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Abstract. By employing octonions, which offer a higher-dimensional and non-associative algebraic

structure, octonion-valued metric spaces generalize conventional metric spaces. Every ring forms a mod-
ule over itself, and every field forms a vector space over itself, as is commonly known. It should be noted,

nevertheless, that octonions do not form a module over themselves and so cannot even be regarded as

a ring because they lack the multiplicative union condition. The metric spaces we have defined and the
findings produced in these spaces are very intriguing because of this aspect. Consequently, various con-

clusions pertaining to summability theory are examined utilizing some essential concepts associated with

these mathematical structures. In particular, we present the concepts of deferred statistical convergence
and deferred strong Cesàro summability in octonion-valued metric spaces and explore the connections

between them. Additionally, we introduce and discuss the concepts of strong deferred invariant conver-

gence, deferred invariant convergence in octonion-valued metric spaces, and deferred invariant statistical
convergence.
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1. Introduction

In 1843, John T. Graves introduced octonions shortly after the groundbreaking discovery of quaternions
by Hamilton. Arthur Cayley independently refined and extended this concept. The transition from real
numbers to complex numbers, quaternions, and ultimately octonions exemplifies a systematic progression
in hypercomplex number theory, governed by the Cayley-Dickson construction. This construction method
successively increases the dimensionality, moving from the one-dimensional real numbers to the two-
dimensional complex numbers, followed by the four-dimensional quaternions, and culminating in the
eight-dimensional octonions. Each stage in this sequence reveals more sophisticated algebraic structures
and properties, which contribute to new mathematical insights and potential applications.

Octonions are distinguished in this progression due to their unique mathematical properties. Unlike
real and complex numbers, which are commutative, and quaternions, which are non-commutative but
still associative, octonions exhibit neither commutativity nor associativity. Their non-associative nature
means that the order of multiplication affects the result, such that (ab)c ̸= a(bc). This deviation prevents
octonions from fitting into standard algebraic frameworks and instead classifies them within a broader
category known as alternative algebras. These algebras relax the standard associativity, characterized by
the Moufang identities, to accommodate the structure of octonions and similar algebraic systems.

The Cayley-Dickson construction, which extends quaternions to octonions, defines their distinctive
multiplication rules. These rules are frequently illustrated using the Fano plane, a graphical representation
that visually captures the relationships between the basis elements of the octonion space.
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This diagram serves as a useful tool in mathematical applications, offering a clear depiction of how
the basis elements interact during multiplication. It highlights the intricate structure and properties of
octonions, making it easier to understand their non-commutative and non-associative nature.

Beyond their theoretical significance, the unique non-associative structure of octonions proves to be
valuable in applications that involve handling multidimensional data interactions. According to Kansu
et al. [20], octonions are utilized in physics to develop duality-invariant field equations for dyons. These
equations, similar to Maxwell’s equations, efficiently represent electric-magnetic dualities. The multi-
component nature of octonions, with their eight dimensions, enables the capture of complex relationships
between electric and magnetic components in a unified framework.

In the field of machine learning, octonions have proven to be a valuable tool for representing and pro-
cessing high-dimensional data. Wu et al. [41] introduced deep octonion networks (DONs), which leverage
the compact structure of octonions to integrate multi-dimensional features across different layers of neural
networks. Within this framework, octonions facilitate efficient data representation and processing, with
tasks such as image classification showing improved performance and convergence.

Moreover, Takahashi et al. [40] extended the application of octonions to control systems, particularly
for dynamic control of robotic manipulators. In this scenario, octonion-valued neural networks capture
both spatial and temporal dynamics. Their non-associative nature enables the network to model complex
multi-axis movements required for precise manipulator control.

Thus, although the non-associative and non-commutative properties of octonions initially posed chal-
lenges for traditional algebraic applications, they have enabled innovative uses in modern theoretical
physics, artificial intelligence, and control systems, where multi-dimensionality and flexible data repre-
sentation are essential.

For in-depth information on octonions, their subalgebraic structures, and interdisciplinary applications,
one can refer to the works by [2, 4, 7, 9, 32].

Fast’s groundbreaking research on statistical convergence, as detailed in [12], has profoundly impacted
various scientific fields, shaping both methodological approaches and theoretical advancements. This
seminal contribution, frequently cited in subsequent studies [5, 14–19, 24, 25, 30, 35, 42], has laid a solid
groundwork for analyzing convergence properties in mathematical sequences and related areas. Connor
[6] highlighted the relationship between statistical convergence and the strong p-Cesàro convergence
of sequences. Additionally, several researchers have investigated the principles of invariant mean and
invariant convergence [27–29, 34, 37–39]. Savaş and Nuray [36] introduced the concepts of σ-statistical
convergence and its lacunary variation, establishing related correlation theorems.

Agnew [1] introduced the concept of the deferred Cesàro mean as an enhancement of the usual Cesàro
mean, aiming to develop a summation technique with more robust characteristics. The deferred Cesàro
mean, formulated through the sequences (nu) and (mu), serves as an advanced variation of the usual
Cesàro mean, offering superior summation functionality. Notably, while the usual Cesàro mean incorpo-
rates results such as the Silverman-Toeplitz theorem, the deferred version—viewed as a generalization—
exhibits an additional significant property: for every k ∈ N, au,k = 0 for almost all u ∈ N. This feature
renders the deferred Cesàro mean particularly effective in managing lower triangular matrix methods,
transforming bounded sequences into convergent ones. Its broader applicability, when compared to other
summation techniques, arises from these unique advantages. Küçükaslan and Yılmaztürk [22] developed
the framework for deferred statistical convergence. Additional details can be found in [11,21,31].

In this study, we extend certain fundamental ideas, such statistical convergence and convergence, to
octonion-valued metric spaces, which were initially created by Çetin et al. [8], Mursaleen et al. [26], and
Quan et al. [33]. We present the essential ideas associated with this special mathematical structure, such
as deferred strong Cesàro summability and deferred statistical convergence, by developing a partial order
relation on octonions. We may investigate these ideas’ characteristics and the relationships between them
since they are generalized in the context of octonion-valued metric spaces. Furthermore, we investigate
the effects of the non-associative structure of octonions on the behaviour of deferred strong Cesàro
summability and deferred statistical convergence. By taking use of the rich and intricate algebraic features
of octonions, octonion-valued metric spaces offer a higher-dimensional and non-associative framework that
extends standard metric spaces. Octonions are of special relevance when applied to these specified metric
spaces since they do not possess the multiplicative associativity feature as conventional vector spaces or
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rings do. This special characteristic not only sheds further light on convergence theory but also draws
attention to the novel opportunities and difficulties presented by octonions in mathematical study.

2. Preliminaries

In the follow-up we will to examine on O, Octonions, a non-associative generalization of the division
algebra of quaternions.

In this section, we will begin by extending the basis elements of quaternions, represented as {1, i, j, k},
by incorporating an additional basis element ℓ. This extension enables us to construct the eight-
dimensional octonion division algebra in detail, as described in [13], including its diagrammatic rep-
resentation and algebraic operations.

e4 = ℓ

e1 = i

e2 = j e3 = k

e5 = iℓ

e6 = jℓe7 = kℓ

Figure 1. Diagram

Thus, each element o ∈ O can be expressed in the form:

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7, on ∈ R, where n = 0, 1, 2, 3, 4, 5, 6, 7.

The basis elements of O are 1, e1, e2, e3, e4, e5, e6, e7. The detailed multiplication of these basis elements
is shown in the table below.

· 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

The conjugate element ō is given by

ō = o0 − o1e1 − o2e2 − o3e3 − o4e4 − o5e5 − o6e6 − o7e7.

The norm of an arbitrary octonion is calculated as

∥o∥ =
√

o · ō =
√
o20 + o21 + o22 + o23 + o24 + o25 + o26 + o27.
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Additionally, the inverse of an arbitrary octonion o is given in the form

o−1 =
ō

∥o∥2
.

Any quaternion’s imaginary part can be represented as a vector in three-dimensional Euclidean space,
analogous to a movement vector, with its real part indicating the time of this movement. Similarly,
octonions can be redefined in a seven-dimensional Euclidean space as a pair consisting of a scalar and
a vector, allowing for a different perspective. While quaternions differ from real and complex numbers
in their non-commutative multiplication, octonions, as a more complex structure, lose the associative
property from the group axioms in multiplication. Consequently, division algebra over octonions becomes
non-associative, adding to its intriguing properties.

We can represent octonions as an ordered set of eight real numbers (o0, o1, o2, o3, o4, o5, o6, o7) with
coordinate-wise addition and multiplication defined by a specific table. Here, the first component, o0,
is called the real part, while the remaining seven-tuple (o1, o2, o3, o4, o5, o6, o7) constitutes the imaginary
part.

Thus, as noted above, any quaternion can be written in the form
(
o0,

−→u
)
,where −→u = (o1, o2, o3, o4, o5,

o6, o7) and o0 represents the real part. From here, the following properties can be easily observed:

o : =
(
o0,

−→u
)
, −→u ∈ R7; o0 ∈ R

=
(
o0, (o1, o2, o3, o4, o5, o6, o7)

)
; o0, o1, o2, o3, o4, o5, o6, o7 ∈ R

= o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7.

Now, let us define a partial ordering relation ⪯ on the non-associative and non-commutative octonion
algebra O as follows.

o ⪯ o′ if and only if Re(o) ≤ Re(o′), Ime(o) ≤ Ime(o′), o, o′ ∈ H; e = e1, e2, e3, e4, e5, e6, e7, where
Imen = on;n = 1, 2, 3, 4, 5, 6, 7. To confirm that it is o ⪯ o′, satisfying any one of the 256 conditions
derived from the sum of all possible combinations of 8, from 0 to 8 in respectively, will suffice.
Obtained from the 0-combinations of 8, meaning none of its components are equal; this 1 case constitute

(1) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

Obtained from the 1-combinations of 8, meaning only one component is equal; these 8 cases constitute

(2) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

(3) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 2, 3, 4, 5, 6, 7; Ime1(o) = Ime1(o

′).
(4) Re(o) < Re(o′); Imen(o) < Imen(o

′), where n = 1, 3, 4, 5, 6, 7; Ime2(o) = Ime2(o
′).

(5) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 4, 5, 6, 7; Ime3(o) = Ime3(o

′).
(6) Re(o) < Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 5, 6, 7; Ime4(o) = Ime4(o
′).

(7) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 6, 7; Ime5(o) = Ime5(o

′).
(8) Re(o) < Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 4, 5, 7; Ime6(o) = Ime6(o
′).

(9) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6; Ime7(o) = Ime7(o

′).

Obtained from the 2-combinations of 8, meaning only two components are equal; these 27 cases constitute

(10) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 2, 3, 4, 5, 6, 7; Ime1(o) = Ime1(o

′).
(11) Re(o) = Re(o′); Imen(o) < Imen(o

′), where n = 1, 3, 4, 5, 6, 7; Ime2(o) = Ime2(o
′).

(12) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 4, 5, 6, 7; Ime3(o) = Ime3(o

′).
(13) Re(o) = Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 5, 6, 7; Ime4(o) = Ime4(o
′).

(14) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 6, 7; Ime5(o) = Ime5(o

′).
(15) Re(o) = Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 4, 5, 7; Ime6(o) = Ime6(o
′).

(16) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6; Ime7(o) = Ime7(o

′).
(17) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 3, 4, 5, 6, 7; Ime1(o) = Ime1(o
′); Ime2(o) = Ime2(o

′).
(18) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 2, 4, 5, 6, 7; Ime1(o) = Ime1(o
′); Ime3(o) = Ime3(o

′).
(19) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 2, 3, 5, 6, 7; Ime1(o) = Ime1(o
′); Ime4(o) = Ime4(o

′).
(20) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 2, 3, 4, 6, 7; Ime1(o) = Ime1(o
′); Ime5(o) = Ime5(o

′).
(21) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 2, 3, 4, 5, 7; Ime1(o) = Ime1(o
′); Ime6(o) = Ime6(o

′).
(22) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 2, 3, 4, 5, 6; Ime1(o) = Ime1(o
′); Ime7(o) = Ime7(o

′).
(23) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 1, 4, 5, 6, 7; Ime2(o) = Ime2(o
′); Ime3(o) = Ime3(o

′).
(24) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 1, 3, 5, 6, 7; Ime2(o) = Ime2(o
′); Ime4(o) = Ime4(o

′).
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(25) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 4, 6, 7; Ime2(o) = Ime2(o

′); Ime5(o) = Ime5(o
′).

(26) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 4, 5, 7; Ime2(o) = Ime2(o

′); Ime6(o) = Ime6(o
′).

(27) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 4, 5, 6; Ime2(o) = Ime2(o

′); Ime7(o) = Ime7(o
′).

(28) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 5, 6, 7; Ime3(o) = Ime3(o

′); Ime4(o) = Ime4(o
′).

(29) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 4, 6, 7; Ime3(o) = Ime3(o

′); Ime5(o) = Ime5(o
′).

(30) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 4, 5, 7; Ime3(o) = Ime3(o

′); Ime6(o) = Ime6(o
′).

(31) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 4, 5, 6; Ime3(o) = Ime3(o

′); Ime7(o) = Ime7(o
′).

(32) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 6, 7; Ime4(o) = Ime4(o

′); Ime5(o) = Ime5(o
′).

(33) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 5, 7; Ime4(o) = Ime4(o

′); Ime6(o) = Ime6(o
′).

(34) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 5, 6; Ime4(o) = Ime4(o

′); Ime7(o) = Ime7(o
′).

(35) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 4, 7; Ime5(o) = Ime5(o

′); Ime6(o) = Ime6(o
′).

(36) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 4, 6; Ime5(o) = Ime5(o

′); Ime7(o) = Ime7(o
′).

Following a similar approach, we can easily list the 56 cases where exactly 3 components are equal (derived
from the 3-combinations of 8), 70 cases with 4 equal components, 56 cases with 5 equal components, and 27
cases with 6 equal components. However, to avoid making the article overly tedious, we will not elaborate
in detail on the remaining 211 intermediate cases. For simplicity, let us focus only on the 8 cases with
exactly 7 equal components, corresponding to the 7-combinations of 8 where just one component differs.

(248) Re(o) < Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

(249) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 2, 3, 4, 5, 6, 7; Ime1(o) < Ime1(o

′).
(250) Re(o) = Re(o′); Imen(o) = Imen(o

′), where n = 1, 3, 4, 5, 6, 7; Ime2(o) < Ime2(o
′).

(251) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 4, 5, 6, 7; Ime3(o) < Ime3(o

′).
(252) Re(o) = Re(o′); Imen(o) = Imen(o

′), where n = 1, 2, 3, 5, 6, 7; Ime4(o) < Ime4(o
′).

(253) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 6, 7; Ime5(o) < Ime5(o

′).
(254) Re(o) = Re(o′); Imen(o) = Imen(o

′), where n = 1, 2, 3, 4, 5, 7; Ime6(o) < Ime6(o
′).

(255) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 5, 6; Ime7(o) < Ime7(o

′).

Finally, let us consider the case derived from the 8-combinations of 8, where all corresponding components
are equal, which indicates that the two octonions are identical.

(256) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

Specifically, if ∥o∥ ≠ ∥o′∥ and any condition between (1) and (256) is satisfied,o ⪯ o′ will be written.
If only condition (256) is satisfied, we will denote this by o ≺ o′. We will briefly denote this situation as

o ⪯ o′ =⇒ ∥o∥ ≤ ∥o′∥. (1)

A careful examination of the 256 conditions above reveals that we can introduce octonion-valued metric
spaces, which generalize the complex metric spaces defined by Azam and colleagues [3], by taking the
codomain as the field of complex numbers.

Definition 1. [3] Given a non-empty set S. If the transformation ΩC : S × S → C on this set satisfies
following conditions,

(1) 0C ⪯ ΩC(s, t), for all s, t ∈ S and ΩC(s, t) = 0C ⇐⇒ s = t.
(2) ΩC(s, t) = ΩC(t, s) for all s, t ∈ S.
(3) ΩC(s, t) ⪯ ΩC(s, v) + ΩC(v, t) for all s, t, v ∈ S.

Then the pair (S,ΩC) is said to be a complex metric space.

These are then generalized to quaternion-valued metric spaces, as defined by Ahmed et al. [10], taking
the codomain as the skew field of quaternions, which serve as a non-commutative extension of these
metric spaces to Clifford algebra analysis.

Definition 2. [10] Given a nonempty set S. If the transformation ΩH : S × S → H on this set satisfies
following conditions,

(1) 0H ⪯ ΩH(s, t) for all s, t ∈ S and ΩH(s, t) = 0H ⇐⇒ s = t,
(2) ΩH(s, t) = ΩH(t, s) for all s, t ∈ S,
(3) ΩH(s, t) ⪯ ΩH(s, v) + ΩH(v, t) for all s, t, v ∈ S.

Then ΩH is said to be a quaternion-valued metric on S, and the pair (S,ΩH) is said to be a quaternion
valued metric space.
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Following, we will define octonion-valued metric spaces, an interesting generalization of metric spaces
that are neither commutative nor associative.

The definitions, examples, theorems, and propositions in this section are taken from [8,26,33].

Definition 3. Given a nonempty set S. If the transformation ΩO : S × S → O on this set satisfies
following conditions,

(1) 0O ⪯ ΩO(s, t) for all s, t ∈ S and ΩO(s, t) = 0O if and only if s = t,
(2) ΩO(s, t) = ΩO(t, s) for all s, t ∈ S,
(3) ΩO(s, t) ⪯ ΩO(s, v) + ΩO(v, t) for all s, t, v ∈ S.

Then ΩO is called be an octanion valued metric on S, and the pair (S,ΩO) is called be an octanion
valued metric space.

Example 1. Let ΩO : O × O → O be an octanion valued function defined as ΩO(o, o′) = |o0 − o′0| +
|o1 − o′1|e1 + |o2 − o′2|e2 + |o2 − o′2|e2 + |o3 − o′3|e3 + |o4 − o′4|e4 + |o5 − o′5|e5 + |o6 − o′6|e6 + |o7 − o′7|e7,
where o, o′ ∈ O with

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7,

o′ = o′0 + o′1e1 + o′2e2 + o′3e3 + o′4e4 + o′5e5 + o′6e6 + o′7e7;

oi, o
′
i ∈ R; i = 0, 1, 2, 3, 4, 5, 6, 7.

Then (O,ΩO) defines an octanion valued metric space.

Below, we provide an example of an octonion-valued metric that does not have a known numerical set
as its domain.

Example 2. Let X = {a, b, c} be an arbitrary set with three elements. Define the distances between the
elements of the set by

ΩO(a, b) = ΩO(b, a) = 3 + 4e1 − 6e2 + 4e3 + 3e4 + 3e5 − 2e6 + e7

ΩO(b, c) = ΩO(c, b) = 1 + 2e1 + 3e3 − 5e4 − 3e6 + 4e7

ΩO(a, c) = ΩO(c, a) = 2 + 3e1 + e2 + e3 − 2e4 + 2e5 − e6 + 5e7

ΩO(a, a) = ΩO(b, b) = ΩO(c, c) = 0 + 0e1 + 0e2 + 0e3 + 0e4 + 0e5 + 0e6 + 0e7.

Since they are ∥ΩO(a, b)∥ = 10, ∥ΩO(a, c)∥ = 7, ∥ΩO(c, b)∥ = 8,∥ΩO(a, b)+ΩO(a, c)∥ =
√
195, ∥ΩO(a, b)+

ΩO(b, c)∥ =
√
200 and ∥ΩO(c, b) + ΩO(a, c)∥ =

√
169 = 13, it can be seen through straightforward calcula-

tions that the conditions given in Definition 3 above are satisfied.

The definition we offered is a logical extension of the classical metric concept, as well as complex
and quaternion-valued metrics, as the definitions and examples above demonstrate. Let’s put out the
following claims to illustrate the relationships between them.

Using Diagram in Figure 1, Definition 1, 2, and 3, we can give the following propositions.

Proposition 1. Every quaternion-valued metric space can be embedded into an octonion-valued metric
space.

Proposition 2. Every complex-valued metric space can be embedded into a quaternion-valued metric
space and an octonion-valued metric space.

Proposition 3. Every metric space can be embedded into a complex-valued metric space, a quaternion-
valued metric space and an octonion-valued metric space.

Thus, we can now move on to define some basic concepts related to the above definition from the
works [8], [26] and [33].

Definition 4. Any point s ∈ S is called be an interior point of set A ⊂ S whenever there exists 0O ≺ r ∈ O
such that

B(s, r) = {t ∈ S : ΩO(s, t) ≺ r} ⊂ A.

Definition 5. Any point s ∈ S is called be a limit point of A ⊂ S whenever for every 0O ≺ r ∈ O

B(s, r) ∩ (A− {s}) ̸= ∅.
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Definition 6. Set O is said to be an open set whenever each element of O is an interior point of O.
Subset C ⊂ S is called a closed set whenever each limit point of C belongs to C. The family

F = {B(s, r) : s ∈ S, 0O ≺ r}

is a subbase for Hausdorff topology τ on S.

Definition 7. Let s ∈ S and sk be a sequence in the set S. If for each o ∈ O with 0O ≺ o there is k0 ∈ N
such that for all k > k0,ΩO(sk, s) ≺ o, then (sk) is called convergence sequence. Then, in this case (sk)
sequence converges to the limit point s; as notation, sk → s as k → ∞ or limk sk = s.

Definition 8. If there exists k0 ∈ N such that for all k > k0,ΩO(sk+m, sk) ≺ o, then (sk) is said to be a
Cauchy sequence in the octanion-valued metric space (S,ΩO). If every Cauchy sequence is convergent in
(S,ΩO), then (S,ΩO) is said to be a complete octanion valued metric space.

Definition 9. A sequence (sk) in an octonion-valued metric space (S,ΩO) is said to converge statistically

to a point s ∈ S (denoted as sk
stg−→ s), if as for all 0O ≺ o, we have

lim
N→∞

1

N

∣∣∣∣{k ≤ N : ΩO(sk, s) ̸≺ o
}∣∣∣∣ = 0.

Above, we provide some definitions and statements on the concepts of convergence and statistical
convergence in these special mathematical structures, as well as the previously established octonion-
valued metric spaces. For more results, interested readers can see [8], [26], and [33].

Let σ be a mapping defined as σ : N+ → N+. A continuous linear functional Φ on l∞, the space of
real bounded sequences, is known as an invariant mean or a σ mean, if it meets the following criteria:

(1) Φ (ωα) ≥ 0, when the sequence (ωα) has ωα ≥ 0 for ∀α ∈ N;
(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;
(3) Φ

(
ωσ(u)

)
= Φ(ωu) for all (ωu) ∈ l∞.

The mappings Φ is assumed to be injective, ensuring σm (u) ̸= u for all u,m ∈ Z+, where σm (u)
denotes the mth iterate of the mapping σ at u. Thus, Φ extends the limit functional on c, the space of
convergent sequences, in the sense that Φ (ωu) = limu ω, for all (ωu) ∈ c.

In the case where σ represents the translation mapping σ (u) = u+1, the σ-mean is known as a Banach
limit.

The space Vσ, comprising bounded sequences whose invariant means coincide, can be shown as

Vσ =

{
(ωα) ∈ l∞ : lim

m→∞

1

m

m∑
α=1

ωσα(t) = L

}
uniformly in t.

In 1932, Agnew [1] introduced the concept of deferred Cesàro mean of real (or complex) valued se-
quences ω = (ωα) defined by

(Dm,nω)u :=
1

n (u)−m (u)

n(u)∑
α=m(u)+1

ωα, u = 1, 2, 3...

where {m (u)} and {n (u)} are the sequences of non-negative integers satisfying

m (u) < n (u) , ϖ (u) = n (u)−m (u) and lim
n→∞

n (u) = ∞. (2)

3. Deferred Statistical Convergence in Octonion-valued Metric Space

In this part, we expand the concepts of deferred statistical convergence and deferred strong Cesàro
summability to octonion-valued metric space and analyze their connections.

Definition 10. Let (S,ΩO) represent an octonion-valued metric space, where ω ∈ S is a point, and (ωα) ⊆
S is a sequence. A sequence (ωα) is said to be DSm,n-convergent (or deferred statistically convergent) ω
if, for every ϱ ∈ O with 0O ≺ ϱ such that

lim
u→∞

1

ϖ (u)
|{m (u) < α ≤ n (u) (u ∈ N) : ΩO(ωα, ω) ̸≺ ϱ}| = 0,
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and denoted by DS
(S,ΩO)
m,n − limα→∞ ωα = ω or (ωα)

DS
(S,ΩO)
m,n→ ω.

It is clear that;
(i) If n (u) = u and m (u) = 0, then deferred statistical convergence corresponds with statistical conver-
gence in an octonion-valued metric space.
(ii) If we consider n (u) = ku and m (u) = ku−1 (for any lacunary sequence of nonnegative integers with
ku − ku−1 → ∞, as u → ∞, then deferred statistical convergence corresponds with lacunary statistical
convergence in an octonion-valued metric space.
(iii) If n (u) = λu and m (u) = 0 (where λu is a strictly increasing sequence of natural numbers such that
limu→∞ λu = ∞), then deferred λ-statistical convergence corresponds with λ-statistical convergence in
an octonion-valued metric space.

Definition 11. A sequence (ωα) is said to be Dw
(S,ΩO)
m,n -summable (or deferred strongly-Cesàro summable)

to ω such that

lim
u→∞

1

ϖ (u)

n(u)∑
α=m(u)+1

ΩO(ωα, ω) = 0.

Here, we would write Dw
(S,ΩO)
m,n − limα→∞ ωα = ω or (ωα) → ω

(
Dw

(S,ΩO)
m,n

)
. The set of all strongly

Cesàro-summable sequences will be denoted by Dw
(S,ΩO)
m,n .

If n (u) = u and m (u) = 0, for all u ∈ N, then deferred strong Cesàro summability coincides strong
Cesàro summability denoted by w(S,ΩO).

Also, if

lim
u→∞

1

ϖ (u)

n(u)∑
α=m(u)+1

[ΩO(ωα, ω)]
s
= 0

holds, then (ωα) is called to be deferred strongly s-Cesàro summable to ω. Here, we would write

Dw
s,(S,ΩO)
m,n − limα→∞ ωα = ω or (ωα) → ω

(
Dw

s,(S,ΩO)
m,n

)
.

We can give the following theorem without proof.

Theorem 1. Let {m (u)} and {n (u)} be sequences of non-negative integers satisfying the condition (2),
(S,ΩO) be an octonion-valued metric space, and (ωα) , (γα) ⊆ S be sequences, then

(a) If DS
(S,ΩO)
m,n − limα→∞ ωα = ω and DS

(S,ΩO)
m,n − limα→∞ γα = γ, then

DS
(S,ΩO)
m,n − limα→∞ (ωα + γα) = ω + γ,

(b) If DS
(S,ΩO)
m,n − limα→∞ ωα = ω and β ∈ C, then DS

(S,ΩO)
m,n − limα→∞ βωα = βω,

(c) If DS
(S,ΩO)
m,n − limα→∞ ωα = ω and DS

(S,ΩO)
m,n − limα→∞ γα = γ and (ωα) , (γα) are bounded in (S,ΩO)

(i.e., (ωα) , (γα) ∈ ℓ
(S,ΩO)
∞ ), then DS

(S,ΩO)
m,n − limα→∞ (ωαγα) = ωγ.

Theorem 2. If Dw
(S,ΩO)
m,n − limα→∞ ωα = ω, then DS

(S,ΩO)
m,n − limα→∞ ωα = ω. However, the opposite is

untrue.

Proof. Let ϱ ∈ O with 0O ≺ ϱ and Dw
(S,ΩO)
m,n − limα→∞ ωα = ω. Then, we get

1
ϖ(u)

n(u)∑
α=m(u)+1

ΩO(ωα, ω) ≥ 1
ϖ(u)

n(u)∑
α=m(u)+1
ΩO(ωα,ω) ̸≺ϱ

ΩO(ωα, ω) +
1

ϖ(u)

n(u)∑
α=m(u)+1
ΩO(ωα,ω)≺ϱ

ΩO(ωα, ω)

≥ ϱ. 1
ϖ(u) |{m (u) < α ≤ n (u) (u ∈ N) : ΩO(ωα, ω) ̸≺ ϱ}|

which gives the result. Hence, we have DS
(S,ΩO)
m,n − limα→∞ ωα = ω.

For the converse, consider the sequence

ωα :=

{
α2,

[∣∣∣√n (u)
∣∣∣]− t0 < α ≤

[∣∣∣√n (u)
∣∣∣] , u = 1, 2, ...

0, if not.
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where n (u) is a monotone increasing sequence and t0 ̸= 0 is an arbitrary fixed natural number.

If we consider Dw
(S,ΩO)
m,n for the sequence m (u) satisfying 0 < m (u) ≤

[∣∣∣√n (u)
∣∣∣]−t0, then for an arbitrary

ϱ ∈ O with 0O ≺ ϱ, we have

1

ϖ (u)
|{m (u) < α ≤ n (u) (u ∈ N) : ΩO(ωα, 0) ̸≺ ϱ}| = t0

ϖ (u)
→ 0, as u → ∞,

i.e., DS
(S,ΩO)
m,n − limα→∞ ωα = 0.

On the other hand,

1

ϖ (u)

n(u)∑
α=m(u)+1

ΩO(ωα, 0) ≥
t0

([∣∣∣√n (u)
∣∣∣]− t0

)2

ϖ (u)
→ t0, as u → ∞,

i.e., Dw
(S,ΩO)
m,n − limα→∞ ωα ̸= 0. It is also clear that the sequence does not convergent to zero in usual

case. □

Theorem 3. If (ωα) ∈ ℓ
(S,ΩO)
∞ and DS

(S,ΩO)
m,n − limα→∞ ωα = ω, then Dw

(S,ΩO)
m,n − limα→∞ ωα = ω.

Proof. Let (ωα) ∈ ℓ
(S,ΩO)
∞ and DS

(S,ΩO)
m,n − limα→∞ ωα = ω. Under the assumption on (ωα), there exists

a D > 0 such that ΩO(ωα, ω) ̸≺ D. So, the inequality

1
ϖ(u)

n(u)∑
α=m(u)+1

ΩO(ωα, ω) =
1

ϖ(u)

 n(u)∑
α=m(u)+1
ΩO(ωα,ω) ̸≺ϱ

+
n(u)∑

α=m(u)+1
ΩO(ωα,ω)≺ϱ

ΩO(ωα, ω)

≤ 1
ϖ(u)

D
n(u)∑

α=m(u)+1
ΩO(ωα,ω)̸≺ϱ

1 + ϱ
n(u)∑

α=m(u)+1
ΩO(ωα,ω)≺ϱ

1


≤ D

ϖ(u) |{m (u) < α ≤ n (u) (u ∈ N) : ΩO(ωα, 0) ̸≺ ϱ}|
+ ϱ. 1

ϖ(u) |{m (u) < α ≤ n (u) (u ∈ N) : ΩO(ωα, 0) ≺ ϱ}|

holds. From the limit relation we have limu→∞
1

ϖ(u)

n(u)∑
α=m(u)+1

ΩO(ωα, ω) = 0. So, the proof is completed.

□

Theorem 4. If the sequence
{

m(u)
ϖ(u)

}
u∈N

is bounded, then S(S,ΩO) − limα→∞ ωα = ω implies

DS
(S,ΩO)
m,n − limα→∞ ωα = ω.

Proof. Let’s give a note about the sequences of positive natural numbers (xu) and (yu) without proof: if
limu→∞ xu = x, u ∈ N and limu→∞ yu = ∞, then limu→∞ xyu

= x.
From the assumption on (ωα), the limit relation

lim
u→∞

1

u
|{α : α ≤ u : ΩO(ωα, ω) ̸≺ ϱ}| = 0,

holds for every ϱ ∈ O with 0O ≺ ϱ. Since the sequence n (u) satisfies (2), then the sequence{
|{α : α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|

n (u)

}
u∈N

is convergent to zero. Therefore, the inclusion

{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ} ⊂ {α : α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ} ,
and the inequality

|{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| ≤ |{α : α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| ,
are hold. From the last inequality we have

1
ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|

≤
(
1 + m(u)

ϖ(u)

)
1

n(u) |{α : α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| ,



384 S. ÇETİN, Ö. KİŞİ, M. GÜRDAL

and from the limit relation we get DS
(S,ΩO)
m,n − limα→∞ ωα = ω. □

Corollary 1. Let {n (u)} be an arbitrary sequence with n (u) < u for all u ∈ N and
{

u
ϖ(u)

}
u∈N

be a

bounded sequence. Then, S(S,ΩO) − limα→∞ ωα = ω implies DS
(S,ΩO)
m,n − limα→∞ ωα = ω.

Remark 1. The converse of Theorem 4 is not true even if
{

m(u)
ϖ(u)

}
u∈N

is bounded.

Example 3. Let us consider m (u) = 2u; n (u) = 4u and a sequence (ωα) as

ωα :=

{
α+1
2 , α is odd,

−α
2 , α is even.

It is clear that the assumption of Theorem 4 is fulfilled and D
(S,ΩO)
2u,4u − limα→∞ ωα = 0. From Theorem 4

we get DS
(S,ΩO)
2u,4u − limα→∞ ωα = 0. But, for an arbitrary small ϱ ∈ O with 0O ≺ ϱ,

lim
u→∞

1

u
|{α : α ≤ u : ΩO(ωα, 0) ̸≺ ϱ}| ≠ 0.

Theorem 5. Let n (u) = u for all u ∈ N. Then, DS
(S,ΩO)
m,n − limα→∞ ωα = ω if and only if

S(S,ΩO) − limα→∞ ωα = ω.

Proof. (⇒) Let us assume that DS
(S,ΩO)
m,n − limα→∞ ωα = ω. We shall apply the technique which was

used by Agnew in [1]. Then, for any u ∈ N,

m (u) = u(1) > m
(
u(1)

)
= u(2) > m

(
u(2)

)
= u(3) > ...,

and we may write the set {α : α ≤ u : ΩO(ωα, ω) ̸≺ ϱ} as

{α : α ≤ u : ΩO(ωα, ω) ̸≺ ϱ} =
{
α : α ≤ u(1) : ΩO(ωα, ω) ̸≺ ϱ

}
∪
{
α : u(1) < α ≤ u : ΩO(ωα, ω) ̸≺ ϱ

}
,

and the set
{
α : 1 < α ≤ u(1) : ΩO(ωα, ω) ̸≺ ϱ

}
as{

α : 1 < α ≤ u(1) : ΩO(ωα, ω) ̸≺ ϱ
}

=
{
α : α ≤ u(2) : ΩO(ωα, ω) ̸≺ ϱ

}
∪
{
α : u(2) < α ≤ u(1) : ΩO(ωα, ω) ̸≺ ϱ

}
,

and the set
{
α : α ≤ u(2) : ΩO(ωα, ω) ̸≺ ϱ

}
as{

α : α ≤ u(2) : ΩO(ωα, ω) ̸≺ ϱ
}

=
{
α : α ≤ u(3) : ΩO(ωα, ω) ̸≺ ϱ

}
∪
{
α : u(3) < α ≤ u(2) : ΩO(ωα, ω) ̸≺ ϱ

}
,

and if this process is continued we obtain{
α : α ≤ u(q−1) : ΩO(ωα, ω) ̸≺ ϱ

}
=

{
α : α ≤ u(q) : ΩO(ωα, ω) ̸≺ ϱ

}
∪
{
α : u(q) < α ≤ u(q−1) : ΩO(ωα, ω) ̸≺ ϱ

}
for a certain positive integer q > 0 depending on u such that u(q) ≥ 1 and u(q−1) = 0. From the above
discussion, the relation

1
u |{α : α ≤ u : ΩO(ωα, ω) ̸≺ ϱ}|

=
q∑

j=0

u(j)−u(j+1)

u
1

u(j)−u(j+1)

∣∣{u(j+1) < α ≤ u(j) : ΩO(ωα, ω) ̸≺ ϱ
}∣∣

holds for every u. This relation gives that statistical convergence of the sequence (ωα) to ω is a linear
combination of following sequence:{

1

u(j) − u(j+1)

∣∣∣{u(j+1) < α ≤ u(j) : ΩO(ωα, ω) ̸≺ ϱ
}∣∣∣}

j∈N

.

Let us consider the matrix

bu,j =

{
u(j)−u(j+1)

u , j = 0, 1, 2, .., q,
0, if not.
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where u(0) = 0.
The matrix (bu,j) is satisfied the Silverman Toeplitz theorem (see in [23]). So, we have

lim
u→∞

1

u
|{α : α ≤ u : ΩO(ωα, 0) ̸≺ ϱ}| = 0,

since

lim
u→∞

1

u(j) − u(j+1)

∣∣∣{u(j+1) < α ≤ u(j) : ΩO(ωα, ω) ̸≺ ϱ
}∣∣∣ = 0.

(⇐) Since n (u) = u is satisfied (2), then the inverse of the theorem is a simple consequence of Theorem 4.
□

Corollary 2. Assume that{n (u)}u∈N contains almost all positive integers. Then,

DS
(S,ΩO)
m,n − limα→∞ ωα = ω implies S(S,ΩO) − limα→∞ ωα = ω.

Proof. Let DS
(S,ΩO)
m,n − limα→∞ ωα = ω for an arbitrary {m (u)}u∈N and choose sufficiently large positive

integer g such that the set {n (u)}u∈N contains all positive integers which is greater than g. Then, it can
be constructed a sequence (tα) as follows:

t1 = t2 = ... = tg = 1

and for each α > g an index tα such that ntα = α. It is clear from the construction that (tα) is a

monotone increasing sequence. So, from the assumption DS
(S,ΩO)
mtα ,ntα

− limα→∞ ωα = ω. Hence, the proof
of Corollary follows from Theorem 5. □

Theorem 6. Four sequences of non-negative real numbers, {m (u)}, {n (u)}, {m′ (u)} and {n′ (u)} , should
be considered such that

m (u) < m′ (u) < n′ (u) < n (u) for all u ∈ N.

Then, the sets

{u : m (u) < α ≤ m′ (u)} and {u : n′ (u) < α ≤ n (u)}

are finite sets for all u ∈ N. Then DS
(S,ΩO)
m′,n′ − limα→∞ ωα = ω implies DS

(S,ΩO)
m,n − limα→∞ ωα = ω.

Proof. Let us consider the sequence (ωα) such that DS
(S,ΩO)
m′,n′ − limα→∞ ωα = ω. For an arbitrary ϱ ∈ O

with 0O ≺ ϱ, the equality

{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}
= {α : m (u) < α ≤ m′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
∪ {α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
∪ {α : n′ (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}

and
1

ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
= 1

ϖ(u) {α : m (u) < α ≤ m′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
+ 1

ϖ(u) |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
+ 1

ϖ(u) |{α : n′ (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| ,
are hold. On taking limits when u → ∞; we obtain

lim
u→∞

1

ϖ (u)
|{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| = 0.

This proves our assertion. □

Theorem 7. Four sequences of non-negative real numbers, {m (u)}, {n (u)}, {m′ (u)} and {n′ (u)} , should
be considered such that

m (u) < m′ (u) < n′ (u) < n (u) for all u ∈ N. (3)

Then, the sets

{u : m (u) < α ≤ m′ (u)} and {u : n′ (u) < α ≤ n (u)}

are finite sets for all u ∈ N. Then DS
(S,ΩO)
m′,n′ − limα→∞ ωα = ω implies DS

(S,ΩO)
m,n − limα→∞ ωα = ω.
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Proof. Let us consider the sequence (ωα) such that DS
(S,ΩO)
m′,n′ − limα→∞ ωα = ω. For an arbitrary ϱ ∈ O

with 0O ≺ ϱ, the equality

{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}
= {α : m (u) < α ≤ m′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
∪ {α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
∪ {α : n′ (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}

and
1

ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
= 1

ϖ(u) {α : m (u) < α ≤ m′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
+ 1

ϖ(u) |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
+ 1

ϖ(u) |{α : n′ (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| ,

are hold. On taking limits when u → ∞; we obtain

lim
u→∞

1

ϖ (u)
|{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| = 0.

This proves our assertion. □

Theorem 8. Assume that (3) supplies. If

lim
u→∞

ϖ (u)

ϖ′ (u)
= m > 0,

then DS
(S,ΩO)
m,n ⊆ DS

(S,ΩO)
m′,n′ .

Proof. Assume that (3) supplies. It is evident that the inclusion

{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
⊆ {α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}

and the inequality

|{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| ,

hold true for given ϱ ∈ O with 0O ≺ ϱ. So, we obtain

1
ϖ′(u) |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|

≤ ϖ(u)
ϖ′(u)

1
ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| .

Therefore, we have DS
(S,ΩO)
m,n ⊆ DS

(S,ΩO)
m′,n′ . □

Theorem 9. Four sequences of non-negative real numbers, {m (u)}, {n (u)}, {m′ (u)} and {n′ (u)} , should
be considered such that

m′ (u) < m (u) < n (u) < n′ (u) for all u ∈ N. (4)

Let ρ, σ be fixed real numbers such that 0 < ρ ≤ σ ≤ 1, then
(I) If

lim
u→∞

[ϖ (u)]
ρ

[ϖ′ (u)]
σ = m > 0, (5)

then DS
σ,(S,ΩO)
m′,n′ ⊆ DS

ρ,(S,ΩO)
m,n .

(II) If

lim
u→∞

ϖ′ (u)

[ϖ (u)]
σ = 1, (6)

then DS
ρ,(S,ΩO)
m,n ⊆ DS

σ,(S,ΩO)
m′,n′ .
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Proof. (I) Omitted.

(II) Let Equation (6) hold and DS
ρ,(S,ΩO)
m,n − limα→∞ ωα = ω. Then, for given ϱ ∈ O with 0O ≺ ϱ, we

have
1

[ϖ(u)]σ |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤ 1

[ϖ(u)]σ |{α : m′ (u) < α ≤ m (u) : ΩO(ωα, ω) ̸≺ ϱ}|
+ 1

[ϖ(u)]σ |{α : n (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
+ 1

[ϖ(u)]σ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤ m(u)−m′(u)+n′(u)−n(u)

[ϖ(u)]σ + 1
[ϖ(u)]σ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|

≤ (n′(u)−m′(u))−(n(u)−m(u))

[ϖ(u)]σ + 1
[ϖ(u)]σ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|

= ϖ′(u)−ϖ(u)
ϖ(u) + 1

[ϖ(u)]ρ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤

(
ϖ′(u)
ϖ(u) − 1

)
+ 1

[ϖ(u)]ρ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| .

On taking limit when u → ∞, we have DS
ρ,(S,ΩO)
m,n ⊆ DS

σ,(S,ΩO)
m′,n′ . □

Theorem 10. Assume that (4) be satisfied. Let ρ, σ be fixed real numbers such that 0 < ρ ≤ σ ≤ 1, then

(I) Let (5) holds. If Dw
σ,(S,ΩO)
m′,n′ − limα→∞ ωα = ω, then DS

ρ,(S,ΩO)
m,n − limα→∞ Sα = ω.

(II) Let (6) holds and assume that (ωα) ∈ ℓ
(S,ΩO)
∞ . If DS

ρ,(S,ΩO)
m,n − limα→∞ ωα = ω, then

Dw
σ,(S,ΩO)
m′,n′ − limα→∞ ωα = ω.

Proof. (I) Omitted.

(II) Assume that DS
ρ,(S,ΩO)
m,n − limα→∞ ωα = ω and (ωα) ∈ ℓ

(S,ΩO)
∞ . Under the assumption on (ωα), there

exists a D > 0 such that ΩO(ωα, ω) ̸≺ D. We can write

1
[ϖ′(u)]σ

n′(u)∑
α∈m′(u)+1

ΩO(ωα, ω) =
1

[ϖ′(u)]σ

n′(u)−m′(u)∑
α=n(u)−m(u)+1

ΩO(ωα, ω) +
1

[ϖ′(u)]σ

n(u)∑
α=m(u)+1

ΩO(ωα, ω)

≤ (n′(u)−m′(u))−(n(u)−m(u))

[ϖ′(u)]σ D+ 1
[ϖ′(u)]σ

n(u)∑
α=m(u)+1

ΩO(ωα, ω)

≤ (n′(u)−m′(u))−(n(u)−m(u))σ

[ϖ′(u)]σ D+ 1
[ϖ′(u)]σ

n(u)∑
α=m(u)+1

ΩO(ωα, ω)

≤
(

n′(u)−m′(u)
[ϖ′(u)]σ − 1

)
D+ 1

[ϖ′(u)]σ

n(u)∑
α∈m(u)+1

ΩO(ωα,ω)̸≺ϱ

ΩO(ωα, ω) +
1

[ϖ′(u)]σ

n(u)∑
α∈m(u)+1

ΩO(ωα,ω)≺ϱ

ΩO(ωα, ω)

≤
(

n′(u)−m′(u)
[ϖ′(u)]σ − 1

)
D+ 1

[ϖ′(u)]ρ |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|+ ϱ. ϖ′(u)
[ϖ′(u)]σ

On taking limit when u → ∞, we have Dw
σ,(S,ΩO)
m′,n′ − limα→∞ ωα = ω. □

Let us consider m′ = {m′(u)} and n′ = {n′(u)} which are satisfying

m(u) ≤ m′(u) < n′(u) ≤ n(u) (7)

for every u ∈ N besides (2). Denote by the associated set E := {m(u) : u ∈ N}, E′ := {m′(u) : u ∈ N},
F := {n(u) : u ∈ N} and F ′ := {n′(u) : u ∈ N}.

Theorem 11. If the set F ′⧹F is finite and limu→∞
n(u)−n′(u)
n′(u)−m(u) < ∞ holds. Then,

DS
(S,ΩO)
m,n − limα→∞ ωα = ω implies DS

(S,ΩO)
m,n′ − limα→∞ ωα = ω.

Proof. Since F ′⧹F is finite, then there is an u0 ∈ N such that the inclusion {n′(u) : u > u0} ⊂ {n(u) :
u ∈ N} holds. So, there is a strictly increasing sequence t = {t(u)} such that n′(u) = n(t(u)) for every
u ≥ u0. Therefore, sufficiently large u ∈ N, following inequality

1
n′(u)−m(u) |{α : m (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|

= 1
n(t(u))−m(u) |{α : m (u) < α ≤ n(t(u)) : ΩO(ωα, ω) ̸≺ ϱ}|

≤ n(u)−m(u)
n′(u)−m(u)

1
ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|

=
(

n(u)−n′(u)
n′(u)−m(u) + 1

)
1

ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
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holds. Under the assumption we have desired result. □

Theorem 12. If the set F⧹F ′ is finite and limu→∞ inf n′(u)−m(u)
n(u)−m(u) > 0 hold. Then,

DS
(S,ΩO)
m,n′ − limα→∞ ωα = ω implies DS

(S,ΩO)
m,n − limα→∞ ωα = ω.

Proof. This can be demonstrated by applying Theorem 11. Therefore, the proof is omitted here. □

Corollary 3. If F△F ′ is finite, then DS
(S,ΩO)
m,n − limα→∞ ωα = ω iff DS

(S,ΩO)
m,n′ − limα→∞ ωα = ω.

Theorem 13. If E′⧹E is a finite set and limu→∞ inf n(u)−m′(u)
n(u)−m(u) > 0 hold. Then,

DS
(S,ΩO)
m,n − limα→∞ ωα = ω iff DS

(S,ΩO)
m′,n − limα→∞ ωα = ω.

Proof. The same concept used in Theorem 11 may be used to prove it. So, it is omitted here. □

Theorem 14. The sequence m′(n) and n′(n) are satisfying (7) such that the set

{α : m(u) < α ≤ m′(u)}
and

{α : n′(u) < α ≤ n(u)}
are finite. Then, DS

(S,ΩO)
m′,n′ − limα→∞ ωα = ω implies DS

(S,ΩO)
m,n − limα→∞ ωα = ω.

Proof. Assume that DS
(S,ΩO)
m′,n′ − limα→∞ ωα = ω. So, for an arbitrary ϱ ∈ O with 0O ≺ ϱ, we have the

following inequality
1

ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤ 1

ϖ′(u) |{α : m (u) < α ≤ m′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
+ 1

ϖ′(u) |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
+ 1

ϖ′(u) |{α : n′ (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤ w1

ϖ′(u) +
1

ϖ′(u) |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|+ w2

ϖ′(u) ,

where
w1 := |{α : m (u) < α ≤ m′ (u)}| ,

and
w2 := |{α : n′ (u) < α ≤ n (u)}| .

On taking limit when u → ∞ we have

lim
u→∞

1

ϖ (u)
|{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}| = 0,

thus DS
(S,ΩO)
m,n − limα→∞ ωα = ω. □

Theorem 15. If the sequence m′ (u) and n′ (u) are satisfying (7) such that

lim
u→∞

n (u)−m (u)

n′ (u)−m′ (u)
= 0 (8)

then, DS
(S,ΩO)
m,n − limα→∞ ωα = ω implies DS

(S,ΩO)
m′,n′ − limα→∞ ωα = ω.

Proof. It is clear from (7) that the inclusion

{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}
⊆ {α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}

and the inequality
1

ϖ′(u) |{α : m′ (u) < α ≤ n′ (u) : ΩO(ωα, ω) ̸≺ ϱ}|
≤ n(u)−m(u)

n′(u)−m′(u) ·
1

ϖ(u) |{α : m (u) < α ≤ n (u) : ΩO(ωα, ω) ̸≺ ϱ}|

hold. After taking limit when u → ∞ and (8) the desired result is obtained. □

Theorem 16. Under the assumption of Theorem 14, Dw
s,(S,ΩO)
m′,n′ − limα→∞ ωα = ω implies

Dw
s,(S,ΩO)
m,n − limα→∞ ωα = ω for any bounded (ωα).
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Proof. Given that (ωα) ∈ ℓ
(S,ΩO)
∞ , we can express ΩO(ωα, ω) ̸≺ Q for any Q ∈ R+. Then, we obtain

1
ϖ(u)

n(u)∑
α=m(u)+1

[ΩO(ωα, ω)]
s
= 1

ϖ(u)



m′(u)∑
α=m(u)+1

[ΩO(ωα, ω)]
s

n′(u)∑
α=m′(u)+1

[ΩO(ωα, ω)]
s

n(u)∑
α=n′(u)+1

[ΩO(ωα, ω)]
s


= 2

ϖ′(u)Q
sO (1) + 1

ϖ′(u)

n(u)∑
α=n′(u)+1

[ΩO(ωα, ω)]
s
.

Hence, we get Dw
s,(S,ΩO)
m,n − limα→∞ ωα = ω. □

Theorem 17. Let {m (u)}, {n (u)}, {m′ (u)} and {n′ (u)} be sequences of non-negative integers satisfying

(7) and (8), then Dw
s,(S,ΩO)
m,n − limα→∞ ωα = ω implies Dw

s,(S,ΩO)
m′,n′ − limα→∞ ωα = ω.

Proof. It is evident that the inequality

1
ϖ(u)

n(u)∑
α=m(u)+1

[ΩO(ωα, ω)]
s ≥ 1

ϖ(u)

n′(u)∑
α=m′(u)+1

[ΩO(ωα, ω)]
s

≥ n′(u)−m′(u)
n(u)−m(u)

1
n′(u)−m′(u)

n′(u)∑
α=m′(u)+1

[ΩO(ωα, ω)]
s

holds true. Therefore, by taking the limit as u approaches infinity, the desired result is achieved. □

4. Deferred Invariant and Deferred Invariant Statistical Convergence in
Octonion-valued Metric Space

We present the ideas of strongly deferred invariant convergence and deferred invariant statistical con-
vergence in an octonion-valued metric space. We also explore how these concepts relate to one another.

Definition 12. Let (S,ΩO) be an octonion-valued metric space, ω ∈ S be a point, and (ωα) ⊆ S be a
sequence. A sequence (ωα) is said to be strongly deferred ΩO-invariant convergent to ω if

lim
u→∞

1

ϖ (u)

n(u)∑
h=m(u)+1

ΩO(ωσh(t), ω) = 0,

uniformly in t. Here, we write D
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω or ωα → ω

(
D

(S,ΩO)
σ [m, n]

)
.

Definition 13. A sequence (ωα) is said to be strongly f-deferred invariant convergent to ω if

lim
u→∞

1

ϖ (u)

n(u)∑
h=m(u)+1

[
ΩO(ωσh(t), ω)

]f
= 0,

uniformly in t where 0 < f < ∞. In this case, we write D
f,(S,ΩO)
σ [m, n]− limα→∞ ωα = ω or

ωα → ω
(
D

f,(S,ΩO)
σ [m, n]

)
.

The following can be observed:
(a) When n (u) = u and m (u) = 0, then Definition 12 aligns with the concept of strong invariant
convergence in an octonion-valued metric space,
(b) If we consider n(u) = ku and m (u) = ku−1, then Definition 12 corresponds to strong lacunary invariant
convergence in octonion-valued metric space,
(c) If n (u) = u and m (u) = u − λu, then Definition 12 matches the definition of strong λ-invariant
convergence in ctonion-valued metric space.
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Definition 14. A sequence (ωα) is said to be ΩO-invariant statistically convergent to ω if for every ϱ ∈ O
with 0O ≺ ϱ,

lim
u→∞

1

u

∣∣{h : h ≤ u : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ = 0,

uniformly in t. In this case we write S
(S,ΩO)
σ − limα→∞ ωα = ω or ωα → ω

(
S
(S,ΩO)
σ

)
.

Definition 15. A sequence (ωα) is said to be deferred ΩO-invariant statistically convergent to ω if for
every ϱ ∈ O with 0O ≺ ϱ,

lim
u→∞

1

ϖ (u)

∣∣{h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ = 0,

uniformly in t. In this case we write DS
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω or ωα → ω

(
DS

(S,ΩO)
σ [m, n]

)
.

Clearly;
(I) If n (u) = u and m (u) = 0, then Definition 15 aligns with the definition of invariant statistical
convergence in octonion-valued metric space,
(II) If we consider n(u) = ku and m (u) = ku−1, then Definition 15 corresponds to the lacunary invariant
statistical convergence in octonion-valued metric space,
(III) If n (u) = u and m (u) = u − λu, then Definition 15 is equivalent to the invariant λ-statistical
convergence of sequences in octonion-valued metric space.

Theorem 18. Let {m(u)}, {n(u)}, {m′(u)} and {n′(u)} be sequences of non-negative integers satisfying
m(u) ≤ m′(u) < n′(u) ≤ n(u) for all u ∈ N and

lim sup
u→∞

n(u)−m(u)

n′(u)−m′(u)
< ∞

then DS
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω implies DS

(S,ΩO)
σ [m′, n′]− limα→∞ ωα = ω.

Proof. From the inclusion {
h : m′ (u) < h ≤ n′ (u) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
⊆

{
h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
,

we can write
1

ϖ′(u)

∣∣{h : m′ (u) < h ≤ n′ (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣

≤ n(u)−m(u)
n′(u)−m′(u)

1
ϖ(u)

∣∣{h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ .

Following the take-limit at u → ∞, the intended outcome is achieved. □

Theorem 19. Let {m(u)}, {n(u)}, {m′(u)} and {n′(u)} be sequences of of non-negative integers satisfying
m(u) ≤ m′(u) < n′(u) ≤ n(u) for all u ∈ N and

lim sup
u→∞

n(u)−m(u)

n′(u)−m′(u)
< ∞

then D
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω implies D

(S,ΩO)
σ [m′, n′]− limα→∞ ωα = ω.

Proof. We omit the proof since it is identical to the Theorem 18’s proof. □

Theorem 20. If (ωα) is strongly deferred ΩO-invariant convergent to ω, then (ωα) is deferred ΩO-

invariant statistically convergent to ω, that is, if D
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω, then

DS
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω.

Proof. Assume D
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω. For an arbitrary ϱ ∈ O with 0O ≺ ϱ, we have

1
ϖ(u)

n(u)∑
h=m(u)+1

ΩO(ωσh(t), ω) =
1

ϖ(u)

n(u)∑
h=m(u)+1

ΩO(ωσh(t)
,ω)̸≺ϱ

ΩO(ωσh(t), ω)

+ 1
ϖ(u)

n(u)∑
h=m(u)+1

ΩO(ωσh(t)
,ω)≺ϱ

ΩO(ωσh(t), ω) ≥ 1
ϖ(u)

n(u)∑
h=m(u)+1

ΩO(ωσh(t)
,ω) ̸≺ϱ

ΩO(ωσh(t), ω)

≥ ϱ
ϖ(u)

∣∣{h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣
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for all t. So, we obtain

lim
u→∞

1

ϖ (u)

∣∣{h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ = 0

uniformly in t, that is DS
(S,ΩO)
σ [m, n]− limα→∞ ωα = ω. □

Theorem 21. If (ωα) is bounded and deferred ΩO-invariant statistically convergent to ω, then (ωα) is

strongly deferred ΩO-invariant convergent to ω, that is, if (ωα) bounded and ωα → ω
(
DS

(S,ΩO)
σ [m, n]

)
,

then ωα → ω
(
D

(S,ΩO)
σ [m, n]

)
.

Proof. Omitted. □

Theorem 22. If limu→∞
m(u)
ϖ(u) = s > 0 and n (u) < u, then ωα → ω

(
S
(S,ΩO)
σ

)
implies

ωα → ω
(
DS

(S,ΩO)
σ [m, n]

)
.

Proof. Let ωα → ω
(
S
(S,ΩO)
σ

)
then for every ϱ ∈ O with 0O ≺ ϱ,

lim
u→∞

1

u

∣∣{h : h ≤ u : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ = 0,

uniformly in t. So, for all ϱ ∈ O with 0O ≺ ϱ,

lim
u→∞

1

n (u)

∣∣{h : h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ = 0

uniformly in t. From the inclusion{
h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
⊆

{
h : h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
and the inequality ∣∣{h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ

}∣∣
≤

∣∣{h : h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣

we have
1

ϖ(u)

∣∣{h : m (u) < h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣

= n(u)−m(u)+m(u)
ϖ(u)

1
n(u)

∣∣{h : h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣

≤
(
1 + m(u)

ϖ(u)

)
1

n(u)

∣∣{h : h ≤ n (u) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣

for all t and we deduce ωα → ω
(
DS

(S,ΩO)
σ [m, n]

)
. □

Theorem 23. Assume n(u) = u for all u ∈ N. Then, ωα → ω
(
DS

(S,ΩO)
σ [m, n]

)
iff ωα → ω

(
S
(S,ΩO)
σ

)
.

Proof. Assume that ωα → ω
(
DS

(S,ΩO)
σ [m, n]

)
. Using the method that Agnew in [1] used, we can write{

h : h ≤ u : ΩO(ωσh(t), ω) ̸≺ ϱ
}

=
{
h : h ≤ u(1) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
∪
{
h : u(1) < h ≤ u(2) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
,{

h : h ≤ u(1) : ΩO(ωσh(t), ω) ̸≺ ϱ
}

=
{
h : h ≤ u(2) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
∪
{
h : u(2) < h ≤ u(1) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
,

for each t ∈ N, by allowing m(u) = u(1), m
(
u(1)

)
= u(2), m

(
u(2)

)
= u(3), and{

h : h ≤ u(2) : ΩO(ωσh(t), ω) ̸≺ ϱ
}

=
{
h : h ≤ u(3) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
∪
{
h : u(3) < h ≤ u(2) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
,

for each t ∈ N. This procedure may be carried out again until, for each positive integer g that depends
on u, {

h : h ≤ u(g−1) : ΩO(ωσh(t), ω) ̸≺ ϱ
}

=
{
h : h ≤ u(g) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
∪
{
h : u(g) < h ≤ u(g−1) : ΩO(ωσh(t), ω) ̸≺ ϱ

}
,
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is obtained for any t in which u(g) ≥ 1 and u(g+1) = 0. Therefore, we can write

1

u

∣∣{h : h ≤ u : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣ = g∑

r=0

u(r) − u(r+1)

u
yrt

for every u and t, where

yrt :=
1

u(r) − u(r+1)

∣∣∣{u(r+1) < h ≤ u(r) : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣∣ .

If we consider a matrix A = (aur) as

aur =

{
u(r)−u(r+1)

u , r = 0, 1, 2, . . . , g

0, otherwise,

where u(0) = u, then the sequence{
1

u

∣∣{h : h ≤ u : ΩO(ωσh(t), ω) ̸≺ ϱ
}∣∣}

u∈N

is the (aur) transformation of the sequence (yrt). Since the matrix A = (aur) satisfies Silverman -Toeplitz
Theorem (see in [23]) and from the assumption on (aur), then we have the desired result. □

5. Conclusion

In this work, we have presented and examined two new ideas in octonion-valued metric space: de-
ferred statistical convergence and deferred strong Cesàro summability. Understanding the relationships
between these concepts inside these specific regions was the main goal of our investigation. First, we
defined deferred statistical convergence and deferred strong Cesàro summability in the framework of
octonion-valued metric spaces. After that, we examined the relationships between these ideas, emphasiz-
ing both their similarities and contrasts. We further expanded our study by presenting and studying the
concepts of deferred invariant convergence in octonion-valued metric spaces, strongly deferred invariant
convergence, and deferred invariant statistical convergence. Our comprehension of convergence qualities
in this particular context was enhanced by these extensions. To demonstrate the significance and applica-
bility of these ideas, we have included theoretical explanations and computational examples throughout
our investigation. In addition to laying the theoretical groundwork for octonion-valued metric spaces,
the ideas and findings provided here open up new avenues for investigation and use in related domains.
To sum up, our results highlight the depth and intricacy of convergence ideas in octonion-valued metric
spaces, providing fresh viewpoints and directions for further study in mathematical analysis and related
fields.
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