depicts the simulated feature importance for the k-

NNR model, highlighting the relative contributions of input variables to energy consumption 

prediction. 

 

Figure 3. Feature Importance for Energy Consumption Prediction. 
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Daily Bitcoin output proves to be the most significant variable, underscoring its essential 

function in influencing energy usage. Average block size and Network difficulty demonstrates 

substantial contributions, highlighting their influence on mining operations and energy 

consumption. Daily confirmed transactions and mempool size exhibites moderate significance, 

indicating their relevance to network activity while demonstrating a lesser direct impact on 

energy use. Figure 4 displays the scatter plot comparing estimated energy consumption with 

actual values for the test dataset. The red dashed line denotes the optimal fit where forecasts 

align precisely with the actual values. 

 

Figure 4. Predicted vs. Actual Energy Consumption (TWh) Per Transaction. 

 

The majority of points are concentrated near the optimal fit line, signifying high 

prediction accuracy of the model. The 𝑅2 value of 0.804 indicates the model's robust predictive 

performance, accounting for 80% of the variance in energy consumption. This performance 

confirms the efficacy of k-NNR regression in examining blockchain data.  

3.1 Comparison of various machine learning methods 

This study evaluated and contrasted various machine learning algorithms according to 

their efficacy in regression tasks. Figure 5-8 present a comparative analysis of multiple machine 

learning models based on their training R², test R², training MSE, and test MSE across different 

training sizes. 
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Figure 5. Training R2 score vs. training size. 

 

Figure 6. Test R2 vs. training size. 

 

Figure 7. Training MSE vs. training size. 
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Figure 8. Test MSE vs. training size. 

The Decision Tree Regression model attains a R² value approaching 1, indicating a 

significant likelihood of overfitting. This indicates that the model retains training data instead 

of generalizing patterns. Gradient Boosting Regression shows a large gap between training and 

test MSE. Gradient Boosting appears to exhibit somewhat elevated test errors across all training 

sizes, indicating a potential failure to adequately capture the complexity of the data, resulting 

in under fitting. It appears that Support Vector Regression is unable to adequately capture data 

variance. Regardless of training amount, k-NNR consistently maintains one of the lowest test 

MSE values. According to the stability of its test MSE, k-NNR is not severely over fitted or 

under fitted. k-NNR has a more moderate training R2 value than Decision Tree, which has an 

R2 near 1, indicating overfitting. This indicates that k-NNR is not memorizing the training data, 

implying it is probably generalizing effectively to novel data. k-NNR constantly ranks among 

the foremost models regarding test R² performance. 

The outcomes are presented in Table 3 below, whereby the algorithms are evaluated 

based on two principal metrics: 𝑅2 and MSE. Elevated 𝑅2 values represent enhanced predictive 

accuracy, and diminished MSE values indicate reduced prediction mistakes. 
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Table 3. Comparison of various machine learning algorithms. 

Methods 
Training 

Size 
Test Size 

Training 

R2 
Test R2 

Training 

MSE 
Test MSE 

Multi-layer 

Perceptron 

Regression 

85 15 0.8129 0.6787 0.0064 0.0047 

80 20 0.8205 0.7721 0.0060 0.0051 

75 25 0.7643 0.7208 0.0081 0.0059 

70 30 0.7424 0.6959 0.0096 0.0052 

65 35 0.7427 0.4904 0.0096 0.0103 

Linear 

Regression 

85 15 0.8407 0.6307 0.0054 0.0061 

80 20 0.8459 0.7062 0.0051 0.0066 

75 25 0.8452 0.7143 0.0053 0.0061 

70 30 0.8578 0.6451 0.0050 0.0069 

65 35 0.8679 0.5691 0.0047 0.0078 

AdaBoost 

Regression 

85 15 0.9647 0.5529 0.0011 0.0074 

80 20 0.9638 0.7087 0.0012 0.0076 

75 25 0.9660 0.7405 0.0011 0.0055 

70 30 0.9706 0.7183 0.0010 0.0055 

65 35 0.9727 0.6865 0.0009 0.0057 

Random 

Forest 

Regression 

85 15 0.8935 0.7028 0.0036 0.0049 

80 20 0.8841 0.7740 0.0039 0.0050 

75 25 0.8940 0.7482 0.0036 0.0053 

70 30 0.8871 0.7099 0.0040 0.0057 

65 35 0.9005 0.6571 0.0035 0.0062 

Gradient 

Boosting 

Regression 

85 15 0.9989 0.4450 3.6616 0.0092 

80 20 0.9991 0.6871 3.0207 0.0070 

75 25 0.9996 0.6729 1.2383 0.0070 

70 30 0.9997 0.7191 7.7044 0.0055 

65 35 0.9998 0.6711 6.5582 0.0059 

Support 

Vector 

Regression 

85 15 0.8598 0.5067 0.0047 0.0082 

80 20 0.8532 0.7021 0.0049 0.0067 

75 25 0.8578 0.6956 0.0048 0.0065 

70 30 0.8641 0.6680 0.0048 0.0065 

65 35 0.8705 0.3185 0.0046 0.0124 

Decision 

Tree 

Regression 

85 15 1.0 0.1865 0 0.0135 

80 20 1.0 0.3424 0 0.0148 

75 25 1.0 0.6158 0 0.0082 

70 30 1.0 0.5850 0 0.0081 

65 35 1.0 0.4689 0 0.0096 

k-NNR 

85 15 0.6996 0.7067 0.0102 0.0048 

80 20 0.6610 0.8042 0.0114 0.0044 

75 25 0.6481 0.7958 0.0121 0.0043 

70 30 0.6402 0.7617 0.0127 0.0046 

65 35 0.6368 0.7119 0.013 0.0052 

 

Among the assessed approaches, the k-NNR proved to be the most efficient model, 

attaining the greatest 𝑅2 value of 0.804 and the lowest MSE of 0.004. The results reveal that 

the k-NNR exhibited enhanced predicted accuracy and reduced error relative to other models, 

establishing it as the ideal selection for this investigation.  
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The performance of ensemble models, including Random Forest Regression and 

AdaBoost Regression, is commendable; yet, their findings are somewhat inferior to those of the 

k-NNR. Linear Regression, Support Vector Regression, and Multi-layer Perceptron Regression 

exhibit satisfactory performance but do not attain equivalent accuracy levels. The Gradient 

Boosting Regression and Decision Tree Regression exhibit inferior performance, with the 

former demonstrating a comparatively lower 𝑅2 and a larger MSE, while the latter is the least 

effective of all models. The restricted application of the k-NNR technique in forecasting Bitcoin 

mining energy usage can be ascribed to various factors. The majority of research in the domain 

supports tree-based methodologies (Random Forest, Gradient Boosting) and Support Vector 

Regression because of their capacity to manage intricate nonlinear interactions. This study's 

findings indicate that k-NNR surpasses previous models, exhibiting a high R² of 0.804 and a 

low MSE of 0.004, thereby establishing it as a formidable alternative. Its efficacy is rooted in 

its capacity to identify local patterns in energy use, adeptly represent short-term variances, and 

sustain a robust equilibrium between training and testing performance, hence avoiding the 

overfitting observed in models such as Decision Tree Regression. Due to its simplicity, 

interpretability, and robust generalization capabilities, k-NNR offers a largely overlooked but 

highly effective method for blockchain energy modeling. In conclusion, the comparison 

analysis identifies the k-NNR as the most effective method for the specified regression problem. 

This study's findings highlight numerous innovative additions to Bitcoin energy 

consumption modeling. This study presents a novel energy consumption indicator that offers a 

more accurate and dynamic depiction of blockchain energy usage, in contrast to prior research 

that predominantly depends on economic indicators or long-term aggregated data. The 

suggested indicator integrates critical blockchain variables—namely hash rate, network 

difficulty, mempool size, block size, and daily confirmed transactions—to provide a more 

thorough comprehension of energy consumption trends in Bitcoin mining. This innovative 

method improves the precision of energy assessments and offers a significant metric for 

researchers and policymakers seeking to boost energy efficiency in blockchain systems. 

Our study presents key innovations and differences relative to current research on k-

nearest neighbors (KNN) in bitcoin prediction applications. The following is existing research 

on KNN in blockchain: 
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Table 4. Existing research on KNN in bitcoin applications. 

Authors Application Methods Used Approach Key Findings 

Chevallier 

et al. [29] 

Bitcoin Price 

Forecasting 

KNN, ANN, SVM, Random 

Forest, AdaBoost, Ridge 

Regression 

Segmentation of 

Bitcoin with 

Alternative Assets 

Random Forest and 

AdaBoost Performed 

Best 

Gu et al. 

[30] 

Investment 

Model 

KNN, ANN, Grey Prediction, 

LSTM 

Comparison of 

Various Prediction 

Models 

LSTM was Found 

Superior 

Cortez et 

al. [31] 

Crypto vs. Fiat 

Market 

Liquidity 

KNN, ARMA, GARCH 
Bid-Ask Spread 

Prediction 

KNN Performed Better 

for Short-Term 

Predictions 

Da Silva et 

al. [32] 

Bitcoin Price 

Forecasting 

KNN, SVR, ANN, GLM, 

Cubist 

VMD-STACK 

Framework for 

Multi-Step 

Forecasting 

Ensemble Learning 

Improved Prediction 

Mayo & 

Elgazzar 

[33] 

Cryptocurrency 

Price Prediction 

KNN, ANN, SVM, Naïve 

Bayes, Random Forest 

Analyzing Supply-

Side Factors for 

Prediction 

ANN and Random 

Forest Performed Best 

Freeda et 

al. [34] 

Bitcoin Price 

Forecasting 

KNN, Random Forest, 

Gaussian Naïve Bayes, SVM, 

RNN 

Comparison with 

Deep Learning 

Models 

RNN Outperformed 

KNN 

Ahmed et 

al. [35] 

Bitcoin Price 

Prediction 

KNN, XGBoost, Gradient 

Boosting, Random Forest, 

Linear Regression, SVM 

Performance 

Evaluation Across 

Models 

Gradient Boosting 

Achieved Highest 

Accuracy 

Benjamin 

et al. [36] 

Crypto 

Investment 

Strategy 

KNN, Random Forest, Linear 

Regression 

Financial Market 

Prediction 

Random Forest Was 

More Effective 

Jenifel et 

al. [37] 

Bitcoin Price 

Forecasting 

KNN, Linear Regression, 

Ridge Regression, Decision 

Tree, Random Forest, SVM, 

Neural Networks 

Performance 

Analysis of 

Various ML 

Models 

KNN Was Tested but 

Not Best Performing 

Kawli et al. 

[38] 

Cryptocurrency 

Price Prediction 

KNN, LSTM, Bayesian 

Regression, SVM, Random 

Forest 

Multi-Asset Price 

Forecasting 

Random Forest and 

LSTM Achieved Best 

Results 

Akyildirim 

et al. [39] 

Bitcoin Futures 

Price Prediction 

KNN, Logistic Regression, 

Naïve Bayes, Random Forest, 

SVM, Extreme Gradient 

Boosting 

High-frequency 

Intraday Data 

Analysis 

SVM Outperformed 

KNN in Prediction 

Accuracy 

Li et al. 

[40] 

 

Stock and 

Bitcoin Price 

Forecasting 

Mask-LSTM, Mask-BiLSTM, 

Mask-GRU, KNN 

Feature Fusion for 

Time-Series 

Prediction 

Hybrid Model 

Outperformed 

Individual Models 

 

The proposed study differs significantly from existing research by focusing on Bitcoin 

mining energy consumption rather than price prediction, fraud detection, or transaction 

classification. Unlike previous studies that rely on market indicators or macroeconomic factors, 

we incorporate direct blockchain metrics such as hash rate, network difficulty, mempool size, 

and daily Bitcoin output to develop a more precise energy consumption model. Additionally, 

while k-NNR has been underutilized in blockchain energy research, our study demonstrates its 

superior performance over Random Forest, Gradient Boosting, and Support Vector Regression, 

achieving the highest predictive accuracy (R² = 0.804, MSE = 0.004). 
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4 CONCLUSION AND SUGGESTIONS 

This research employed the k-NNR model to forecast energy usage in Bitcoin mining, 

using essential parameters such network difficulty, daily confirmed transactions, mempool size, 

average block size, and daily Bitcoin output. The findings indicated that the k-NNR model 

attained robust predictive efficacy, evidenced by a 𝑅2 value of 0.80 and a MSE of 0.004. These 

results underscore the model's reliability and precision in elucidating the intricate links between 

input features and energy consumption. The results emphasize the importance of daily Bitcoin 

production and average block size as key determinants of energy usage, highlighting the 

relevance of these parameters in mining activities. The study offers significant insights into 

Bitcoin's energy dynamics, although certain limits should be recognized. The investigation was 

confined to a 61-day dataset, which, although providing precise short-term insights, may not 

reflect longer-term trends or anomalies in blockchain activity. Although the 61 days dataset 

provides sufficient insights for short-term trend analysis, longer datasets may be required to 

capture seasonal and long-term fluctuations in Bitcoin mining energy consumption. The 

analysis presupposes that mining equipment and energy efficiency are constant, perhaps failing 

to capture real-world fluctuations. Further study can address these shortcomings by augmenting 

the dataset with longitudinal data, integrating fluctuations in mining hardware efficiency, and 

evaluating supplementary machine learning techniques. This study's findings establish a 

robust foundation for formulating energy-efficient solutions in bitcoin mining and directing 

sustainable blockchain operations. 

Future research could enhance forecast accuracy by merging real-time blockchain 

indicators with external economic and environmental variables. Subsequent research could 

investigate the effects of alternate consensus processes, such as proof-of-stake, on energy 

efficiency. Enhancing the comparison study with deep learning models could provide more 

profound insights into energy use trends. 
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