International Journal of Innovative Engineering Applications A DIECES AND DIE Journal homepage: https://dergipark.org.tr/ijiea # ASSESSMENT OF THE PROBLEMS FACED BY CONSTRUCTION EQUIPMENT OPERATORS ACTIVELY WORKING IN THE FIELD AND RISK ANALYSIS OF ACTIVELY USED EQUIPMENT ¹Department of Motor Vehicles and Transportation Technologies, Arapgir Vocational School, Malatya Turgut Özal University, Malatya, Turkey ²Department of Electronics and Automation, Arapgir Vocational School, Malatya Turgut Özal University, Malatya, Turkey #### Abstract Original scientific paper When research and statistics on operators actively working in the field are carefully examined, it becomes clear how serious the consequences of accidents caused by construction machinery can be. Workplace accidents caused by construction machinery and the issues they encounter rank among the top categories of accidents resulting in death or the loss of the ability to continue working when compared to other workplace accidents in the industry. To minimize workplace accidents and issues that may arise due to operator negligence when using machinery actively on the job site, certain precautions must be taken. To minimize these situations, the following measures are listed: timely maintenance of machinery, increasing the rest periods for both the machinery and the operator, increasing training and practical exercises, conducting a site survey before work begins, and implementing workplace safety measures. In our study, research and technical analyses were conducted on the problems encountered by operators actively working in the field in order to enable them to work more efficiently. Additionally, risk analyses of construction machinery actively used in the field were conducted, and the results were examined. Six types of construction machinery were included in the risk analysis conducted in our study. For forklifts, the importance level was 1 and the risk value was 20, with the highest risk activity identified as hazards arising from trucks, trailers, and workers entering the forklift work area. As a result of our study, the importance of operator training, the organization of the work site, the importance of periodic maintenance of construction equipment, and the importance of controlling the effects of work-related stress have been highlighted. Keywords: Construction machinery, operator, occupational health and safety, occupational accident factors, risk analysis. # SAHADA AKTİF OLARAK ÇALIŞAN İŞ MAKİNELERİ OPERATÖRLERİNİN KARŞILAŞTIKLARI SORUNLARIN DEĞERLENDİRİLMESİ VE AKTİF OLARAK KULLANILAN EKİPMANLARIN RİSK ANALİZİ #### Özet Orijinal bilimsel makale Sektörde sahada aktif çalışan operatörlere yönelik araştırmalar ve istatistikler dikkatli bir şekilde incelendiğinde, iş makinaları kaynaklı kazaların ne denli ciddi sonuçlara yol açmış olduğu görülmektedir. İş makinaları kaynaklı iş kazaları ve karşılaştıkları sorunlar, neticeleri itibari ile sektördeki öteki iş kazaları ile karşılaştırıldığında ölümle veya devamlı iş yapabilme kabiliyetini kaybetme ile sonuçlanan kaza çeşitleri arasında üst sıralarda yer almaktadır. İş sahasında aktif bir şekilde kullanılan makinaların operatörlerin dikkatsizliği sonucu doğabilecek iş kazaları ve karşılaşabileceği sorunları minimum düzeye indirebilmek için birtakım tedbirler almak zarureti ortaya çıkmıştır. Bu durumları minimuma indirmek için; makine bakımlarının zamanında yapılması, makinenin ve operatörün dinlenme zamanlarının arttırılması, eğitimlerin ve uygulamaların çoğaltılması, çalışma öncesi zemin etüdünün yapılması ve çalışma sahasındaki iş güvenliği tedbirlerinin alınması olarak sıralanmaktadır. Çalışmamızda başlıca etken olarak sahada aktif çalışan operatörlerin daha verimli çalışabilmesi için karşılaştıkları sorunlara yönelik araştırmalar ve teknik incelemeler yapılmıştır. Ek olarak sahada aktif olarak kullanılan iş makinelerinin risk analizleri yapılmış ve sonuçları incelenmiştir. Çalışmamızda yapılan risk analizinde 6 tane iş makinesine yer verilmiştir. Bu iş makinelerinden forkliftler için önem derecesinin 1 olduğu ve risk değerinin 20 olduğu değerler ile en yüksek olan aktivite forklift çalışma alanına kamyon, tır ve çalışanların girmesinden kaynaklı tehlikeler olarak görülmektedir. Çalışmamızın sonucu olarak operatör eğitimlerinin önemi, çalışma sahasının düzeni, iş makinasının periyodik bakımlarının önemi ve iş stresi etkisinin kontrolünün önemi ortaya çıkmıştır. Anahtar Kelimeler: İş makineleri, operatör, iş sağlığı ve güvenliği, iş kazası etkenleri, risk Analizi. E-mail address: muhammed.uyar@ozal.edu.tr (M. M. Uyar) $^{^{\}star}$ Corresponding author. #### 1 Introduction Construction machinery, which is one of the biggest requirements of our age, is of great importance in working within the developing heavy industry. Developments in construction machinery lead to an increase in studies in the energy sector. In this context, there are alternative fuel production studies that can meet the needs of construction equipment [1-3]. advancing technology,, it is seen that the accidents that operators using construction machinery are exposed to can be reduced and largely prevented by the importance of operator training and the organization of the work site. In terms of the number of occupational accidents and their severe consequences, accidents on construction machinery are in the first place worldwide [4]. In order to minimize the negativities that occur in construction machinery, work organization is of great importance in terms of the risks that will arise during the work and the measures to be taken. Today, occupational health and safety comes to the forefront in all sectors [5]. The material losses of occupational accidents show that many studies in Europe have reached a grave economic loss dimension [6]. In our country, unlike industrialized countries, there is no decrease in the rate of occupational accidents, but fluctuations from year to year are noteworthy. This is an indication that the necessary precautions are not taken and the lack of education is at the highest level [7]. If the causes of accidents caused by construction machinery are examined, it is seen that approximately 50% of the accidents are caused by the faulty behaviors of the operators and working in the work site without taking the necessary precautions [8]. It is seen as a result of researches that the main cause of accidents is errors caused by lack of training [9]. Due to the unfavorable conditions of the working environment of construction machinery maintenance and repair, accident and injury risks that require occupational health and safety measures may arise. In cases where risks cannot be completely eliminated, it is important to use personal protective equipment suitable for maintenance [10]. As a result of literature reviews and researches on construction machinery, it is possible to summarize the main measures to be taken in order to prevent possible occupational accidents under three main headings as operator training, taking necessary occupational safety measures in the work area, and performing periodic maintenance and repair of construction machinery on time [11]. Reducing and controlling risks is the most important part of an effective occupational health and safety work [12]. Based on these literature researches, in order to eliminate the deficiency in the literature and to contribute, researches and technical examinations were carried out on the problems faced by the operators working actively in the field in order to work more efficiently as the main factor in our study. As a contribution to the literature, our study contributed to the literature in terms of addressing the problems of construction equipment operators working actively in the field and statistically evaluating all the problems experienced not only in terms of occupational safety. In addition to our study, risk analyzes of the construction machinery actively used in the field were made and the results were examined. When the results of our study are examined, it is seen that the most work accidents are experienced in loaders, the reason for this is that the daily working hours are more than 8 hours and the break times are not sufficient. Lack of certification and training of operators, irregularities in the working area, lack of periodic maintenance and scrapping of work machines were seen as the main causes of occupational accidents. When the types of accidents were analyzed, it was determined that 17.4% of the accidents occurred as a result of material fall. Problems arising from inadequate performance of work machines were evaluated at a rate of 16.5%. Failure to comply with occupational safety rules accounted for 13% of the accidents. Problems caused by encountering irregular working area in the work site were determined at a rate of 18.7%. Problems arising from overheating and overloading of work machines were identified at a rate of 13%. Finally, problems caused by work pressure and stress in the workplace were determined as 21.4%. When we look at the occupational safety and health statistics that emerged as a result of research on working with construction machinery in our country, it shows improvement compared to previous years. Our study contributed to the literature by addressing the problems of construction equipment operators actively working in the field and statistically evaluating all the problems experienced not only in terms of occupational safety. As a result of our study, the importance of operator training, the organization of the work area, the importance of periodic maintenance of the work machine and the importance of controlling the effect of work stress have emerged. In the risk analysis study, the highest activity for forklifts with a severity level of 1 and a risk value of 20 is seen as the hazards caused by trucks, trucks and employees entering the forklift work area. For cranes, the highest activity with a severity level of 1 and a risk value of 15 is seen as the hazards arising from the crane getting off the rails and going off the road in the crane gantry walk from the activities of crane use in stacking. For Container Stacking (Rtg Spreader), the activity with a rating of 1 and a risk value of 16, the highest activity is hazards from the rollers in the Mayna lifting system. For Handling Work Machine, the activity with a rating of 1 and a risk value of 15, the highest activity is the hazards caused by the employees entering under the load lifted by the machine. For Stacker Work Machine, the highest activity with a degree of 1 and a risk value of 20 is seen as the dangers arising from the fast maneuvering of the stacker operators with the work machine in the field and exceeding the specified speed limit. For Tractor Work Machine, the activity with a degree of 1 and a risk value of 16, the highest activity is seen as hazards caused by limbs hitting the moving rotating parts of the tractor in operation, getting stuck, etc. A schematic view of our study is given in Figure 1. Figure 1. Schematic view showing our study. #### 2 Statistical Data Many people lose their lives or become incapacitated due to the problems experienced by operators. In this study, a research was conducted on those working as active operators in the field and statistical data were analyzed. The variety of construction machines actively used in the fields and the proportions of these machines with the highest accident risk are given in Figure 2. **Figure 2.** Ratios of the most accident-prone construction equipment active in the field. There are machines available for different jobs used in different projects. The distribution of construction machinery accidents according to project types is shown in Figure 3 below. **Figure 3.** Distribution of construction equipment accidents according to project types. Experience is an important factor in reducing work accidents. Apart from the experience in the use of construction machinery, knowing the machine is as important as using it. Below, the experience of the operators on the basis of years is given statistically in Figure 4[10]. Figure 4. Years of experience of construction equipment operators. The starting times and breaks of the operators at the work site are important parameters for the healthy execution of the work. Figure 5, Figure 6 and Figure 7 below show the starting times of the operators, the duration of their daily work and the number of breaks they take at intervals of hours, respectively. Figure 5. Starting times of construction equipment operators. Figure 6. Daily working hours of construction equipment operators. **Figure 7.** How many hours apart the construction equipment operators take breaks. In line with these examinations, it is concluded that the operators do not allocate much time for rest, their daily working hours are long and working in this direction increases the possibility of accidents. The educational status of the operators using construction machinery, their occupational health and safety training, whether they have occupational safety certificates and driver's licenses, and from whom they received their operator training, the issues that may be effective in the formation of occupational accidents are examined in figures 8, 9, 10 and 11. Figure 8. Education level of construction equipment operators. **Figure 9.** Occupational health and safety trainings received by construction equipment operators. **Figure 10.** Whether construction equipment operators have occupational safety certificates and driving licenses. **Figure 11.** From whom the construction equipment operators received their operator training. In line with these examinations, it is seen that it is important to have an operator's license. Thanks to the authorized institutions, this number is increasing day by day. It is important that the document that people using construction machinery must have belongs to the relevant machine model. It is wrong for an operator with a Backhoe-Loader work machine license to use another machine on the construction site. Each construction machine requires a different driver's license. The training received through the courses provided by authorized institutions ensures that machines of different models are used by people who have received training on that model. A driver's license is only a document related to machine use. Apart from this, it is important that each operator receives training on the use of the machine, its maintenance and OHS rules that must be followed during use. When the types of accidents that occur in construction machinery are examined, the most common accidents were tried to be determined. The aim here is to determine the most common types of accidents and to further increase the precautions. The leading accident types are given in Figure 12. Figure 12. Types of accidents on construction equipment. When the problems arising from the insufficient performance of the construction machinery were evaluated as 1 being the least and 5 being the most, the responses were analyzed. The statistical percentages are given in Figure 13. Figure 13. Problems caused by inadequate performance of construction equipment. The responses of the operators to the problems that occur in case of non-compliance with occupational safety rules were analyzed when 1 is the least and 5 is the most. The statistical percentages are given in Figure 14. Figure 14. Accidents that occur when occupational safety rules are not followed. Problems related to the work area, which operators encounter irregularly, without ground surveys, without taking the necessary precautions in the work areas, were examined. The measures to be taken against these problems were considered among the most important issues to protect worker health. When the problems occurring in case of encountering an irregular working area at the work site were evaluated as 1 being the least and 5 being the most, the answers encountered were examined. The statistical percentages are given in Figure 15. Figure 15. Encounters with irregular workspace at the worksite. Problems related to work pressure and stress have been examined by their employers in the workplaces of the operators. The measures to be taken against these problems are important for the worker to carry out the work in a healthy way and to make healthy decisions. When the problems occurring in case of encountering work pressure and stress in the workplace were evaluated as 1 being the least and 5 being the most, the answers encountered were examined. The statistical percentages are given in Figure 16. Figure 16. Work pressure and stress in the workplace Occupational accidents caused by mechanical failures that may occur due to overheating and overloading of construction machinery are among the other important issues examined. When the problems occurring in case of overheating and overloading of construction machinery were evaluated as 1 being the least and 5 being the most, the responses were analyzed. The statistical percentages are given in Figure 17. Figure 17. Overheating and overloading of construction equipment. ## 3 Risk Analysis One of the most important causes of occupational accidents is the lack or incomplete risk analysis in critical areas. Risk assessment is defined as "the necessary studies to be carried out in order to identify the hazards that exist in the workplace or that may come from outside, to analyze and grade the factors that cause these hazards to turn into risks and the risks arising from hazards and to decide on control measures". With Risk Analysis Studies on Construction Machinery, serious consequences such as injury, loss of limbs, damage to the heart and respiratory systems and death can be prevented. In this respect, risk analysis of 6 construction machines was carried out in our study. In the risk analysis method applied as an example to the study to determine the risks, the matrix method was selected. The reason for choosing this method is that the results of possible risks can be graded. In the event of the realization of the hazard, the severity of the harm or damage that this hazard will cause to people, workplace and environment can be evaluated. According to the magnitude of the risk value, i.e. the height, the urgency of the measures to be taken and what can be done as a precaution is determined and the risk analysis study is completed. #### 3.1 Risk Analysis Study on Forklifts In the risk analysis study, the highest activity for forklifts with an importance level of 1 and a risk value of 20 is seen as the hazards caused by trucks, trucks and employees entering the forklift work area. Risk analysis study on forklifts is given in Table 1. Table 1. Risk analysis study on forklifts. | Activity | Danger | Root Cause of
Danger | Risks Arising
from Hazard | Impacts | Exposed
Persons | Probability | Violence | Risk | Degree of
Importance | |---|---|--|--|--|---|-------------|----------|------|-------------------------| | Loading and unloading | Trucks, trucks
and employees
entering the
forklift work area | Uncontrolled entry
of employees and
vehicles into the
forklift work area | Risk of collision of
forklifts and
vehicles, risk of
crushing workers | Material
damage
accident,
loss of
life, injury | Truck and lorry
drivers,
container yard
workers | 4 | 5 | 20 | 1 | | Maintenance,
repair and
control works | Diesel engine
electrical
connections | Starting work
without taking the
necessary safety
precautions | Risk of electric shock | Injury | Forklift
machine
operators,
electricians,
engine
mechanics | 2 | 4 | 8 | 2 | | Maintenance,
repair and
control works | Moving rotating
parts of a diesel
generator in
operation | Movable rotating parts | Risk of injury or
entrapment of
limbs due to
contact of body
parts | Injury | Engine
mechanics,
electricians | 3 | 3 | 9 | 2 | | Maintenance,
repair and
control works | Electrical circuits
on the forklift
work machine | Exposure to electric current | Risk of electric shock | Injury | Electricity masters | 2 | 4 | 8 | 2 | | Maintenance,
repair and
control works | Pin removal
operations on
machine
connection points | Throwing of parts on the machine | Damage to
employees due to
swinging and
dislocation of
apparatus | Injury | Workshop
masters, engine
mechanics | 3 | 3 | 9 | 2 | | Tire change | Tire changes on machines | High air pressure
inside the tire,
components that
allow the tires to
be fixed | Risk of crushing
the worker during
tire removal | Injury | Engine
mechanics,
external service | 4 | 3 | 12 | 2 | | Loading and unloading | Risk of falling
load carried by
forklift crushing
the worker | Failure to load the load safely onto the work machine | Falling of the transported or suspended load, crushing the employee as a result of its movement, overturning of the forklift | Loss of
life, injury | Forklift
operator, chock
and pointer
worker | 3 | 5 | 15 | 1 | # 3.2 Risk Analysis Study on Cranes a risk value of 15 is the use of cranes in stacking activities. Risk analysis study on Cranes is given in Table 2 $\,$ For Cranes, the highest activity with a rating of 1 and Table 2. Risk analysis study on Cranes. | Activity | Danger | Root Cause of | Risks Arising | Impacts | Exposed | Probability | Violence | Risk | Degree of | |-------------------------------------|---|--|--|---|--|-------------|----------|------|------------| | Activity | | Danger | from Hazard
Risk of rope | | Persons | Fronability | Violence | NISK | Importance | | Stacking | Rope and rope pulleys | Failure to check
the ropes, entry of
employees or
drivers into the
crane working area | breakage, risk of
damage to the
ropes by falling
parts as a result of
rope pulleys
breaking | Loss of
life,
injury,
material
damage | Porch workers,
truck drivers
who load and
unload cargo at
the porch | 2 | 5 | 10 | 2 | | Stacking | Control and
maintenance work
to be carried out at
the crane top | Starting work
without taking
safety precautions | Risk of falling
from height | Loss of
life, injury | Engine
mechanics,
electricians and
external service
personnel
performing
periodic checks | 3 | 5 | 15 | 1 | | Stacking
Crane Usage | Crane derails
during gantry walk
and goes off the
road | Deformation of the
crane rails,
disintegration of
the bearing inside
the crane wheels,
fast movement of
the crane when
loaded | Risk of braking
failure due to
crane inertia, risk
of damage to
vehicles and cargo,
risk of crushing
workers | Accident
with loss
of life,
injury and
property
damage | Crane operators,
truck drivers
and shed
workers | 3 | 5 | 15 | 1 | | Stacking
Crane Usage | Using the crane at
an inappropriate
speed | Failure of the crane operator to comply with the specified written instructions | Risk of the crane
going off the road
and harming
people working
around it, risk of
damage to crane
mechanical parts | Accident
with loss
of life,
injury and
property
damage | Crane operators,
truck drivers
and shed
workers | 2 | 5 | 8 | 2 | | Stacking
Crane Usage | Stairs to reach the load lifting crane platform | Contamination of
stairs with dust
and slippery
materials,
damaged stair
guards and steps | Fall risk | Injury | Engine mechanics, electricians and external service personnel carrying out the inspection process | 3 | 3 | 9 | 2 | | Stacking
Crane Usage | Using the crane
above its carrying
capacity, lifting
loads exceeding
the maximum
carrying capacity | Failure of the operator to comply with the specified crane operating instructions | Risk of damage to
lifting equipment
such as ropes,
hooks, etc. as a
result of damage to
the load and
damage to the
surrounding area | Loss of
life,
injury,
property
damage
accident | Crane operators,
truck drivers
and shed
workers | 3 | 5 | 15 | 1 | | Stacking
Crane Usage | Planned
maintenance and
malfunctions not
being eliminated
on time | Inappropriate
planned and
breakdown
maintenance | Risk of serious
accidents due to
improper operation
of the system as a
result of improper
maintenance | Accidents
involving
loss of
life,
injury,
property
damage | Crane operators,
truck drivers,
truck drivers
and shed
workers | 2 | 5 | 10 | 2 | | Using Cranes
for Stacking | Leaving loads on
the crane
walkway, parking
vehicles | Failure to comply
with the specified
stacking plan,
failure to comply
with the specified
safety rules by
vehicle drivers and
failure to supervise
this situation by
employees | Risk of crane
derailment due to
collision and
damage to the
surrounding area | Accidents
involving
loss of
life,
injury,
property
damage | Crane operators,
truck drivers,
truck drivers
and shed
workers | 2 | 5 | 10 | 2 | | Loading
crane use in
stacking | Crane monorail
mechanism and
other construction,
suspended load on
the crane | Uncontrolled entry of employees into the crane movement and working area, incomplete planned and breakdown maintenance works | Risk of falling
parts, falling
suspended load,
crushing the
worker as a result
of movement | Loss of
life, injury | Crane operators,
truck drivers,
truck drivers
and shed
workers | 3 | 5 | 15 | 1 | # 3.3 Risk Analysis Study on Container Stacking (Rtg Spreader) Work Machine For Container Stacking (Rtg Spreader), with a rating of 1 and a risk value of 16, the highest activity is seen as hazards arising from the rollers in the Mayna heave system. Risk analysis study on Container Stacking (Rtg Spreader) Work Machine is given in Table 3. **Table 3.** Risk analysis study on container stacking (Rtg Spreader) work machine. | Activity | Danger | Root Cause of
Danger | Risks Arising
from Hazard | Impacts | Exposed
Persons | Probability | Violence | Risk | Degree of
Importance | |---|---|--|---|---|--|-------------|----------|------|-------------------------| | Container
stacking
and
loading | Vehicles and
workers
entering work
machine
walkways | Failure to
sweep
construction
equipment
walkways | Risk of
collision of
construction
machinery and
vehicles and
crushing of
workers | Material
damage
accident,
loss of
life,
injury | Truck and
lorry
drivers,
container
yard
workers | 3 | 5 | 15 | 1 | | Container
stacking
and
loading | Construction
equipment
system | Failure of the
signaling
system feeding
the Agss
system to work
properly | Risk of the
machine going
off the road,
hitting
surrounding
vehicles | Loss of
life,
injury | Construction
equipment
operators,
vehicle
drivers, port
workers | 2 | 5 | 10 | 2 | | Container
stacking
and
loading | Diesel
generator
exhaust circuit | High
temperature
and toxic gases | Risk of injury
and poisoning
from the engine | Risk of
injury
from
burns,
risk of
poisoning
from
inhalation
of toxic
exhaust
gases | Operators,
electricians,
engine
mechanics | 3 | 5 | 15 | 1 | | Container
stacking
and
loading | Reels in the
Mayna heave
system | Rotary moving
parts, part drop
into rtg
working area | Risk of limb
entrapment,
risk of eye
damage from
fragments, | Injury | Port site
workers,
operators,
truck
drivers,
tallymen | 4 | 4 | 16 | 1 | | Container
stacking
and
loading | Rtg Spreader | 380 volt
electrically
moving chains
and other
rotating moving
parts, falling
parts of the
spreader
components
into the rtg
work area | Risk of electric
shock during
work, risk of
limb
entrapment in
moving parts,
risk of falling
of broken parts | Injury | Engine
mechanics,
electricians,
truck and
truck drivers | 3 | 4 | 12 | 2 | | Container
stacking
and
loading | Planned
maintenance
and
malfunctions
not being
eliminated on
time | Inappropriate
planned
maintenance
and
troubleshooting | Risk of serious
accidents due to
improper
maintenance | Accidents
involving
loss of
life,
injury,
property
damage | Rtgoperator,
truck and
lorry drivers | 3 | 5 | 15 | 1 | ## 3.4 Handling Work Machine Risk Analysis Study For the Handling Work Machine, the highest activity with a rating of 1 and a risk value of 15 is seen as the hazards arising from workers entering under the load lifted by the machine. Risk analysis study on Handling Work Machine is given in Table 4. Table 4. Risk analysis study on handling work machine. | A -4::4 | Danger | Root Cause of | I. Risk analysis study Risks Arising from | Impacts | | Dook a hilli | Violence | D:l. | Degree of | |---|---|---|--|---|---|--------------|----------|------|------------| | Activity | 8. | Danger | Hazard | - | Exposed Persons | Probability | Violence | Risk | Importance | | Loading and
Unloading | Trucks, trucks and
employees entering
the handling
machine work area | Personnel violating
the working area of
the crane | Risk of collision of
machines and
vehicles, risk of
crushing workers | Material
damage
accident,
loss of life,
injury | Truck and lorry
drivers,
scaffolders,
engine mechanics
and electricians | 3 | 5 | 15 | 1 | | Use of
construction
machinery for
unloading and
loading loads | Batteries on the construction machine | Splashing of acidic
liquid in batteries
into the body and
eyes | Risk of acid in the
eyes during battery
inspection, risk of
battery explosion,
risk of electric shock | Loss of limb, injury | Electrical
craftsmen, engine
mechanics | 3 | 2 | 6 | 3 | | Operations
related to the
electricity
system | Handling machine electrical circuits | Starting work
without taking
appropriate
precautions | Risk of electric
shock | Injury | Electricity
masters | 3 | 2 | 6 | 3 | | Maintenance
work | Maintenance work
to be carried out in
the hydraulic system
of the handling
machine | High hydraulic
pressure, high
hydraulic oil
temperature | Risk of pressurized
hydraulic fluid
penetrating the skin,
getting into the eyes | Injury | Motor mekanik
ve elektrik
ustaları | 2 | 3 | 6 | 3 | | Maintenance
and control
works | Work to be done on
the machine boom
system | Height at which
injury is likely in the
event of a fall | Risk of falling due
to working at height | Injury, loss
of life | Engine
mechanics,
workshop
foremen and
electricians | 2 | 5 | 10 | 2 | | Unloading and
loading of
cargo | Fast maneuvering of
the handling
machine operators
with the work
machine in the field | Exceeding the speed limits set at the port | Risk of collision
with vehicles, risk of
crushing the workers
on board, risk of
dropping the load on
the scaffold,
vehicles and ship | Loss of life,
injury,
material
damagePort
dock
workers,
truck-truck
drivers,
motor
mechanics,
ship
workers | Port dock
workers, truck-
truck drivers,
motor mechanics,
ship workers | 2 | 5 | 10 | 2 | | Loading and
Unloading | Workers under the load lifted by the machine | Personnel violating
the working area of
the crane | Risk of burden on employees | Loss of life,
injury | Port site workers,
truck drivers,
subcontractor
employees | 3 | 5 | 15 | 1 | | Part
replacement | Replacements of
attachments attached
to the boom end of a
handling machine | Unsuitable working environment | Risk of staff slip and fall | Injury | Engine
mechanics | 3 | 4 | 8 | 2 | | Loading and
Unloading | Suspended load on crane | Personnel violating
the working area of
the crane | Risk of the
suspended load
falling, crushing the
worker as a result of
its movement | Loss of life,
injury | Crane operators,
truck drivers,
truck drivers and
shed workers | 2 | 5 | 10 | 2 | # 3.5 Stacker Work Machine Risk Analysis Study For the Stacker Work Machine, the highest activity with a degree of 1 and a risk value of 20 is seen as the hazards arising from the fast maneuvering of the Stacker operators with the work machine in the field and exceeding the specified speed limit. Risk analysis study on Stacker Work Machine is given in Table 5 Table 5. Risk analysis study on stacker work machine. | Activity | Danger | Root Cause of
Danger | Risks Arising
from Hazard | Impacts | Exposed
Persons | Probability | Violence | Risk | Degree of
Importance | |------------------------------|--|---|---|---|--|-------------|----------|------|-------------------------| | Use of cranes in stacking | Trucks, lorries and
employees
entering the
stacker work area | Occupation of stacker workspace | Risk of collision
with vehicles and
crushing of
workers by
construction
equipment | Material
damage
accident,
loss of
life,
injury | Truck and lorry
drivers,
container yard
workers | 3 | 5 | 15 | 1 | | Use of cranes
in stacking | Stacker operators
maneuvering fast
with the work
machine in the
field, exceeding
the set speed limit | Exceeding the set speed limit | Risk of accidents,
risk of crushing
personnel in the
work area, risk of
hitting cargo and
containers | Loss of
life,
injury,
material
damage | Field workers,
truck drivers | 4 | 5 | 20 | 1 | | Use of cranes
in stacking | The presence of
workers or
vehicles in the
blind spot of the
work machine
during reverse
maneuvering | Failure to see the
area where the rear
weight is located
during reverse
maneuvering with
the construction
machine | Risk of crushing of
employees, risk of
collision with
passenger
vehicles | Accident
with
material
damage,
loss of
life | Field workers,
truck drivers,
passenger car
drivers | 3 | 5 | 15 | 1 | | Use of cranes in stacking | Lamps indicating
the position of the
spreader twistlocks
not working
properly | Use of
construction
machinery without
repairing the
faults | Risk of dropping
the container, risk
of damage to
machinery and
equipment | Accident
with
material
damage,
injury | Truck drivers,
stacker
operator | 2 | 5 | 10 | 2 | #### 3.6 Tractor Work Machine Risk Analysis Study For the Tractor Work Machine, the highest activity with a rating of 1 and a risk value of 16 is seen as hazards arising from the impact of limbs on the moving rotating parts of the tractor in operation, getting stuck, etc. Risk analysis study on Tractor Work Machine is given in Table 6 Table 6. Risk analysis study on tractor work machine. | Activity | Danger | Root Cause of
Danger | Risks Arising
from Hazard | Impacts | Exposed
Persons | Probability | Violence | Risk | Degree of
Importance | |--|--|---|---|---|--|-------------|----------|------|-------------------------| | Fueling the tractor | Tractor fuel
tank and fuel
in the tank | Starting the
fueling process
without taking
safety
precautions | Explosion, fire | Loss of
life,
injury,
property
damage | Tractor operator, fuel dispenser, field workers, vehicle drivers | 3 | 4 | 12 | 2 | | Maintenance
work | Impact,
jamming, etc.
of limbs on
moving
rotating parts
of the tractor in
operation. | Rotary moving parts | Risk of injury
or entrapment
of limbs due to
contact of body
parts | Injury | Engine
mechanics,
Electricity
masters | 4 | 4 | 16 | 1 | | Maintenance
work | Electrical
circuits on the
tractor work
machine | Exposure to electric shock | Risk of electric shock | Injury | Electricity
masters | 3 | 4 | 12 | 2 | | Maintenance
work to be
performed on
the tractor by
the technical
department | Pin removal
operations on
machine
connection
points | Hand tools
used in
maintenance or
parts removed
such as pins,
bearings, etc. | Damage to the
personnel
performing the
work due to
swinging,
dislocation,
etc. of the
apparatus used | Injury | Workshop
masters,
engine
mechanics | 2 | 4 | 8 | 2 | | Material
transportation | Tractor water
tanker
attachment | Rapid maneuvering, the employee climbing on the tanker doing control work without taking the necessary safety precautions | Risk of
overturning of
the tanker, risk
of falling of
personnel
climbing on
the tank | Injury
due to
fall,
accident
with
material
damage | Tractor
operator | 2 | 4 | 8 | 2 | ## 4 Conclusions Construction machinery has an importance that cannot be ignored today in working areas. The danger posed by construction machinery used in the industrial sector, which is the locomotive of the world economy, should not be overlooked. Operators with professional competence should be employed in construction sites, and construction machinery personnel working construction sites should have an operator certificate related to the construction machinery they use. Operators should be trained on the dangers arising from machinery. The content of the trainings should cover accidents at world standards and emphasize the precautions to be taken. In addition, the contents of these trainings should also include occupational safety solutions applied at world standards. Occupational accidents are an important cost factor for employees and businesses and negatively affect employee and organizational productivity. Material and moral losses as a result of occupational accidents also cause great damage to the national economy. For this reason, it is necessary to identify the causes of occupational accidents in enterprises, to take the necessary measures and to supervise them in order to work effectively and efficiently in a healthier and peaceful environment. When the results of our study are examined, it is seen that the most occupational accidents are experienced in loaders, the reason for this is that the daily working hours are more than 8 hours and the break times are not sufficient. Lack of certification and training of operators, irregularities in the working area, periodic maintenance and scrapping of work machines were seen as the main causes of occupational accidents. When the accident types were analyzed, it was determined that 17.4% of the accidents were caused by falling materials. Problems caused by inadequate performance of work machines were evaluated at a rate of 16.5%. Accidents occurring in case of non-compliance with occupational safety rules were determined at a rate of 13%. Problems caused by encountering irregular working area at the work site were determined at a rate of 18.7%. Problems arising from overheating and overloading of work machines were found to be 13%. Finally, problems caused by work pressure and stress in the workplace were found to be 21.4%. When we look at the statistics on occupational safety and health that emerged as a result of research on working with construction machinery in our country, it shows improvement compared to previous years. Our study contributed to the literature by addressing the problems of construction equipment operators who are actively working in the field and statistically evaluating all the problems experienced not only in terms of occupational safety. As a result of our study, the importance of operator trainings, the organization of the working area, the importance of periodic maintenance of the work machine and the importance of controlling the effect of work stress have emerged. In the risk analysis study, the highest activity for forklifts with a severity level of 1 and a risk value of 20 is seen as the hazards caused by trucks, trucks and employees entering the forklift work area. For cranes, the highest activity with a severity level of 1 and a risk value of 15 is seen as the hazards arising from the crane getting off the rails and going off the road in the crane gantry walk from the activities of crane use in stacking. For Container Stacking (Rtg Spreader), the activity with a rating of 1 and a risk value of 16, the highest activity is hazards from the rollers in the Mayna lifting system. For Handling Work Machine, the activity with a rating of 1 and a risk value of 15, the highest activity is the hazards caused by the employees entering under the load lifted by the machine. For Stacker Work Machine, the highest activity with a degree of 1 and a risk value of 20 is seen as the dangers arising from the fast maneuvering of the stacker operators with the work machine in the field and exceeding the specified speed limit. For Tractor Work Machine, the activity with a degree of 1 and a risk value of 16, the highest activity is seen as hazards caused by limbs hitting the moving rotating parts of the tractor in operation, getting stuck, etc. # Declaration Ethics committee approval is not required. #### References [1] Hazar, H., & Uyar, M. (2015). Experimental investigation of isopropyl alcohol (IPA)/diesel blends in a diesel engine for improved exhaust emissions. *International Journal of Automotive Engineering and Technologies*, 4(1), 1–6. - [2] Uyar, M., & Aydın, H. (2022). Production of low sulfur diesel-like fuel from crude oil wastes by pyrolytic distillation and its usage in a diesel engine. *Energy*, 244, 122683 - [3] Hazar, H., Uyar, M., Aydın, H., & Şap, E. (2016). The effects of apricot seed oil biodiesel with some additives on performance and emissions of a diesel engine. International Journal of Automotive Engineering and Technologies, 5(3), 102–114. - [4] Ercan, A. (2010). Evaluation of worker health and safety in the construction sector in Turkey. *Politeknik Journal*, *13*(1), 49–53. - [5] Gürcanlı, G. E. (2008). The current situation in occupational safety in the world and Turkey and the construction sector. TMMOB Ölçü Magazine, February 2008, 90–98. - [6] Yalçın, E., & Taçgın, E. (2016). Construction sector and occupational safety measures in excavation applications. *Chamber of Civil Engineers (İMO) Bursa Bulletin*, (65), 9–11. - [7] Vocational Qualification Authority. (2011). National occupational standard: Construction machinery maintenance and repairer – Level 4 (Reference Code: 09UMS0010-4). Official Gazette, 26 May 2015, No: 29367. - [8] Altınöz, H., Uzun, M., Bahadır, Y., Sarmusak, F., & Karagöz, Y. (2011). Occupational accidents frequently encountered in the use of construction machinery and precautions to be taken. In 3rd Occupational Health and Safety Symposium, Çanakkale. - [9] Gürcanlı, E. (2013). Turkish Medical Association Occupational Health and Safety Association. İş Güvenliği Dergisi, (48), 20–29. - [10] Pehlivan, M., Özakın, B., & Çakmak, A. (2017). The importance and future of construction equipment operator program in Turkey. *Mehmet Akif Ersoy University Journal* of Institute of Science and Technology, 8(Special 1), 140– 145. - [11] Yakar, H., & Taçgın, E. (2019). Evaluations and suggestions for reducing occupational accidents encountered in the use of construction machinery. *Engineer and Machinery*, 60(697), 303–326. - [12] Taşkıran, N. (2019). Cognitive work analysis: A study on hydraulic backhoe and operator interaction (Master's dissertation, Gazi University). - [13] Xu, Z., & Da, Q. L. (2003). An overview of operators for aggregating information. *International Journal of Intelligent Systems*, 18(9), 953–969.