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A systematic approach for controlling different 2D porous media (PM) characteristics is presented. 

Through the manipulation of the topology of the PM grain size, shape and distribution, different PM 

characteristics can be controlled/tailored as required. The presented approach is tested using a test 2D 

porous media to achieve a specific target porosity value and offers the possibility of tuning other 

fluid/solid dependent characteristics like the pressure gradient and maximum velocity. The 

demonstrated approach can be further extended to include other target characteristics through the 

inclusion of more topological parameters. It can also be extended to any generic PM structure. This 

approach opens many possibilities for the use of model 2D porous media in different applications and 

as a surrogate model for naturally occurring PM. 
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1. INTRODUCTION 

Porous media are encountered in many natural and industrial situations. Examples include oil reservoirs, heat 

exchangers, energy recovery systems, waste management, soil mechanics, composites for different machine 

components etc (Liu et al., 2017; Kumar & Muniamuthu, 2024). Due to this, different approaches have been 

proposed and used to study different phenomena in porous media. The most basic of these approaches is the 

fully experimental one. In which a sample of the physical system under consideration is brought to the lab 

where it gets tested under controlled experimental conditions then different conclusions can be drawn from 

the measured variables (Anguy et al., 1996; Mosser et al., 2017; Kharrat et al., 2022). On the other side of 

the spectrum lays the fully computational methods which can be divided into models that replicate the exact 

PM geometry (through a CT scan or a similar approach) and lumped models that only use the main PM 

properties like porosity without considering the exact geometry of the grains and their distribution (Miah et 

al., 2018; Di Palma et al., 2019; Yan et al., 2022). 

Several studies have argued that computational models that do not consider the exact PM geometry may fail 

in predicting some features which are sensitive to the grain geometry such as the displacement interface 

geometry in the case of two-phase flow (Akhlaghi Amiri & Hamouda, 2014; Yong et al., 2014; Lu et al., 
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2018). The price paid to reflect the effect of the PM exact geometry is a detailed representation of the actual 

system through a CT scan or a similar approach (Di Palma et al., 2019). This approach, despite being more 

accurate, has two downsides. First, it is expensive since it is not fully computational as it needs a 

measurement part to get the full PM grain/bore geometry. Second, the obtained results cannot be generalized, 

or a sensitivity analysis cannot be done since the obtained results are specific to the tested PM sample. 

A hybrid approach between these two extremes is the use of a model porous media that replicate some of the 

real PM under consideration without the need for a detailed description of the actual grain/bore geometry 

(Akhlaghi Amiri & Hamouda, 2014; Meinicke et al., 2020). Many studies adopted this approach while 

replicating the important parameters of the PM like porosity, grain size and shape (Rokhforouz & Akhlaghi 

Amiri, 2019). Based on this approach, a recent emphasis has been placed on 2D porous media which, in 

addition to being used as model for real porous media, are gaining popularity in many applications due to its 

unique properties and simplicity (Akhlaghi Amiri & Hamouda, 2014; Yan et al., 2022; Sun et al., 2023). 

Synthetic porous media is another terminology widely used in scientific literature to reflect the use of 

different chemical and physical processes to produce porous media with desired target properties like 

specific surface area (Pfeiffer et al., 2016; Abdelrahman, 2018; Di Palma et al., 2019). Many studies have 

used model 2D and synthetic porous media to investigate its use for a specific application (Akhlaghi Amiri & 

Hamouda, 2014; Abdelrahman, 2018; Jahanshahi Javaran et al., 2010; Muniamuthu et al., 2016; Sun et al., 

2023; Kumar & Muniamuthu, 2024) like waste management (Abdelrahman, 2018; Kumar & Muniamuthu, 

2024), noise and vibration reduction (Kumar et al., 2016; Letaieff et al., 2017; Yuan et al., 2020; Sunil 

Kumar et al., 2024), control of thermal stresses in machine components (Kumar et al., 2023) and hydrogen 

storage (Pfeiffer et al., 2016). However, there is still no general approach/methodology that is generic enough 

to allow the determination of the 2D PM geometric parameters to fulfill a specific set of design targets. 

The aim of this study is to show the possibility of designing/tailoring the 2D PM geometric parameters to 

achieve target properties (whether these properties are specified by the intended use of the 2D PM or they are 

used to replicate a physical PM) like a specific porosity value or other solid/fluid specific characteristics like 

the maximum velocity and the pressure gradient. The used approach relies on manipulating different 

topological parameters of the 2D porous media to achieve the required design targets. This approach can be 

made more sophisticated by controlling more topological parameters in order to achieve more PM 

characteristics. The approach is demonstrated through the study of the flow in a sample 2D porous media and 

how different target goals can be achieved through the change of the PM grain size, shape and size 

distribution. 

2. PARAMETERS OF A 2D POROUS MEDIA 

A model 2D porous media is normally used for one of two goals. To replicate a physical porous media which 

allows an easier way of analyzing its characteristics or to be used in a specific application. In both cases, a 
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set of properties/characteristics needs to be replicated/achieved in the designed 2D PM. Some of these 

properties can be geometry related like porosity while others can be related to the used fluid/solid interaction 

like the required pressure gradient to pump the fluid through the PM with a certain flow rate/velocity or the 

maximum velocity in the bores between the PM grains. 

Assume a simplified 2D PM model as shown in Figure 1. The model porosity depends on the number of 

grains and their size. In this case, for a target porosity value, many options can be tuned to achieve the 

required porosity, which include some or all of the following topological parameters: 

1- Grain shape (e.g. circular, square, ... etc) 

2- Grain size and distribution (e.g. equal size, two or more sizes with specific size ratio, distribution ... etc) 

2- Grain relative arrangement to each other (e.g. inline, staggered, random ... etc). 

 

Figure 1. Sample 2D porous media geometry 

Since the target porosity value can be achieved using any of these combinations, this adds more degrees of 

freedom to achieve other target design goals as well. If these goals are geometry-dependent (e.g. min. or 

max. throat diameter), the tuning of these topological parameters is enough. For other PM hydrodynamic 

characteristics that are solid/fluid dependent like the pressure gradient or the maximum velocity, a detailed 

numerical solution is needed to map the topological parameters space to the hydrodynamic parameters space. 

Once this mapping is done, the specific geometric configuration can be easily determined. 

3. DESIGN OF A MODEL 2D POROUS MEDIA 

Now let us consider a test 2D porous media for a certain application. The first parameter that needs to be 

replicated is the porosity. A generic representation for one of the many options that can be used to achieve 

this goal is the one depicted in Figure 1. In this model we only consider a staggered arrangement of grains 

https://doi.org/10.54287/gujsa.1611750
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(other arrangements can be considered as well). Another parameter that can be used is the grain shape. In the 

current study, we consider two shapes only cylinder and square. In addition to this we also add another 

geometric parameter that allows the use of different sizes of the grains in consecutive rows. Based on this we 

can have many combinations as shown in Table 1 

where: 

D1: is the characteristic length of grains in row 1 (Diameter for a cylinder or side length for a square). 

D2: is the characteristic length of grains in row 2 (Diameter for a cylinder or side length for a square). 

CC: denotes a configuration where both rows 1 and 2 contain cylindrical grains. 

CS: denotes a configuration where row 1 has cylindrical grains while row 2 has square ones. 

Lx: is the model 2D PM length parallel to the flow. 

Ly: is the model 2D PM length in the normal to the flow direction. 

Table 1.Tuning of 2D porous media geometric parameters 

[D1
2/(LxLy)]x1000 D2/D1 Porosity % (CC) Porosity % (CS) 

1.2 1.0 15 17 

0.9 1.7 14 17 

0.8 2.1 14 17 

1.3 1.0 17 19 

1.0 1.5 17 20 

0.8 2.4 17 22 

1.9 1.0 32 37 

1.6 1.3 32 37 

1.4 1.6 31 37 

2.0 1.0 37 42 

1.9 1.2 37 42 

1.7 1.3 37 43 

It is clear from Table 1 that a specific porosity value (like 17% or 37%) can be obtained with many 

combinations of the three main geometric parameters. Namely, the size of the grain with respect to the 

characteristic PM size, the ratio of the grain size between the two rows 1 and 2 and the shape of the grain. If 

the main objective is to design a PM with a target porosity then we have six options for each of these two 

porosity values. 

https://doi.org/10.54287/gujsa.1611750
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Now, since we have six options, we can choose one of them according to other design targets. We can move 

to hydrodynamic design targets but before doing so we need to model the flow field of all the cases presented 

in the table above. 

4. THE NUMERICAL MODEL 

Due to the symmetry of the considered PM geometry, we only need to consider the part of the domain in the 

dashed box shown in Figure 1. The left boundary is set as velocity inlet while the right boundary is an outlet. 

The top and bottom boundaries are symmetry BCs and the solid grains are dealt with using the no slip BC. 

Due to its computational efficiency especially for parallel processing, the Lattice Boltzmann Method (LBM) 

is used for the simulation of the flow field in the considered 2D PM for the cases considered above (He & 

Luo, 1997; Jahanshahi Javaran et al., 2010; Yan et al., 2022). The details of the used LBM model are given 

in Appendix A. 

For all the test cases, the flow is assumed to be a steady-state laminar flow of a Newtonian fluid. The inlet 

velocity 𝑢𝑖𝑛 is fixed for all cases to give a flow Reynolds number of 10 based on 𝐿𝑦. 

 𝑅𝑒 =  
𝜌 𝑢𝑖𝑛 𝐿𝑦

𝜇
 (1) 

where: 𝜌 is the fluid density and 𝜇 is the dynamic viscosity. 

The normalized pressure gradient is calculated as follows: 

 
𝑑𝑝

𝑑𝑥
=

∆𝑝

𝐿𝑥

𝐿𝑦

𝑝0

 (2) 

where: 𝑝0 is the initial pressure in the domain. 

∆𝑝 is the pressure drop along the porous media length 𝐿𝑥. 

The normalized maximum velocity is the maximum velocity in the domain normalized by the inlet velocity. 

 𝑉𝑚𝑎𝑥 =
𝑢𝑚𝑎𝑥

𝑢𝑖𝑛

 (3) 

where: 𝑢𝑚𝑎𝑥 is the maximum velocity magnitude in the simulation domain. 

For all cases, the simulation was run until a steady-state solution is reached. For the used Reynolds number, 

no oscillatory solution was observed for any of the tested cases.  

https://doi.org/10.54287/gujsa.1611750
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5. RESULTS AND DISCUSSION 

This section shows and discusses the results obtained following the proposed approach and simulation 

discussed in the previous section. The reported velocity fields are normalized by the inlet velocity 𝑢𝑖𝑛 and 

the density fields are normalized by the initial density 𝜌𝑜. 

Figure 2 shows the normalized velocity field for some of the test cases. The magnitude of the maximum 

velocity and its location seem to depend on both the grain shape configuration and the grain size ratio.  

Figure 3 shows the density contours for the same cases. On average, the variation of the density on the cross 

stream-wise direction is limited to the neighbor of the grains and in some cases (case a) is almost constant 

across the PM cross section. It is also clear that the CS configuration in general results in higher pressure 

gradient due to the larger difference in the density between the front and rear stagnation points of the square 

grains compared to the smother variation in case of the cylindrical grains. For cases where the shape, size 

and configuration of the PM grains are more random/generic, the velocity and density fields will be less 

uniform. 

The previous two figures show that the change of the topological parameters of the 2D PM, for the same 

porosity value, has a profound effect on the resulting flow field (i.e. velocity and density fields). As will be 

shown, this will subsequently affect the 2D PM hydrodynamic characteristics which allows more freedom in 

selecting the appropriate set of geometric parameters that fulfills other hydrodynamic design targets. 

Table 2 shows the calculated normalized pressure gradient and the normalized maximum velocity in all 

tested 2D PM configurations presented in Table 1. The highlighted cells show the normalized pressure 

gradient and normalized maximum velocity for PM configurations with the same porosity value. 

The normalized pressure gradient and normalized maximum velocity for the configurations with a porosity 

value of 17% show almost no sensitivity to the grain shape configuration (CC vs. CS) with weak dependence 

on the grain size ratio (D1/D2). For other PM grain configurations/shapes, these parameters can be more 

sensitive to different size parameters. 

On the other side, cases with a porosity value of 37% show strong dependence of both the normalized 

pressure gradient and normalized maximum velocity on the grain configuration and grain size ratio. Based 

on this a specific configuration can be chosen or tailored to meet a specific pressure gradient and maximum 

velocity for the given porosity value. 

https://doi.org/10.54287/gujsa.1611750
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a) CC D2/D1 = 1.3 

 
b) CS D2/D1 = 1 

 
c) CC D2/D1 = 2.4 

 
d) CS D2/D1 = 1.6 

Figure 2. The normalized velocity field for some of the test cases 
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a) CC D2/D1 = 1.3 

 
b) CS D2/D1 = 1 

 
c) CC D2/D1 = 2.4 

 
d) CS D2/D1 = 1.6 

Figure 3. The normalized density field for some of the test cases 
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This sample set of test cases shows that by controlling only three topological parameters (grain shape, size 

ratio and grain configuration) three target parameters (porosity, pressure gradient and maximum velocity) 

can be fulfilled in the designed model 2D PM. Inclusion of other topological parameters like the type and 

parameters of the grains size distribution and a more generic grains arrangement will allow the control of 

more target design parameters like the max. and min. throat area in addition to other hydrodynamic 

parameters. 

Table 2. Hydrodynamic parameters of the tested cases 

Porosity % (CC) Porosity % (CS) dp/dx (CC) dp/dx (CS) Vmax (CC) Vmax (CS) 

15 17 0.47 0.58 2.04 2.08 

14 17 0.44 0.58 2.03 2.24 

14 17 0.41 0.56 2.11 2.34 

17 19 0.51 0.66 2.06 2.18 

17 20 0.50 0.70 2.05 2.28 

17 22 0.48 0.70 2.35 2.55 

32 37 1.23 2.03 2.65 3.62 

32 37 1.21 2.17 2.63 3.75 

31 37 1.10 2.06 2.67 3.62 

37 42 1.57 2.78 2.95 4.42 

37 42 1.57 2.97 2.93 4.59 

37 43 1.59 3.15 2.91 4.79 

6. CONCLUSION 

In this work, a simple and systematic approach is proposed for the design of model 2D porous media. The 

approach relies on achieving the required design targets (whether geometric or hydrodynamic) through the 

manipulation of the PM topological parameters. The proposed approach is tested by a set of sample test cases 

to show how the topological parameters can be used in tuning the required 2D PM in order to achieve a 

predefined set of design targets. Geometric design targets can be fulfilled by just tuning the topological 

parameters of the PM while the hydrodynamic targets need the extra step of numerically modeling the flow 

field in the model PM to properly select the best configuration. The presented approach can be used to meet 

more design targets by including more topological parameters in the design of the model 2D PM. In addition 

to this, the proposed approach can be extended to more generic PM structures. 
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APPENDIX A: 

The LBM solves the discrete Boltzmann equation on a lattice like the 2DQ9 which is used in the current 

work (Krüger et al., 2017). 

 𝑔𝑖(𝑥𝑖 + 𝑐Δ𝑡, 𝑡 + Δ𝑡) − 𝑔(𝑥𝑖, 𝑡) = Ω(𝑔) (1A) 

where: 𝑔𝑖 is a probability distribution function in lattice direction 𝑖, 𝑐 is the lattice speed 𝑐 = Δ𝑥
Δ𝑡⁄  and 

Ω(𝑔) is a collision operator. The lattice velocities 𝑐𝑖 for the used D2Q9 lattice (Figure 1A) configurations 

are: 

 𝑐𝑖 = {

(0,0)                                𝑖 = 0
(±1,0)𝑐, (0, ±1)𝑐           𝑖 = 1: 4
(±1,±1)𝑐                        𝑖 = 5: 8

 (2A) 

 

Figure 1A. the D2Q9 lattice velocity set 

The single relaxation time (SRT) LBM uses the BGK collision operator but in the current work, the multiple 

relaxation time MRT LBM (Krüger et al., 2017) is utilized due to it improved stability especially for 

complex geometries. For this model, the collision operator is expressed as: 

 Ω(𝑔) = −𝑁−1. 𝑆. [𝑛 − 𝑛𝑒𝑞] (3A) 

Where 𝑁 is a matrix to transform 𝑔 from the velocity space to the moment space 𝑛 = 𝑁. 𝑔. The equilibrium 

distribution function 𝑔𝑒𝑞 is also transformed to 𝑛𝑒𝑞 = 𝑁. 𝑔𝑒𝑞.  

 𝑁 =

[
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1]

 
 
 
 
 
 
 
 

 (4A) 

𝑆 is a diagonal matrix with diagonal elements representing the relaxation rate for each moment. 
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 𝑆 = 𝑑𝑖𝑎𝑔(0, 𝑠1, 𝑠2, 0, 𝑠4, 0, 𝑠6, 𝑠𝜈 , 𝑠𝜈) (5A) 

The speed of sound for the D2Q9 is given by: 

 𝑐𝑠 =
𝑐

√3
 (6A) 

𝑠𝜈 is related to the fluid kinematic viscosity as follows: 

 𝜈 = 𝑐𝑠
2 (

1

𝑠𝜈
−

1

2
)  (7A) 

The equilibrium probability distribution function 𝑔𝑒𝑞 is: 

 𝑔𝑖
𝑒𝑞

= 𝑤𝑖 

𝑝

𝑐𝑠
2 [1 +

𝑐𝑖 . 𝑣

𝑐𝑠
2 +

(𝑐𝑖. 𝑣)2

2𝑐𝑠
4 −

𝑣. 𝑣

2𝑐𝑠
2] (8A) 

Pressure 𝑝 and velocity 𝑣 are calculated from the moments of 𝑔 : 

 𝑝(𝑥, 𝑡) = 𝑐𝑠
2 ∑𝑔𝑖(𝑥, 𝑡)

𝑖

 (9A) 

 𝑣𝑗(𝑥, 𝑡) =
𝑐𝑠

2

𝑝(𝑥, 𝑡)
∑𝑐𝑖𝑗𝑔𝑖(𝑥, 𝑡)

𝑖

 (10A) 
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