
 

Cite this article  Polatoğlu. A. Temporal Dynamics of Cosmic Rays and Sunspot Numbers: Insights from SARIMA Analysis. International Journal 

of Innovative Research and Reviews (INJIRR) (2024) 8(2) 35-41 

Link to this article:  http://www.injirr.com/article/view/230  

 

Copyright © 2024 Authors. 

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which 

permits unrestricted use, and sharing of this material in any medium, provided the original work is not modified or used for commercial purposes. 
 

 

International Journal of Innovative Research and Reviews, 8(2) 35-41 
 

International Journal of Innovative Research and Reviews 
ISSN: 2636-8919 

Website: www.injirr.com  

 

Research paper, Short communication, Review, Technical paper 
 

 

R E S E A R C H  A R T I C L E  

Temporal Dynamics of Cosmic Rays and Sunspot Numbers: Insights from 

SARIMA Analysis 

 Ahmet POLATOĞLU1,* 

1 Department of Astronomy and Space Sciences, Faculty of Sciences, Atatürk University, Erzurum, Türkiye 

 

* Corresponding author E-mail: ahmet.polatoglu@atauni.edu.tr  

 

A R T I C L E  I N F O  

Received : 10.02.2024 

Accepted : 11.16.2024  

Published : 12.15.2024 

 

Keywords:  

Cosmic Rays (CRs) 

Forecasting 

SARIMA 

Solar Activity 

Time Series 

A B S T R A C T  

Understanding the intricate relationship between solar activity and cosmic rays is crucial for 

advancing our knowledge in space weather and its impacts on Earth’s environment. This 

study investigates the relationship between cosmic rays and solar activity, as measured by 

the sunspot number, using advanced time series analysis techniques. Data represented by the 

sunspot number and cosmic ray intensity from 1980 to 2024. SARIMA modeling, spectral 

analysis, seasonal decomposition, and cross-correlation methods were used to look into the 

complex dynamics that control how cosmic rays and sunspot number interact with each other. 

Our findings reveal a strong inverse correlation between these two variables, with a 

significant lag effect indicating that changes in solar activity influence cosmic ray flux with 

a delay of approximately 10 months. The findings from this study underscore the importance 

of selecting appropriate machine learning models when investigating the dynamic and non-

linear relationships inherent in space weather phenomena. This research contributes to the 

ongoing efforts to better understand the Cosmic Rays-Sun-Earth connection and provides a 

comparative analysis that could inform future modeling approaches in solar-terrestrial 

physics.
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1. Introduction 

Cosmic Rays (CRs) are a pervasive yet intriguing 

phenomenon in astrophysics. These high-energy particles, 

primarily protons and atomic nuclei, originate from a variety 

of sources, including supernovae, solar flares, and other 

energetic astrophysical events. Upon entering the Earth’s 

atmosphere, they interact with atmospheric particles, leading 

to the production of secondary particles and ionization 

processes that can have wide-ranging effects on both the 

Earth’s environment and technological systems. 

Understanding the behavior and modulation of cosmic rays 

is crucial for fields as diverse as space weather prediction, 

climate science, and even particle physics [1–4]. 

Solar activity, characterized by phenomena such as sunspots, 

solar flares, and coronal mass ejections (CME), plays a 
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significant role in modulating the intensity of cosmic rays 

reaching the Earth. Sunspots, which are temporary 

phenomena on the Sun’s photosphere, serve as indicators of 

the Sun’s magnetic activity. The Sunspot Number (SSN), a 

key measure of solar activity, varies in a quasi-periodic 

manner known as the solar cycle, typically lasting about 11 

and 22 years [5]. During periods of high solar activity, the 

increased solar wind and magnetic fields act as a shield, 

deflecting CRs and reducing the flux that reaches the Earth’s 

atmosphere. Conversely, during periods of low solar activity, 

the shielding effect diminishes, allowing more CRs to 

penetrate the solar system [6]. 

The relationship between CRs and solar activity has been a 

subject of scientific inquiry for decades. Numerous studies 

have established an inverse correlation between these two 

phenomena, with periods of high solar activity 

corresponding to lower CRs intensity. However, the 

temporal dynamics of this relationship, including potential 

lag effects, are not fully understood. Previous research has 

hinted at a delayed response of cosmic ray flux to changes in 

solar activity, but the precise nature and duration of this lag 

remain topics of ongoing investigation [7–9]. 

This study aimed to provide a comprehensive analysis of the 

temporal dynamics and interactions between CRs and solar 

activity using advanced time series analysis techniques. By 

applying methods such as The Seasonal Autoregressive 

Integrated Moving Average (SARIMA) modeling, spectral 

analysis, seasonal decomposition, and cross-correlation, we 

seek to unravel the complex interplay between CRs and SSN. 

Advanced statistical tools, such as SARIMA, are particularly 

suited for analyzing time-dependent phenomena 

characterized by seasonal and periodic patterns, making 

them ideal for examining the relationship between CRs flux 

and SSN over different temporal scales [10]. Specifically, we 

investigate the strength and nature of the correlation between 

these two variables, explore the periodic components that 

may underlie the CRs data, and examine the potential lag 

effect between changes in SSN and corresponding changes 

in CRs flux. Basic approach allows for a detailed 

examination of both short-term and long-term patterns in 

cosmic ray and solar activity data, providing new insights 

into the mechanisms that govern their relationship. By 

understanding these patterns, it improves predictive models 

of cosmic ray behavior, which are essential for mitigating the 

effects of space weather on Earth-based and space-based 

technologies. Furthermore, findings contribute to the broader 

scientific understanding of the Sun-Earth connection and its 

implications for climate and environmental processes. 

2. Data and Methodology 

2.1. Data Description 

The dataset used in this study comprises monthly 

measurements of CRs counts and SSN spanning from 

January 1980 to January 2024. The data was sourced from 

reliable observatories and space agencies that monitor 

cosmic ray intensity and solar activity. The Date column 

represents the monthly timestamp for the recorded data, 

ranging from January 1980 to January 2024. This data 

records the intensity of cosmic rays detected in counts per 

minute. CRs are highly energetic particles originating from 

outer space, and their flux is influenced by solar activity, 

among other factors. The CRs data captures the average 

cosmic ray counts per minute for each month over the study 

period. Oulu neutron monitor data were used for CRs data 

(https://cosmicrays.oulu.fi/). This monitor provides reliable 

long-term measurements crucial for understanding CRs flux. 

The SSN data records the number of sunspots observed on 

the Sun’s surface each month. The SSN is a crucial indicator 

of solar activity, with higher numbers corresponding to 

periods of heightened solar activity. The SSN data reflects 

the intensity of solar activity, which influences the Earth’s 

magnetosphere and cosmic ray penetration. SSN data are 

from WDC-SILSO, Royal Observatory of Belgium, Brussels 

(https://www.sidc.be/). The data is often used in solar 

physics research to study the solar cycle and its effects on 

space weather. 

Before analysis, the dataset underwent several preprocessing 

steps. Firstly, any missing or incomplete records in the 

dataset were examined and addressed. In cases where data 

was unavailable for a specific month, interpolation or other 

imputation methods were applied to maintain continuity in 

the time series. Then, the data was normalized and 

transformed as necessary to prepare it for time series 

modeling and analysis. This included differencing for 

stationarity in the CRs data, ensuring the series was suitable 

for SARIMA modeling. Seasonal decomposition techniques 

were employed to isolate the seasonal component of the SSN 

data, allowing for a more detailed analysis of seasonal 

patterns. The dataset provides a rich time series for analyzing 

the interactions between CRs and solar activity. 

2.2. Methodology 

This study employs a comprehensive time series analysis 

approach to investigate the relationship between CRs and 

Solar activity, as measured by the SSN. The methodology 

consists of several key steps, including data preprocessing, 

modeling, spectral analysis, seasonal decomposition, and 

cross-correlation analysis. Each step is designed to extract 

insights into the temporal dynamics and interactions between 

these two variables. 

The dataset was examined for any missing values or 

anomalies. Missing data points were addressed using 

interpolation techniques to ensure a continuous and 

consistent time series. This step is crucial for maintaining the 

integrity of the time series models and analyses. Stationarity 

is a prerequisite for many time series models. We performed 

the Augmented Dickey-Fuller (ADF) test to assess the 

stationarity of both the CRs and SSN series. Where 

necessary, differencing was applied to achieve stationarity, 

particularly in the CRs series. 

SARIMA model was applied to both the CRs and SSN time 

series. SARIMA is a powerful modeling technique that 

accounts for both non-seasonal and seasonal components in 

a time series. The general form of the SARIMA model is 

SARIMA (p, d, q) (P, D, Q, S) where p, d, q are the non-

seasonal AR, differencing, and MA terms, respectively. P, 

D, Q are the seasonal AR, differencing, and MA terms, 

respectively. S is the length of the seasonal cycle [11, 12]. 

Appropriate SARIMA model orders were selected based on 

the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). The models were fitted to the 

data, and diagnostic checks, including residual analysis, 
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were performed to ensure the models’ adequacy. The fitted 

SARIMA models were used to forecast CRs and SSN values 

for the next 24 months. The forecasts provided insights into 

future trends and seasonal variations. To uncover the 

dominant frequencies in the CRs time series, a periodogram 

was computed. Spectral analysis helps identify periodic 

components that may not be immediately evident in the time 

domain. The power spectrum was analyzed to determine 

which frequencies contribute most to the variance in cosmic 

ray counts. The dominant frequencies identified in the 

periodogram were examined to understand the cyclical 

behavior in CRs flux, potentially linked to solar cycles or 

other cosmic phenomena. 

The SSN time series was decomposed into its trend, 

seasonal, and residual components using seasonal 

decomposition of time series (STL). This technique allows 

us to isolate and analyze the seasonal patterns and long-term 

trends in solar activity. The trend component was analyzed 

to observe long-term changes in SSN, while the seasonal 

component was examined to identify recurring patterns 

corresponding to the solar cycle. The residual component 

was assessed to identify any irregularities or unexplained 

variations. 

ADF test is a statistical test used to determine whether time 

series data are stationary. In time series analysis, it is critical 

for modelling and forecasting that a series is stationary, i.e. 

that its mean, variance and autocorrelation remain constant 

over time. A non-stationary time series can often give 

inappropriate results in models such as SARIMA [13]. 

The Pearson correlation coefficient was calculated between 

the CRs and SSN series to quantify the strength and direction 

of their relationship. A negative correlation was expected, 

given the inverse relationship between solar activity and 

cosmic ray flux. To explore the temporal lag between 

changes in SSN and corresponding changes in CRs counts, a 

cross-correlation function (CCF) was computed. This 

analysis helps determine whether changes in solar activity 

precede or follow changes in CRs intensity and identifies the 

optimal lag time. The lag with the highest absolute cross-

correlation was identified, providing insights into the time 

delay between solar activity and its effect on CRs flux. This 

lag effect is crucial for understanding the dynamic 

interaction between these variables. 

3. Results and Discussion 

A graphic summary of the time series for SSN and CRs may 

be found in Figure 1. Regarding stationarity, CR: The series 

appears to not be stationary, as indicated by the p-value of 

roughly 0.141 obtained using the ADF test. For SSN, the 

series is stationary, as indicated by the p-value of roughly 

0.0029 that the ADF test produced. Assuming that the CRs 

time series is non-stationary, it will probably need to be made 

stationary by differencing. The SSN series is already 

stationary, so the modeling continues. Differencing is now 

applied to the CRs data and then SARIMA models are fitted 

to both the CRs and SSN data. 

 

Figure 1 Time Series for CRs and SSN 

After the SARIMA models were fitted, produced estimates 

for the upcoming 24 months for both CRs and SSN (Figure 

2). The prediction indicates that CRs counts will fluctuate, 

declining during some periods and increasing during others. 

The CRs counts are predicted by the model to fluctuate, 

which may be related to variations in solar activity and other 

outside factors. A shift toward a solar minimum phase may 

be indicated by the SSN prediction, which indicates a steady 

fall in counts. The difference is not as noticeable as it was in 

the CRs forecast, though. These forecasts provide insights 

into the expected behavior of CRs and SSN over the next two 

years, which can be valuable for studies related to space 

weather, climate impact, and other related fields. 

For both CRs and SSN, Figure 3 offers a thorough seasonal 

decomposition of time series data, dividing each dataset into 

four essential parts: Observed, Trend, Seasonal, and 

Residual. The Observed panels (top row) display the original 

data, showing the fluctuations in CRs intensity and SSN over 

time, from 1980 to 2024. The Trend panels (second row) 

reveal the long-term movements within each series, with the 

CRs trend illustrating periodic increases and decreases, 

likely influenced by solar activity, while the SSN trend 

clearly reflects the well-known 11-year solar cycle, showing 

the rise and fall of solar activity over time.  
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Figure 2 CRs and SSN Forecasts for Next 24 Month with SARIMA Model 

The Seasonal panels (third row) capture the regular, 

repeating cycles within each dataset, with the CRs data 

exhibiting a consistent annual pattern, whereas the SSN data 

shows less pronounced seasonal variation, dominated more 

by the overall solar cycle than by shorter-term seasonal 

changes. Finally, the Residual panels depict the irregularities 

or noise that remain after removing the trend and seasonal 

components, highlighting the unpredictable fluctuations in 

both datasets that are not explained by the other components. 

This decomposition is crucial for isolating different patterns 

within the data, aiding in more accurate analysis and 

forecasting of CRs and solar activity. The analysis of the 

seasonal component in the SSN data reveals a balanced 

pattern with a mean close to zero at approximately -0.004, 

indicating that the seasonal fluctuations average out over 

time without a significant bias. The variability of this pattern 

is moderate, as reflected by a standard deviation of 1.66. The 

range of seasonal values, extending from -2.41 to 2.75, 

highlights the extent of these fluctuations over the observed 

period. 

 

 

Figure 3 Seasonal Decomposition of CRs and SSN Data 
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Figure 4 Trend Analysis of CRs and SSN 

Trend analysis is a technique used to identify and analyze 

patterns or trends in a data setting over time, as shown in 

Figure 4 for SSN and CR. The trend analysis for CRs reveals 

key statistical insights. The average trend value is 

approximately 6204.6, with a standard deviation of 384.6, 

indicating moderate variability around the mean. The trend 

fluctuates between a minimum of 5339.96 and a maximum 

of 6810.21. The interquartile range (IQR) spans from 

5866.13 (25th percentile) to 6523.38 (75th percentile). The 

trend plot suggests that CRs counts exhibit periods of 

increase and decrease, likely following a cyclical pattern 

influenced by solar activity cycles. 

Similarly, the trend analysis for the SSN highlights 

significant variability, with an average trend value of 

approximately 57.09 and a standard deviation of 47.34. The 

trend ranges from a minimum of 1.10 to a maximum of 

163.16, with an IQR between 15.73 (25th percentile) and 

89.31 (75th percentile). The SSN trend clearly reflects the 

characteristic rise and fall associated with the solar cycle, 

indicating pronounced periods of high and low sunspot 

counts. Both trend analyses underscore important cyclical 

behaviors, with CRs seemingly influenced by solar activity, 

as evidenced by the correlation with SSN. 

 

Figure 5 Residuals from SARIMA for CRs and SSN 

The residual analysis for the SARIMA models applied to 

CRs and SSN reveals distinct characteristics in their 

predictive performance as shown in Figure 5. For the CRs 

model, the mean residual is approximately -3.88, indicating 

a slight bias in predictions, while the standard deviation of 

91.99 suggests moderate dispersion around the mean. The 

residuals range significantly from -601.74 to 368.59, 

highlighting some substantial deviations between observed 

and predicted values. Notably, the Ljung-Box test yields a p-

value of 0.689, indicating no significant autocorrelation in 

the residuals, which is a positive outcome. However, the 

broad range of residuals suggests that the model may still 

struggle to capture some extreme values accurately.  

Figure 6 Spectral Analysis of CR 
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In contrast, the SSN SARIMA model demonstrates a mean 

residual of 0.34, indicating minimal bias, with a standard 

deviation of 17.62, reflecting lower dispersion compared to 

the CRs model. The residuals range from -52.23 to 146.70, 

showing that deviations, while present, are less extreme. 

However, the Ljung-Box test results in a p-value of 0.0003, 

suggesting significant autocorrelation in the residuals, 

implying that the model might not have fully captured all 

underlying patterns in the SSN data. This indicates a need for 

further refinement of the SSN model, possibly by adjusting 

parameters or incorporating additional factors to improve its 

predictive accuracy and reduce autocorrelation in the 

residuals. 

The spectral analysis of the CRs data identifies several 

dominant frequencies in the power spectrum, indicating 

cyclical patterns within the data as shown in Figure 6. These 

key frequencies, including 0.0019, 0.0038, 0.0057, 0.0076, 

0.0095, 0.0113, 0.0132, 0.0151, 0.0170, 0.0284, and 0.0473, 

correspond to various periodic components. The most 

prominent of these frequencies are likely associated with 

significant cycles or patterns, potentially linked to solar 

cycles or other environmental factors influencing CRs 

activity. 

 

Figure 7 Scatter Plot of CRs and SSN 

As seen in Figure 7, the strong negative correlation of 

approximately -0.83 between CRs and SSN highlights the 

inverse relationship between solar activity and cosmic ray 

flux. As solar activity increases, marked by a higher SSN, 

the intensified solar wind and magnetic field deflect more 

CR, reducing their count on Earth.  

 

Figure 8 Cross-Correlation between CRs and SSN 

Conversely, during periods of low solar activity, more CRs 

penetrate the solar system and reach Earth. This relationship 

is visually reinforced by a scatter plot, where higher SSN 

correspond to lower CRs counts, emphasizing the significant 

impact of solar activity on CRs intensity. 

The cross-correlation analysis between CRs and SSN reveals 

that the strongest inverse relationship, with a correlation of 

approximately -0.88, occurs at a lag of 10 months (Figure 8). 

This indicates that changes in SSN precede corresponding 

changes in CRs counts by about 10 months, reflecting the 

time it takes for solar activity fluctuations to influence CRs 

flux as the solar wind and magnetic field propagate through 

the solar system. This lagged effect underscores the 

importance of understanding the timing of CRs responses to 

solar activity changes, which is crucial for predictive 

modeling and studying space weather impacts. 

4. Conclusion 

This study provides a comprehensive analysis of the intricate 

relationship between CRs and SSN using advanced time 

series analysis techniques. Our findings confirm the 

expected inverse relationship between solar activity and CRs 

intensity, with a significant emphasis on the temporal 

dynamics that govern this interaction. The SARIMA models, 

developed after addressing the non-stationarity in the CRs 

series (p-value of 0.141) and leveraging the stationary nature 

of the SSN series (p-value of 0.0029), offer valuable insights 

into the future behavior of these two crucial parameters. The 

forecast generated by the SARIMA model suggests 

fluctuations in CRs counts over the next 24 months, with 

periods of decline and increase likely linked to variations in 

solar activity. In contrast, the SSN forecast points towards a 

gradual decrease, possibly indicating a transition towards a 

solar minimum phase. 

The seasonal decomposition and trend analysis further 

elucidate the underlying patterns in CRs and SSN data. The 

CRs trend analysis revealed an average trend value of 

approximately 6204.6, with a standard deviation of 384.6 

and a range from 5339.96 to 6810.21, indicating cyclical 

increases and decreases. The SSN trend analysis highlighted 

the characteristic variability of the solar cycle, with an 

average trend value of 57.09, a standard deviation of 47.34, 

and a range from 1.10 to 163.16. The spectral analysis of the 

CRs data identified dominant frequencies that likely 

correspond to significant solar cycles, further emphasizing 

the periodic nature of CRs flux. The seasonal component of 

the SSN data exhibited a balanced pattern with a mean close 

to zero (-0.004), a standard deviation of 1.66, and a range 

from -2.41 to 2.75, underscoring the interplay between 

seasonal variations and the broader solar cycle. 

One of the most significant findings of this study is the strong 

negative correlation of -0.83 between CRs and SSN, which 

underscores the inverse relationship between solar activity 

and CRs flux. This relationship is further illuminated by the 

cross-correlation analysis, which identified a maximum 

correlation of -0.88 at a 10-month lag, suggesting that 

changes in SSN precede corresponding changes in CRs 

counts by nearly a year. This lagged effect highlights the 

delayed impact of solar activity on CRs intensity and is 

crucial for predictive modeling and understanding space 

weather impacts. The residual analysis, while showing some 
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limitations in the SARIMA models—particularly in 

capturing extreme values for CRs and addressing 

autocorrelation in SSN—provides a foundation for further 

refinement. Overall, this study contributes valuable insights 

into the temporal dynamics between CRs and solar activity, 

offering a robust framework for future research in this 

domain. 
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