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Abstract: This paper employs two distinct yet potent methodologies in order to 
tackle the intricate difficulties posed by nonlinear partial differential equations. 
Our primary focus is on deriving novel exact solutions for the (3+1)-dimensional 
B-type Kadomtsev-Petviashvili equation. The (3+1)-dimensional B-type
Kadomtsev-Petviashvili equation serves as the focal point of this research. By 
employing the unified method and the generalized Kudryashov method, solitary 
wave solutions for this equation are obtained. These methods not only contribute 
to the theoretical analysis of nonlinear systems but also facilitate a deeper 
understanding of multidimensional wave phenomena. The newly derived exact 
solutions provide significant insights into the physical interpretations of these 
equations, paving the way for advanced applications in fields such as energy 
transmission, signal processing, and wave dynamics.

(3+1)-Boyutlu B-tipi Kadomtsev-Petviashvili Denkleminin Çözümü için İki Etkili 
Yöntemin Kullanılması 

Anahtar Kelimeler 
The generalized  
Kudryashov yöntemi,  
B-type
Kadomtsev-Petviashvili 
denklemi, 
Unified yöntem

Öz: Bu çalışma, doğrusal olmayan kısmi diferansiyel denklemler tarafından ortaya 
konulan karmaşık zorlukların üstesinden gelmek amacıyla iki farklı ve güçlü 
yöntemi ele almaktadır. Çalışmanın temel amacı, (3+1)-boyutlu B-tipi Kadomtsev-
Petviashvili denklemi için yeni ve tam çözümler türetmektir. Araştırmanın odak 
noktası olarak ele alınan bu denklem, birleşik yöntem ve genelleştirilmiş 
Kudryashov yöntem kullanılarak dalga çözümleri elde edilerek analiz edilmiştir. 
Bu yöntemler, doğrusal olmayan sistemlerin teorik analizine katkı sağlarken, çok 
boyutlu dalga fenomenlerinin daha derinlemesine anlaşılmasını da mümkün 
kılmaktadır. Türetilen yeni ve tam çözümler, bu denklemlerin fiziksel yorumlarına 
dair önemli içgörüler sunmakta ve enerji aktarımı, sinyal işleme ve dalga 
dinamikleri gibi alanlarda ileri düzey uygulamalara zemin hazırlamaktadır.  

1. Introduction

In recent years, nonlinear partial differential 
equations (NPDEs) have become pivotal in advancing 
our understanding of complex phenomena that 
pervade various scientific and engineering domains. 
The study of NPDEs is motivated by their exceptional 
ability to capture the intricate interplay between 
spatial and temporal variables in nonlinear systems. 
These equations serve as a mathematical cornerstone 
for modeling diverse processes characterized by 
abrupt transitions and sensitivity to initial or 
boundary conditions, which often pose significant 
analytical and computational challenges. 

NPDEs are integral to the mathematical 
representation of complex dynamical systems where 

linear approximations fail to provide accurate 
descriptions. For instance, in fluid dynamics, NPDEs 
govern the behavior of turbulent flows and nonlinear 
wave propagation, while in viscoelasticity, they 
elucidate stress-strain relationships in complex 
materials. Similarly, in control theory, NPDEs 
facilitate the design of systems capable of 
withstanding disturbances, and in electrochemistry, 
they describe reaction-diffusion processes critical to 
understanding electrochemical kinetics. 

The utility of NPDEs extends far beyond physical 
sciences, finding applications in fields as varied as 
acoustics, finance, and biological systems, etc. Their 
ability to incorporate nonlinear interactions enables 
precise modeling of phenomena such as financial 
market dynamics, where small perturbations can lead 
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to significant systemic changes, and biological pattern 
formation, which involves intricate chemical 
signaling pathways. Advanced mathematical 
techniques, including symmetry analysis, 
perturbation methods, and numerical simulations, 
have been employed to address the inherent 
challenges posed by NPDEs, leading to 
groundbreaking insights and innovative solution 
frameworks. 
 
This emerging field continues to evolve, driven by the 
demand for accurate and efficient models that can 
predict and control nonlinear behaviours. The 
interdisciplinary nature of NPDEs not only bridges 
the theoretical and mathematical realms with 
practical applications, but also fosters collaboration 
across diverse scientific communities. Consequently, 
the study of NPDEs remains at the forefront of 
modern research, offering unparalleled opportunities 
to unravel the complexities of nonlinear systems and 
their implications in the real world [1]. 
 
To obtain a thorough understanding of the physical 
implications of NPDEs, researchers have developed a 
wide range of advanced techniques for deriving exact 
solutions. These methods, including the differential 
transformation method [2,3], the Adomian 
decomposition method [4,5], the fractional sub-

equation method [6], the (𝐺  
′
/𝐺)-expansion method 

[7-9], the 𝜑6 − expansion method [10], the tanh-
function expansion method [11], the sub-ODE 
method [12, 13], the unified method [14], the Sardar 
sub-equation method [15], the exponential function 
method [16, 17], the homogeneous balance method 
[18], the generalized Kudryashov method [19], etc. 
These approaches have significantly advanced the 
theoretical and practical understanding of nonlinear 
nonlinear differential equations, enabling precise 
descriptions of diverse nonlinear phenomena. 
 
The Kadomtsev-Petviashvili (KP) equation is a 
fundamental model describing the propagation of 
weakly dispersive, small-amplitude waves in 
multidimensional media [20]. As a two-dimensional 
extension of the classical Korteweg-de Vries (KdV) 
equation, the KP equation has been extensively 
studied for its mathematical properties and physical 
applications, particularly in the context of integrable 
systems [21]. Various studies have demonstrated the 
rich mathematical structure of the KP equation, 
including the Lax pair formulation, infinite 
conservation laws, and the existence of multi-soliton 
solutions, which are fundamental in the study of 
nonlinear wave dynamics [22]. 
 
A significant extension of the KP equation is the B-
Type Kadomtsev-Petviashvili (B-KP) equation, 
derived from the bilinear equations of the 
constrained B-KP hierarchy through pseudo-
differential calculus [23]. The B-KP equation 
introduces additional complexity through its 

association with symmetric reductions and 
constrained flows, which distinguish it from the 
classical KP framework. These mathematical features 
provide new insights into multidimensional wave 
interactions and nonlinear dynamics. 
 
One of the most remarkable aspects of the B-KP 
equation is its analytical solutions, often expressed 
through determinant-based representations such as 
Grammian solutions [22]. Within the Hirota bilinear 
formalism, these determinant solutions offer a 
powerful algebraic and geometric approach to 
understanding the dynamics of nonlinear wave 
interactions. Determinant structures have proven to 
be a crucial tool in analyzing solitonic interactions 
and providing exact solutions to nonlinear wave 
equations. 
 
The B-KP hierarchy is further categorized into two 
distinct subhierarchies: the B-KP hierarchy and the C-
Type Kadomtsev-Petviashvili (C-KP) hierarchy. Each 
of these subhierarchies presents unique 
mathematical structures and physical applications. 
The B-KP hierarchy is closely related to symmetric 
reductions and constrained flows, while the C-KP 
hierarchy explores alternative symmetry properties 
and additional integrable structures [24]. These 
classifications enable researchers to systematically 
study the interplay between integrability and 
symmetry in nonlinear wave systems [25]. 
 
Within this context, the B-KP equation and its 
hierarchy play a crucial role in the study of 
multidimensional integrable systems. The 
mathematical richness of this system, coupled with 
its determinant-based solutions and symmetry 
analysis, provides a valuable framework for 
understanding nonlinear wave dynamics in both 
theoretical and applied mathematical contexts. 
 
Recent research in nonlinear science, particularly in 
fluid dynamics and plasma physics, has uncovered 
foundational phenomena that deepen our 
understanding of complex systems. Of particular note 
are solitary waves, which have been shown to 
possess the remarkable ability to maintain shape and 
coherence over long distances, thus challenging 
traditional wave behaviour paradigms. These insights 
have opened avenues for innovative applications in 
energy transmission and signal processing. The 
extended (3+1)-dimensional B-KP equation, 
introduced by [26], marks a significant generalization 
of the classical KP equation. This higher-dimensional 
extension incorporates an additional spatial 
dimension, enabling the exploration of more intricate 
wave interactions and dynamics in multidimensional 
media. The B-type structure modifies the nonlinear 
and dispersive terms, allowing for a broader 
spectrum of solutions, including lump solutions and 
higher-order solitons. These advancements make the 
B-KP equation a powerful tool for analyzing physical 
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systems where higher-dimensional propagation and 
interactions are critical, significantly expanding the 
applicability of the Kadomtsev-Petviashvili 
framework in mathematical physics and beyond. 
 
In [27], KP hierarchy of B-type [28, 29], introduced by 
Date, is discussed. This includes the (2+1)-
dimensional equation proposed by Jimbo, Kashiwara, 
and Miwa, given as  
 

9𝑣𝑡 + 𝑣5𝑥 − 5(𝑣𝑥𝑥𝑦 − ∂𝑥
−1𝑣𝑦𝑦)

+ 15(𝑣𝑥𝑣𝑥𝑥 + 𝑣𝑣𝑥𝑥𝑥 − 𝑣𝑣𝑦
− 𝑣𝑥 ∂𝑥

−1𝑣𝑦) + 45𝑣
2𝑣𝑥 = 0. 

 

(1) 

The study focuses on the generalized (2+1)-
dimensional Bogoyavlenskii-Kadomtsev-Petviashvili 
(BKP) equation, which represents a significant 
extension of two well-known nonlinear partial 
differential equations: the Bogoyavlenskii-Schiff (BS) 
equation and the Kadomtsev-Petviashvili (KP) 
equation [27]. The BKP equation is rooted in B-type 
Lie algebras, setting it apart from the classical KP 
equation, which is derived from the mathematical 
framework of A-type Lie algebras. This distinction 
underscores the rich algebraic structure of the BKP 
equation and highlights its role in broadening the 
scope of integrable systems theory. 
 
The Bogoyavlenskii-Schiff equation, from which the 
BKP equation partially extends, emerges in the 
context of constrained flows within B-type Lie 
algebras. These algebras are known for their unique 
symmetries and structural properties, which play a 
pivotal role in characterizing solutions to the BS 
equation. In contrast, the KP equation, derived from 
A-type Lie algebras, has served as a foundational 
model in nonlinear wave theory, particularly for 
describing weakly dispersive, small-amplitude waves 
in quasi-two-dimensional systems. The BKP equation 
seamlessly integrates features from both of these 
equations, offering a versatile framework for 
studying multidimensional nonlinear wave 
phenomena. 
 
One of the notable characteristics of the BKP equation 
is its ability to encode higher-dimensional dynamics 
while maintaining integrability. Through its 
derivation and analysis, the BKP equation provides 
new avenues for exploring the interplay between 
geometry, symmetry, and nonlinear dynamics. Its 
formulation extends the scope of classical integrable 
systems by incorporating elements of pseudo-
differential calculus, Grammian determinants, and 
bilinear transformations. These tools enable the 
construction of explicit solutions, such as solitons, 
dromions, and other localized wave structures, which 
are of significant interest in mathematical physics. 
Furthermore, the BKP equation's connection to B-
type Lie algebras introduces additional algebraic 
richness, allowing for the study of alternative 
symmetry reductions and hierarchical structures. 

This opens the door to a deeper understanding of 
constrained flows, Hamiltonian systems, and the 
interplay between different types of Lie algebras in 
the theory of integrable systems. As such, the 
generalized BKP equation not only serves as a bridge 
between the BS and KP equations but also acts as a 
powerful tool for investigating complex nonlinear 
wave phenomena in higher-dimensional settings. 
 
Additionally, [27] explores a (3+1)-dimensional 
extension of the DJKM equation, formulated as:  
 

9𝑣𝑡 + 𝑣5𝑥 − 5(𝑣𝑥𝑥𝑦 − ∂𝑥
−1𝑣𝑦𝑦)

+ 15(𝑣𝑥𝑣𝑥𝑥 + 𝑣𝑣𝑥𝑥𝑥 − 𝑣𝑣𝑦
− 𝑣𝑥 ∂𝑥

−1𝑣𝑦) + 45𝑣
2𝑣𝑥 + 𝛼𝑣𝑧

= 0 

(2) 

where the term 𝑣𝑧 is incorporated into the (2+1)-
dimensional form, and 𝛼 is a arbitrary constant, as 
presented in [27]. The study considers an extended to 
Eq. (2), introducing additional terms to enhance its 
applicability and complexity. The generalized 
equation is given by: 
 

9𝑣𝑡 + 𝑣5𝑥 − 5(𝑣𝑥𝑥𝑦 − ∂𝑥
−1𝑣𝑦𝑦) + 15(𝑣𝑥𝑣𝑥𝑥 +

𝑣𝑣𝑥𝑥𝑥 − 𝑣𝑣𝑦 − 𝑣𝑥 ∂𝑥
−1𝑣𝑦) + 45𝑣

2𝑣𝑥 + 𝛼𝑣𝑥 +

𝛽𝑣𝑦 + 𝛾𝑣𝑧 = 0, 

 

(3) 

where the last three terms 𝛼𝑣𝑥  , 𝛽𝑣𝑦   and   𝛾𝑣𝑧  are 

additional terms included for generalization. Here 𝛼, 
𝛽 and 𝛾 are real parameters representing external 
influences or modifications to the system's dynamics. 
Building on this, we focus on an extended (3+1)-
dimensional B-KP equation derived under the 
substitution 𝑢𝑥 = 𝑣, which transforms the equation 
into: 
 

9𝑢𝑥𝑡 + 𝑢6𝑥 − 5(𝑢𝑥𝑥𝑥𝑦 + 𝑢𝑦𝑦)

+ 15(𝑢𝑥𝑥𝑢3𝑥 + 𝑢𝑥𝑢4𝑥
− 𝑢𝑥𝑢𝑥𝑦 − 𝑢𝑥𝑥𝑢𝑦)

+ 45(𝑢𝑥)
2𝑢𝑥𝑥 + 𝛼𝑢𝑥𝑥

+ 𝛽𝑢𝑥𝑦 + 𝛾𝑢𝑥𝑧 = 0. 

(4) 

 
This formulation provides a higher-dimensional 
framework to explore the intricate interplay between 
spatial and temporal dynamics in nonlinear wave 
systems. The inclusion of the parameters 𝛼, 𝛽  and   𝛾 
broadens the scope of the analysis, enabling the 
modeling of more complex physical phenomena.  
 
This study can be summarized as follows: In Section 
2, we present a detailed description of the 
generalized Kudryashov method and the unified 
method, which serve as the primary analytical tools 
for addressing nonlinear partial differential 
equations in this work. Section 3 is dedicated to the 
application of these methods, wherein we derive 
abundant exact solutions for a selection of nonlinear 
partial differential equations, showcasing the efficacy 
and versatility of the approaches. Finally, in the 
concluding section, we discuss the significance of our 
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findings, provide insights into their implications, and 
outline potential directions for future research in this 
domain.  
 
2.  Material and Method 
 
The generalized Kudryashov method: 

 
In this section, we give the generalized Kudryashov 
method as an effective approach for solving NPDEs. 
Consider a general nonlinear evolution equation 
expressed as: 
 
𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑦 , 𝑢𝑧, 𝑢𝑡𝑡, 𝑢𝑥𝑡, 𝑢𝑦𝑡 , 𝑢𝑧𝑡, 𝑢𝑥𝑥, . . . ) = 0   (5) 

 
where 𝑃  is a polynomial involving the unknown 
function 𝑢(𝑥, 𝑦, 𝑧, 𝑡)  and its various partial 
derivatives. The generalized Kudryashov method has 
been developed for the purpose of constructing 
characteristic and broad-spectrum soliton solutions 
to nonlinear partial differential equations (NPDEs). 
This method is designed to address both temporal 
and spatial dependencies [30]. The method involves a 
systematic sequence of steps, which can be outlined 
as follows: 
 
Step 1: In order to facilitate the analysis, a new 
variable 𝜉 is given and the following transformation 
is applied: 
 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝜉)  ,       𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑘𝑡 (6) 

 
where 𝑘 is parameter. The transformation specified 
in Eq. (6) leads to the reduction of Eq. (5) to the 
following nonlinear ordinary differential equation 
(NODE); 
 

𝐺 (𝑞,−𝑘𝑞 
′
, 𝑞 

′
, 𝑞 

′
, 𝑞 

′
, 𝑘2𝑞 

′′
, −𝑘(𝑞 

′
)2, −𝑘(𝑞 

′
)
2
,−𝑘(𝑞 

′
)
2
, 𝑞 

′′
, . . . )

= 0 
(7) 

 
where 𝐺 is a polynomial that involves the function 𝑞 
and its derivatives with respect to 𝜉. The resulting Eq. 
(7) is then integrated one or more times, with the 
constants of integration set to zero. 
  
Step 2: Assume that the solution of Eq. (7) takes the 
following form: 

𝑞(𝜉) =
𝑎0 + Σ

𝑖=1

𝑚

𝑎𝑖𝑈
𝑖(𝜉)

𝑏0 + Σ
𝑗=1

𝑛

𝑏𝑗𝑈
𝑗(𝜉)

 

 

(8) 

where 𝑎𝑖(𝑖 = 0,1,2,3,⋯ ,𝑚)  and   𝑏𝑗(𝑗 = 0,1,2,3,⋯ , 𝑛) 

are constants to be determined, with the conditions 
𝑎𝑚 ≠ 0 , 𝑏𝑛 ≠ 0. Here, 𝑈(𝜉) is defined as: 

𝑈(𝜉) =
1

1 + 𝜆exp(𝜉)
 

which is the general solution of the Riccati equation: 

𝑈 
′
(𝜉) = 𝑈2(𝜉) − 𝑈(𝜉) 

 
(9) 

where 𝜆 is constant, and the prime ( ′) denotes the 

ordinary derivative with respect to 𝜉. 
 
Step 3: The values of 𝑚  and 𝑛  are determined 
through the method of homogeneous balancing, a 
technique that involves equating the highest-order 
derivative terms with the highest-order nonlinear 
terms in Eq. (7). This process ensures the consistency 
of the solution by balancing the contributions of the 
various terms in the equation. To apply this method, 
we substitute the expression for 𝑞(𝜉) from Eq. (8) 
into Eq. (7), along with the general solution for 𝑈(𝜉) 
provided in Eq. (9). Next, we equate the coefficients 
of like powers of 𝑈(𝜉) on both sides of the equation, 
setting them to zero. This results in a system of 
algebraic equations, which can be solved to 
determine the unknown constants 𝑎𝑖  and 𝑏𝑗 , as well 

as the values of 𝑚 and 𝑛.  
 
Step 4: The system of algebraic equations obtained 
from the balancing process is solved using advanced 
Maple software programme. These tools facilitate the 
efficient computation of the unknown 
constants 𝑎𝑖(𝑖 = 0,1, . . . , 𝑛),  𝑏𝑗(𝑗 = 0,1, . . . , 𝑚), as well 

as the parameters 𝑘 and 𝜆. Once these constants and 
parameters are determined, they are substituted 

back into the expression for 𝑞(𝜉) given in Eq. (8). 
This step results in the complete solution to the 
nonlinear evolution equation described by Eq. (7), 
providing explicit forms for the solution that capture 
the essential dynamics of the system under 
consideration. 
 

The unified method: 
 
The fundamental phases of the unified method are 
outlined as follows: 
 
Step 1: The wave variable assigned in Eq. (6) 
transforms Eq. (5), we obtain Eq. (7). 
 
Step 2: We express the exact solution of Eq. (7) in the 
following form: 

𝑞(𝜉)  =  𝑎0  +  ∑[𝑎𝑖  𝜑
𝑖 + 𝑏𝑖  𝜑

−𝑖] ,

𝑀

𝑖=1

 (10) 

 
where M  is positive integers, a0 , ai , bi (i =
 1, 2, 3, … , M ) are constants to be determined and 
φ =  φ(ξ) satisfies following the Riccati differential 
Eq. (8). 

𝜑′(𝜉) =  𝜑2(𝜉) +  𝜆 , 
 

(11) 

where φ′ = 
dφ

dξ
 and λ  is a constant. The general 

solution of Eq. (7) as follows: 
 
Set 1: When 𝜆 <  0, the solutions to Eq. (11) are as 
follows: 
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φ(ξ) =

{
 
 
 
 

 
 
 
 

√−(𝐴2+𝐵2)𝜆−𝐴√−𝜆𝑐𝑜𝑠ℎ(2√−𝜆(𝜉+𝜉0))

𝐴𝑠𝑖𝑛ℎ(2√−𝜆(𝜉+𝜉0))+𝐵
,

−√−(𝐴2+𝐵2)𝜆−𝐴√−𝜆𝑐𝑜𝑠ℎ(2√−𝜆(𝜉+𝜉0))

𝐴𝑠𝑖𝑛ℎ(2√−𝜆(𝜉+𝜉0))+𝐵
,

√−𝜆 −
2𝐴√−𝜆

𝐴+𝑐𝑜𝑠ℎ(2√−𝜆(𝜉+𝜉0))−𝑠𝑖𝑛ℎ(2√−𝜆(𝜉+𝜉0))
,

−√−𝜆 +
2𝐴√−𝜆

𝐴+𝑐𝑜𝑠ℎ(2√−𝜆(𝜉+𝜉0))+𝑠𝑖𝑛ℎ(2√−𝜆(𝜉+𝜉0))
,

   
where 𝐴, 𝐵 and 𝜉0 are arbitrary constants. 
 
Set 2: When 𝜆 >  0, the solutions to Eq. (11) are as 
follows: 
 

φ(ξ) =

{
 
 
 
 

 
 
 
 

√(𝐴2−𝐵2)𝜆−𝐴√𝜆𝑐𝑜𝑠(2√𝜆(𝜉+𝜉0))

𝐴𝑠𝑖𝑛(2√𝜆(𝜉+𝜉0))+𝐵
,

−√(𝐴2−𝐵2)𝜆−𝐴√𝜆𝑐𝑜𝑠(2√𝜆(𝜉+𝜉0))

𝐴𝑠𝑖𝑛(2√𝜆(𝜉+𝜉0))+𝐵
,

𝑖√𝜆 −
2𝐴𝑖√𝜆

𝐴+𝑐𝑜𝑠(2√𝜆(𝜉+𝜉0))−𝑖 𝑠𝑖𝑛(2√𝜆(𝜉+𝜉0))
,

−𝑖√𝜆 +
2𝐴√𝜆

𝐴+𝑐𝑜𝑠(2√𝜆(𝜉+𝜉0))+𝑖 𝑠𝑖𝑛(2√𝜆(𝜉+𝜉0))
,

  

 
where 𝐴, 𝐵 and 𝜉0 are arbitrary constants. 
 
Set 3: When λ =  0, the solutions to Eq. (11) are as 
follows: 

φ(ξ) = −
1

ξ + ξ0
 , 

 
where ξ0 arbitrary constant [31]. 
 
Step 3: Employing the homogeneous balance method 
outlined in Eq. (7)  enables us to determine the 
positive integer values of 𝑀 corresponding to the 
solution described in Eq. (10). By substituting the 
solution from Eq. (10) into Eq. (7) and incorporating 
the Riccati equation depicted in Eq. (11), we obtain a 
polynomial expression in terms of 𝑈(𝜉) . This 
polynomial, upon equating coefficients of similar 
powers of U(ξ)  to zero, yields specific sets of 
algebraic equations. 
 
Step 4: Upon substituting Eq. (10)  into Eq. (7) 
alongside Eq. (11), a polynomial expression in terms 
of 𝑈(𝜉) is derived. Equating all coefficients of 𝑈(𝜉) to 
zero leads to a system of algebraic equations. By 
employing the Maple program, we can effectively 
solve this system to determine the values of 
parameters such as a0 , ai , bi (i =  1, 2, 3, … , M ), and 
𝜆. Subsequently, upon substituting these values and 
Eq. (11) into Eq. (10), exact solutions for the reduced 
Eq. (5) can be obtained. 
 
3. Results  
 
We employ the generalized Kudryashov method to 
solve the extended (3+1)-dimensional B-KP equation. 
By utilizing both the generalized Kudryashov method 

and the unified method, we investigate the exact 
traveling wave solutions of the (3+1)-dimensional B-
KP equation. The B-KP equation is 
 

9𝑢𝑥𝑡 + 𝑢6𝑥 − 5(𝑢𝑥𝑥𝑥𝑦 + 𝑢𝑦𝑦) + 15(𝑢𝑥𝑥𝑢3𝑥 + 𝑢𝑥𝑢4𝑥 −

𝑢𝑥𝑢𝑥𝑦 − 𝑢𝑥𝑥𝑢𝑦) + 45(𝑢𝑥)
2𝑢𝑥𝑥 + 𝛼𝑢𝑥𝑥 + 𝛽𝑢𝑥𝑦 +

𝛾𝑢𝑥𝑧 = 0.                                                                             (12) 
 
where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is a differentiable function. 
 
The generalized Kudryashov method: 

 
We apply the generalized Kudryashov method to 
Eq.(12). Let us assume that 
 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝜉),      𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑘𝑡                (13) 
 
where 𝑘 denotes the wave velocity. By substituting 
Eq.(13) into Eq.(12), we derive the corresponding 
nonlinear ordinary differential equation. 
 

(𝛼 + 𝛽 + 𝛾 − 5 − 9𝑘)𝑞 
′
+ 𝑞(5) + 15𝑞 

′
𝑞 
 ′′′

− 5𝑞 
′′′
− 15(𝑞 

′
)
2

+ 15(𝑞 
′
)
3
= 0 

(14) 

 

where 𝑞 
′
=

𝑑𝑞

𝑑𝜉
. By applying the method of 

homogeneous balancing, specifically by balancing the 

𝑞(5)  term and the (𝑞 
′
)
3

 term in Eq. (14) , we 

determine that  𝑚 = 2, 𝑛 = 1.  Consequently, from 
Eq. (8) we obtain the following expression  
 

𝑞(𝜉) =
𝑎0+𝑎1𝑈(𝜉)+𝑎2𝑈

2(𝜉)

𝑏0+𝑏1𝑈(𝜉)
. (15) 

 
Next, we substitute Eq. (15)  into Eq. (14)  and 
rearrange all terms such that the coefficients of 
𝑈𝑖(𝜉)  (𝑖 = 0,1, . . . ,12) are set to zero. This results in a 
system of algebraic equations. By solving these 
equations using mathematical software, a set of 
solutions for 𝑘, 𝑏0, 𝑏1, 𝑎𝑖(𝑖 = 0,1,2) is obtained. 

  
Case 1: 
 

𝑎0 =
𝑏0
𝑏1
(𝑎1 + 4𝑏0), 𝑎2 = −4𝑏1, 𝑘 =

1

9
(𝛼 + 𝛽 + 𝛾 − 9). 

Plugging these values into Eq.(15), hence the solution 
for the Eq.(12) is 

 

𝑞(𝜉) =
𝑎1 + 4𝑏0

𝑏1
−

4

𝜆[sinh(𝜉) + cosh(𝜉)] + 1
, 

 

where 𝜉 = 𝑥 + 𝑦 + 𝑧 −
1

9
(𝛼 + 𝛽 + 𝛾 − 9)𝑡. 

  
Case 2: 
 

𝑎0 =
𝑏0
𝑏1
(𝑎1 + 2𝑏0), 𝑎2 = −2𝑏1, 𝑘 =

1

9
(𝛼 + 𝛽 + 𝛾 − 9). 
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Plugging these values into Eq.(15), hence the solution 
for the Eq.(12) is 

 

𝑞(𝜉) =
𝑎1 + 2𝑏0

𝑏1
−

2

𝜆[sinh(𝜉) + cosh(𝜉)] + 1
, 

 

where 𝜉 = 𝑥 + 𝑦 + 𝑧 −
1

9
(𝛼 + 𝛽 + 𝛾 − 9)𝑡. 

  
Case 3: 

 

𝑎0 =
𝑏0
𝑏1
(𝑎1 + 2𝑏1 + 4𝑏0), 𝑎2 = −2𝑏1, 𝑘

=
1

9
(𝛼 + 𝛽 + 𝛾 − 9). 

Plugging these values into Eq.(15), hence the solution 
for the Eq.(12) is 
 

𝑞(𝜉) =
𝑎1 + 2𝑏1 + 4𝑏0

𝑏1
−

2

𝜆[sinh(𝜉) + cosh(𝜉)] + 1
, 

 

where 𝜉 = 𝑥 + 𝑦 + 𝑧 −
1

9
(𝛼 + 𝛽 + 𝛾 − 9)𝑡. 

 
The unified method: 
 
Now we utilize the unified method to the Eq.(12). 
Suppose that 
 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝜉),      𝜉 = 𝑥 + 𝑦 + 𝑧 −
𝑘𝑡𝛼

Γ(1+𝛼)
        (16) 

 
where 𝑘 is wave velocity. Substituting Eq.(13) into 
Eq.(12) reduces to the nonlinear ODE 
 

(𝛼 + 𝛽 + 𝛾 − 5 − 9𝑘)𝑞 
′
+ 𝑞(5) + 15𝑞 

′
𝑞 
 ′′′

− 5𝑞 
′′′
−

15(𝑞 
′
)
2
+ 15(𝑞 

′
)
3
= 0                                                  (17) 

 

where 𝑞 
′
=

𝑑𝑞

𝑑𝜉
. By applying the method of 

homogeneous balancing, specifically by balancing the 

𝑞(5)  term and the (𝑞 
′
)
3

 term in Eq. (14) , we 

determine that 𝑀 = 1.  Consequently, from Eq. (8), 
we obtain the following expression 
 

𝑞(𝜉) = 𝑎0 + 𝑎1𝑈(𝜉) +
𝑏1

𝑈(𝜉)
.                                           (18) 

 
Next, we substitute Eq. (18)  into Eq. (17)  and 
rearrange all terms such that the coefficients of  
𝑈𝑖(𝜉)  (𝑖 = 0,1, . . . ,12) are set to zero. This results in a 
system of algebraic equations. By solving these 
equations using mathematical software, a set of 
solutions for 𝜆, 𝑘, 𝑏1, 𝑎0, 𝑎1  is obtained. 

  
Case 1: 
𝑎1 = −2, 𝑏1 = 2𝜆, 𝑘

=
1

9
(𝛼 + 𝛽 + 𝛾 + 80𝜆 + 256𝜆2 − 5). 

Substituting these results into Eq.(18), we reach 
following the results: 

(a) When λ < 0: 

 

𝑞11(𝜉) = 𝑎0 − 2𝑈(𝜉) +
2𝜆

𝑈(𝜉)
 

 

𝑞11(𝜉) = 𝑎0 

+
−2√−(𝐴2 + 𝐵2)𝜆 + 2𝐴√−𝜆𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0))

𝐴𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0)) + 𝐵
  

+
2𝜆𝐴𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0)) + 2𝜆𝐵

√−(𝐴2 + 𝐵2)𝜆 − 𝐴√−𝜆𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0))
 , 

 

𝑞12(𝜉) = 𝑎0 

−
2√(𝐴2 − 𝐵2)𝜆 + 2𝐴√𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0))

𝐴𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) + 𝐵
  

+
2𝜆𝐴𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) + 2𝜆𝐵

2√(𝐴2 − 𝐵2)𝜆 + 2𝐴√𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0))
, 

 

𝑞13(𝜉) = 𝑎0 − 2√−𝜆 

+
4𝐴√−𝜆

𝐴 + 𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0)) − 𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0))
  

+
2𝜆 (𝐴 + 𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0)) − 𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0)))

−𝐴√−𝜆 + √−𝜆𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0)) − √−𝜆𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0))
, 

 

𝑞14(𝜉) = 𝑎0 + 2√−𝜆 

−
4𝐴√−𝜆

𝐴 + 𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0)) + 𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0))
  

+
2𝜆 (𝐴 + 𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0)) + 𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0)))

𝐴√−𝜆 − √−𝜆𝑐𝑜𝑠ℎ (2√−𝜆(𝜉 + 𝜉0)) − √−𝜆𝑠𝑖𝑛ℎ (2√−𝜆(𝜉 + 𝜉0))
, 

 

 (b) When 𝜆 >  0: 

 

𝑞15(𝜉) = 𝑎0 

+
−2√(𝐴2 − 𝐵2)𝜆 + 2𝐴√𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0))

𝐴𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) + 𝐵
  

+
2𝜆𝐴𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) + 2𝜆𝐵

−2√(𝐴2 − 𝐵2)𝜆 + 2𝐴√𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0))
, 

 

𝑞16(𝜉) = 𝑎0 

+
2√(𝐴2 − 𝐵2)𝜆 + 2𝐴√𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0))

𝐴𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) + 𝐵
  

−
2𝜆𝐴𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) + 2𝜆𝐵

√(𝐴2 − 𝐵2)𝜆 + 𝐴√𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0))
, 

 , 
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𝑞17(𝜉) = 𝑎0 − 2𝑖√𝜆 

+
4𝐴𝑖√𝜆

𝐴 + 𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0)) − 𝑖 𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0))
  

+
2𝜆𝐴 + 2𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0)) − 𝑖 2𝜆 𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0))

𝑖√𝜆 𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0)) + √𝜆 𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0)) − 𝐴𝑖√𝜆
, 

 

𝑞18(𝜉) = 𝑎0 + 2𝑖√𝜆 

−
4𝐴√𝜆

𝐴 + 𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0)) + 𝑖 𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0))
  

+
2𝜆𝐴 + 2𝜆𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0)) + 𝑖 2𝜆 𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0))

𝐴𝑖√𝜆 − 𝑖√𝜆 𝑐𝑜𝑠 (2√𝜆(𝜉 + 𝜉0)) + √𝜆 𝑠𝑖𝑛 (2√𝜆(𝜉 + 𝜉0))
, 

 

(b) When 𝜆 =  0; 

(c)  

𝑞19(𝜉) = 𝑎0 +
2

ξ + ξ0
− 𝜆(ξ + ξ0) , 

 

where 𝜉 = 𝑥 + 𝑦 + 𝑧 −
1

9
(𝛼 + 𝛽 + 𝛾 + 80𝜆 + 256𝜆2 − 5)𝑡. 

 
Other cases of solutions can be obtained in a similar 

manner to the above case; however, these are omitted here 

for simplicity. 

  
Case 2: 

𝑎1 = −2, 𝑏1 = 0, 𝑘 =
1

9
(𝛼 + 𝛽 + 𝛾 + 20𝜆 + 16𝜆2 − 5). 

 
Case 3: 

 

𝑎1 = 0, 𝑏1 = 2𝜆, 𝑘 =
1

9
(𝛼 + 𝛽 + 𝛾 + 20𝜆 + 16𝜆2 − 5). 

 
Case 4: 

 

𝑎1 = −2, 𝑏1 = −
1

2
, 𝑘 =

1

9
(𝛼 + 𝛽 + 𝛾 −

35

4
) , 𝜆 = 0. 

 
Case 5: 

 

𝑎1 = −4, 𝑏1 = 0, 𝑘 =
1

9
(𝛼 + 𝛽 + 𝛾 − 9), 𝜆 = −

1

4
. 

 
Case 6: 

 

𝑎1 = −4, 𝑏1 = −
1

4
, 𝑘 =

1

9
(𝛼 + 𝛽 + 𝛾 − 9), 𝜆 = −

1

16
. 

 
Case 7: 

 

𝑎1 = 0, 𝑏1 = −1, 𝑘 =
1

9
(𝛼 + 𝛽 + 𝛾 − 9), 𝜆 = −

1

4
. 

 
4. Conclusion 
 

In this study, we have explored the extended B-type 
Kadomtsev-Petviashvili (B-KP) equation, a crucial 
nonlinear partial differential equation that models 
wave interactions in multidimensional media. By 
introducing the real parameters 𝛼, 𝛽  and 𝛾, we 
extended the classical B-KP equation, offering a more 
general framework for understanding complex wave 
phenomena. 
 
Through the application of a wave transformation, we 
reduced the high-dimensional PDE to an ordinary 
differential equation, which allowed us to use two 
advanced analytical methods-namely, the generalized 
Kudryashov method and the unified method. These 
methods facilitated the derivation of exact traveling 
wave solutions, providing valuable insight into the 
dynamic behavior of the system under different 
conditions. 
 
The results obtained not only contribute to the 
theoretical understanding of wave dynamics in 
nonlinear systems but also pave the way for further 
research into more complex and generalized models. 
The analytical solutions obtained can be applied to a 
range of physical contexts, such as fluid dynamics, 
plasma physics, and other areas where wave 
phenomena play a crucial role. Future work can 
extend this approach by considering additional 
physical effects and further generalizations of the B-
KP equation. 
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