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Abstract− This paper investigates a fractional-order prey-predator model with varying
prey-carrying capacity and the inclusion of harvesting in both populations. The model
uses fractional derivatives to include memory effects, aiming to capture ecological dynamics
better. Moreover, it considers how prey can alter its carrying capacity by modifying the
environment. The stability and Hopf bifurcation analyses are used to study population cycles
and equilibrium states. Numerical simulations reveal key biological insights, emphasizing the
need for sustainable harvesting and the influence of past interactions on ecosystem balance.

Keywords − Prey-predator, varying carrying capacity, Caputo fractional derivative, harvesting

1. Introduction

Understanding prey-predator interactions is key to studying ecosystem dynamics, as they play a vital
role in shaping biodiversity, maintaining population balance, and ensuring species survival. Classical
mathematical models like Lotka-Volterra have been important in exploring these relationships, offering
valuable insights into how such dynamics operate across ecosystems. Over time, these models have been
refined to include elements like adaptive behaviors, environmental changes, and intricate biological
interactions, making them more representative of real-world circumstances. These models focus on
addressing the rapid loss of biodiversity caused by habitat destruction, climate shifts, and the overuse
of natural resources [1].

Fractional calculus has been emerging as an essential tool for improving the realism of mathematical
models, especially in biological systems where memory and inherited traits are significant. Unlike
standard integer-order models, fractional differential equations (FDEs) offer a more detailed depiction
of processes influenced by past events [2]. Using fractional-order derivatives introduces memory effects
in prey-predator dynamics, enabling a deeper understanding of long-term population interactions and
ecosystem behavior [3,4]. Caputo and Riemann-Liouville derivatives are commonly used in such models.
The Caputo fractional derivative (CFD) is used widely because it is compatible with traditional initial
conditions and still captures the non-local, history-dependent nature of biological processes [2, 5].
Fractional-order models provide a deeper insight into population dynamics, particularly in intricate
biological systems where interactions may span over extended periods [3, 4, 6, 7].
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Numerous biological aspects, including various functional responses, the Allee effect, refuges, sup-
plementary food sources, fear effects, and herd behavior, have been investigated in predator-prey
systems utilizing FDEs. Furthermore, several studies have also focused on the role of harvesting [8–12].
Harvesting significantly affects prey-predator dynamics, ecosystem balance, and long-term sustainability.
It involves the removal of individuals, either prey or predator, for activities like fishing, hunting, and
forestry. While harvesting is essential for economic and subsistence needs, excessive exploitation can
disrupt the ecological balance, causing population declines or extinction. Harvesting can influence
population cycles in these systems, potentially destabilizing ecosystems if not carefully regulated.
Therefore, sustainable harvesting practices are critical to prevent over-exploitation, ensure species
recover, and continue contributing to biodiversity and ecosystem health.

In this study, we consider a prey-predator system with prey that can impact its carrying capacity,
and both populations are subject to harvesting. Since pioneering the Lotka-Volterra system, the prey-
predator model has advanced significantly. In traditional predator-prey models, the carrying capacity
of the prey population is often treated as a fixed constant, representing the maximum population size
that the environment can support. However, in more realistic scenarios, the carrying capacity can vary
due to environmental factors like seasonal changes, resource availability, or habitat quality [13–15].
Another significant consideration in prey-predator dynamics is the role of prey in shaping its carrying
capacity [16,17]. In many ecosystems, prey species actively modify their environment through resource
consumption, habitat alteration, or even social behaviors, which can impact the resources available for
future generations. For example, overgrazing by herbivores may degrade vegetation, reducing the future
carrying capacity of the environment. The following section explains how this aspect is incorporated
into the model.

This study introduces a novel approach by incorporating a varying carrying capacity into a prey-
predator system formulated by fractional differential equations (FDEs). Unlike previous works, which
employed a discrete delay in the carrying capacity terms to account for the time-lagged influence of
prey on its environment [16,17], we take a different route. Rather than assuming a strictly delayed
response, our model integrates a generalized memory effect by leveraging the hereditary characteristics
of the Caputo fractional derivative. Additionally, including both prey and predator harvesting and its
interaction with variable carrying capacity further distinguishes this study and expands its scope.

The structure of the paper is as follows: The next section is devoted to the model formulation and its
fractional version, providing some preliminary information on CFDs and FDEs. Following this, we
perform stability and Hopf bifurcation analysis of the proposed system. Finally, we conclude with
numerical simulations and conclusions, where we provide numerical simulations and their biological
interpretations.
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Table 1. Variables and parameters of (2.3) - (2.5) with descriptions
Variable/Parameter Biological Meaning Dimension Dimensionless Representation

U Prey density biomass u = U
B

V Predator density biomass v = aV
rb

T Time time t = rT

r Prey growth rate time−1

K Carrying capacity biomass k =
K

b

c Constructive impact of prey dimensionless c

a Consumption rate time−1

b Half saturation constant biomass

q1 Harvesting rate of prey time−1 h1 = q1
r

e Conversion rate dimensionless α = ae
r

d Predator mortality rate time−1 δ = d+q2
r

q2 Harvesting rate of predator time−1 Included in δ

2. Model Construction

This section introduces the predator-prey model that will be studied and provides preliminary informa-
tion on CFDs and FDEs.

2.1. Formulation of Model

Consider a traditional Lotka-Volterra type prey-predator system with Holling-type II functional
response: 

dU

dT
= rU

(
1 − U

K

)
− aUV

b + U
dV

dT
= eaUV

b + U
− dV

(2.1)

where U and V denotes prey and predator population densities at time T respectively. All the
parameters are positive, and their biological meaning are given in Table 1. Instead of taking constant
carrying capacity K for prey, we assume that the prey population can influence its carrying capacity
with impact parameter c. Then, we replace the constant K in (2.1) with a new carrying capacity
function κ(T ) = K + c U(T ) to get

dU

dT
= rU

(
1 − U

K + cU

)
− aUV

b + U
dV

dT
= eaUV

b + U
− dV

(2.2)

In this study, we assume that prey impacts on its carrying capacity are positive, and we call this
parameter c a constructive impact parameter. For instance, some species contribute to biodiversity
through seed dispersal and nutrient cycling. This contribution can result in greater availability of
food resources, enhancing their carrying capacity, represented by c ≥ 0. Ecosystem engineer species
provide a compelling example of prey impacting their carrying capacity. These organisms actively
shape their environment by modifying resource availability, such as by altering soil composition, water
flow, or vegetation, which can enhance their habitat and the habitats of other species. In doing so, they
improve their chances of survival and promote biodiversity within the ecosystem. This modification
of the environment can lead to an increase in their carrying capacity as they create more favorable
conditions for themselves and others. For more in-depth information, we refer to [18,19].
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The predator-prey dynamics between beavers and wolves can be a relevant example for our model.
As ecosystem engineers, Beavers significantly alter their environment by building dams that create
wetlands, providing more aquatic plants they consume [19]. Wolves, as predators, rely on beavers for
food in areas where both species coexist [20]. In such regions, beavers and wolves influence each other,
with both species also being subject to harvesting. These interactions make this system a relevant
biological scenario for our model. Moreover, as described in [16], we assume c < 1; otherwise, the prey
population would grow unbounded, and the boundary equilibrium would no longer exist. Next, we
incorporate harvesting for both prey and predator populations. Key factors influencing predator-prey
dynamics also include harvesting one or both populations. Harvesting ecological resources is common
in fisheries, forestry, and wildlife management. In this study, we incorporate linear harvesting, where
predator and prey populations are harvested at rates proportional to their respective sizes. With q1

and q2 stands for harvesting rate of prey and predator populations, respectively, (2.2) turns into the
following system: 

dU

dT
= rU

(
1 − U

K + cU

)
− aUV

b + U
− q1U

dV

dT
= eaUV

b + U
− dV − q2V

(2.3)

We will now apply a non-dimensionalization process to reduce the number of parameters, simplifying
the analysis. Applying the given change of variables u = U

b
, v = aV

rb
, and t = rT , (2.3) transforms

into the following: 
du

dt
= u

(
1 − u

k + cu

)
− uv

1 + u
− h1u

dv

dt
= αuv

1 + u
− δv

(2.4)

where k = K

b
, h1 = q1

r
, α = ae

r
, d2 = d

r
, h2 = q2

r
, and δ = d2 + h2. Here, we combine predator death

rate d2 and predator harvesting rate h2 as δ for simplification.
Here, we replace left-hand side ordinary derivatives in (2.4) with Caputo fractional derivatives to get

C
t0Dγ

t u(t) = u

(
1 − u

k + cu

)
− uv

1 + u
− h1u

C
t0Dγ

t v(t) = αuv

1 + u
− δv

(2.5)

Here, C
t0Dγ

t is Caputo fractional differentiation of order γ with γ ∈ (0, 1), and is defined as [2]

C
t0Dγ

t F (t) = 1
Γ(1 − γ)

∫ t

t0

F ′(γ)
(t − γ)γ

dγ

For more detail about taking the fractional order version of the given system, we refer to [6]. With this
definition, as γ approaches 1, the influence of past events on future outcomes diminishes, resulting in a
short memory effect [6]. On the other hand, when γ nears 0, the impact of previous events becomes
more significant, leading to a stronger memory effect.

2.2. Existence-Uniqueness of Solutions

In this subsection, we prove the existence and uniqueness of solutions of (2.5) after providing necessary
theorems.

Lemma 2.1. [21] Let f ∈ Cq([t0, T ],R). Suppose that for any t1 ∈ (t0, T ], one has g(t1) = 0 and
f(t) < 0, for t0 ≤ t < t1, then it follows that C

t0Dγ
t f(t1) > 0.
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Lemma 2.2. [22] Consider the following system
C
0 Dγ

t Y (t) = F (t, Y ), t ≥ 0

with initial condition Y (0) = (Y1(0), . . . , Yn(0)), where γ ∈ (0, 1], F : [0, ∞) × ∆ → Rn, ∆ ⊆ Rn. If
F (t, Y ) fulfills the local Lipschitz condition with respect to Y ∈ Rn, i.e.,

∥F (t, Y ) − F (t, Ỹ )∥ ≤ N∥Y − Ỹ ∥

there exists a unique solution for (2.2) on [0, ∞) × ∆.

Theorem 2.3. The solution for (2.5) with t ≥ 0 remains in R2
+.

Proof. Consider the solutions starting from Y (t0) = (ut0 , vt0). Suppose there exists a constant t1

such that t0 ≤ t < t1 and 
u(t) > 0, t0 < t < t1

u(t1) = 0
u(t+

1 ) < 0

Since C
t0Dγ

t u(t)|x(t1)=0= 0, Lemma 2.1 tells that u(t+
1 ) = 0 which contradicts u(t+

1 ) < 0. Hence, u(t) ≥ 0
for all t ∈ [t0, ∞). Similarly, v(t) ≥ 0, for all t ∈ [t0, ∞).

The existence-uniqueness of the solutions of the system (2.5) will be investigated considering the region
Λ × [t0, T ) where

Λ = {(u, v) ∈ R2
+ : max{|u|, |v|} < µ}

T < ∞, µ is large, and R2
+ = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}.

Theorem 2.4. The Caputo fractional order system (2.5) admits a unique solution for any nonnegative
initial conditions.

Proof. Let Y0, Ỹ0 ∈ Λ and Y (t), Ỹ (t) be two solutions of the system DγY = F (Y ) initiating from
Y0, Ỹ0 where Y = (u, v)T , F (Y ) = (F1(Y ), F2(Y ))T with

F1(Y ) = u

(
1 − u

k + cu

)
− uv

1 + u
− h1u and F2(Y ) = αuv

1 + u
− δv

Thus,

∥F (Y ) − F (Ỹ )∥ = |F1(Y ) − F1(Ỹ )| + |F2(Y ) − F2(Ỹ )|

=
∣∣∣∣u(1 − u

k + cu

)
− ũ

(
1 − ũ

k + cũ

)
− uv

1 + u
+ ũṽ

1 + ũ
− h1u + h1ũ

∣∣∣∣
+
∣∣∣∣ αuv

1 + u
− αũṽ

1 + ũ
− δv + δṽ

∣∣∣∣
≤ |u − ũ| +

∣∣∣∣∣k(ũ2 − u2) + cuũ(ũ − u)
(k + cu)(k + cũ) |+| ũ(ṽ − v) + v(ũ − u)

(1 + u)(1 + ũ)

∣∣∣∣∣+ |h1(ũ − u)|

+
∣∣∣∣αũ(v − ṽ) + v(u − ũ)

(1 + u)(1 + ũ)

∣∣∣∣+ |δ(ṽ − v)|

≤ |u − ũ| + 1
k

|u2 − ũ2| + c

k2 uũ|u − ũ| + ũ|v − ṽ| + v|u − ũ| + h1|u − ũ|

+ αũ|v − ṽ| + αv|u − ũ| + δ|v − ṽ|

≤
(

1 + 2µ

k
+ cµ2

k2 + µ(1 + α) + h1

)
|u − ũ| + (µ(1 + α) + δ) |v − ṽ|

= N1 |u − ũ| + N2 |v − ṽ|
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where N1 = 1 + 2µ

k
+ cµ2

k2 + µ(1 + α) + h1 and N2 = µ(1 + α) + δ. Defining N = max{N1, N2}, the
last expression is smaller than N ∥Y − Ỹ ∥. Hence, the result is obtained using Lemma 2.2.

3. Dynamical Analysis

In this section, we perform stability and bifurcation analysis of the equilibrium points of (2.5). To
achieve this, we will utilize the following theorems.

Theorem 3.1. [5] Consider the autonomous nonlinear system with CFD
C
t0Dγ

t Y (t) = F (Y (t)), Y (0) = Y0 ∈ Rn, γ ∈ (0, 1) (3.1)

where Y (t) = (Y1(t), . . . , Yn(t)) ∈ Rn , F : [F1, . . . , Fn] : Rn → Rn. A point E∗ is called equilibrium
point of (3.1) if it satisfies F (E∗) = 0. If all eigenvalues λi, i ∈ {1, 2, 3, . . . , n} of the Jacobian matrix
JE∗ = ∂F

∂Y

∣∣∣
Y =E∗

meet following conditions

|arg(λi)| >
γπ

2
Then, Y ∗ is locally asymptotically stable (LAS).

Theorem 3.2. [23] Consider the following system with CFD

DγY (t) = F (Y ), Y (0) = Y0 ∈ R2 (3.2)

with γ ∈ (0, 1). There exists a Hopf bifurcation about E∗, if a critical γ = γh value exist and satisfies
the conditions:

i. The Jacobian at E∗ has a pair of complex conjugate eigenvalues λ1,2 = p ± iq (where p > 0)

ii. m(γh) = 0 where m(γ) = γπ

2 − min1≤j≤2|arg(λj)|

iii. dm(γ)
dγ

∣∣∣
γ=γh

̸= 0

Setting both equations in (2.5) equal to zero, we obtain three equilibrium points of (2.5):

i. The extinction state of both populations E0 = (0, 0) which is always feasible.

ii. The predator-free boundary equilibrium E1 =
(

k(1 − h1)
1 − c(1 − h1) , 0

)
. E1 exists if h1 < 1.

iii. The interior equilibrium point E∗ = (u∗, v∗) where

u∗ = δ

e − δ
and v∗ = e((1 − h1)(ek + (c − k)δ) − δ)

(e − δ)(ek + (c − k)δ)
The existence conditions (u∗ > 0, v∗ > 0) of the interior equilibrium point E∗ = (u∗, v∗) can be
summarized as follows:

i. e > δ

ii. k >
δ(1 − c)

e − δ
= (1 − c)u∗

iii. h1 < 1 − u∗

k + cu∗

The first condition ensures that u∗ > 0, while the last two conditions are included to guarantee the
positivity of v∗. Note that the second condition can be expressed as k

(1 − c) > u∗. If there is no positive

influence from the prey (i.e., c = 0), this simplifies to k > u∗. Therefore, with this varying carrying
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capacity, the prey’s carrying capacity k can be smaller than the prey component u∗ of the E∗, and an
interior equilibrium can still exist depending on the strength of the constructive impact. The third
condition sets an upper limit for the prey harvesting rate, h1, to ensure the existence of an interior
equilibrium. If the constructive impact parameter c is present or significant, the prey population can
sustain the predator population even under higher prey harvesting rates.

Theorem 3.3. i. E0 is LAS if h1 > 1, otherwise it is a saddle point.

ii. E1 is LAS if 1 − u∗

k + cu∗ < h1 < 1 where u∗ = δ

e − δ

Proof. i. The eigenvalues of JE0 are λ1 = −δ < 0 and λ2 = 1 − h1. If h1 > 0 both eigenvalues
satisfies LAS condition |arg(λi)| >

γπ

2 for any choice of γ ∈ (0, 1].

ii. The eigenvalues of JE1 are both real numbers and calculated as

λ1 = (h1 − 1)(1 + c(h1 − 1)) and λ2 = ek + (−1 + c − k)δ − (ek + (c − k)δ)h1
1 − c + k + (c − k)h1

The condition h1 < 1 guarantees λ1 < 0. In addition to this condition if we have

e <
−δ + cδ(1 − h1) + δ(−k + kh1)

−k(1 − h1)

λ2 is also negative real number and both eigenvalues satisfy |arg(λ1,2)| >
γπ

2 for any choice of γ ∈ (0, 1].

These two conditions can be combined as 1 − u∗

k + cu∗ < h1 < 1.

For the LAS of the interior equilibrium point E∗, we firstly evaluate Jacobian about E∗ = (u∗, v∗) and
we obtain

JE∗ =
(

p11 p12

p21 p22

)
where

i. p11 = −δ(−e2(−1 + k)k + 2ek(−c + k)δ − (−c + c2 + k − 2ck + k2)δ2 + (ek + (c − k)δ)2h1
e(ek + (c − k)δ)2

ii. p12 = −δ

e

iii. p21 = −(e − δ)(−ek + (1 − c + k)δ + (ek + (c − k)δ)h1)
ek + (c − k)δ

iv. p22 = 0

Since that system parameters are positive, p12 is a negative real number. The existence conditions
imply that p21 is a positive real number. The corresponding characteristic is given as

h(λ) = λ2 + φ1λ + φ0 = 0 (3.3)

where φ1 = −p11, φ0 = −p12p21 > 0. Using Theorem 3.1 gives rise to the following conclusion:

Theorem 3.4. The interior equilibrium point E∗ = (u∗, v∗) is LAS if one of the following conditions
satisfied:

i. φ1 ≥ 0

ii. φ1 < 0, φ2
1 − 4φ0 < 0,

∣∣∣∣∣∣tan−1


√

4φ0 − φ2
1

φ1

∣∣∣∣∣∣ >
γπ

2
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Proof. The roots of (3.3) giving us the eigenvalues of JE∗ as

λ1,2 =
−φ1 ±

√
φ2

1 − 4φ0

2

For φ1 = 0, λ1,2 are complex conjugates satisfying |arg(λ1,2)| = π

2 >
γπ

2 , 0 < γ < 1. The inequalities
φ1 > 0 and φ2

1 − 4φ0 ≥ 0 implies that both λ1,2 are negative real numbers and the LAS condition
|arg(λ1,2)| = π >

γπ

2 is again satisfied. Lastly, if φ1 > 0 and φ2
1 − 4φ0 < 0 holds, the eigenvalues

λ1,2 ∈ C with negative real parts, and we have |arg(λ1,2)| >
γπ

2 .

The inequalities φ1 < 0, φ2
1 − 4φ0 < 0 imply that the eigenvalues are complex conjugate numbers with

strictly positive real parts. Then, the condition∣∣∣∣∣∣tan−1


√

4φ0 − φ2
1

φ1

∣∣∣∣∣∣ >
γπ

2

ensures that |arg(λ1,2)| >
γπ

2 .

Note that no bistability situation exists for the system (2.5). The LAS condition h1 > 1 of E0 violates
the existence conditions of boundary equilibrium E1 and interior equilibrium E∗. Moreover, the
existence conditions of E∗ contradict the LAS condition of E1. The theorem below explains Hopf
bifurcation situation of the system (2.5) around E∗.

Theorem 3.5. Suppose that interior equilibrium exists and the inequalities φ1 < 0, φ2
1 − 4φ0 < 0

holds. Then, as fractional order parameter γ passes through the critical

γh = 2
π

∣∣∣∣∣∣tan−1


√

4φ0 − φ2
1

φ1

∣∣∣∣∣∣
value, a Hopf bifurcation exists around E∗ of the system (2.5).

Proof. φ1 < 0, φ2
1 − 4φ0 < 0 implies that the eigenvalues λ1,2 of the Jacobian JE∗ are complex

conjugates with positive real parts. Therefore, the stability of E∗ is depending on the choice of
fractional order parameter γ ∈ (0, 1) and we have

min
1≤i≤2

|arg(λi)| =

∣∣∣∣∣∣tan−1


√

4φ0 − φ2
1

φ1

∣∣∣∣∣∣
For

γ = γh = 2
π

∣∣∣∣∣∣tan−1


√

4φ0 − φ2
1

φ1

∣∣∣∣∣∣
we have m(γh) = 0. Finally, the transversality condition

dm(γ)
dγ

∣∣∣
γ=γh

= π

2 ̸= 0

guarantees the existence of Hopf bifurcation as γ passes through γh.

4. Numerical Simulations

In this section, we explore the dynamic behavior of the fractional-order prey-predator system (2.5)
through numerical simulations. The previously derived analytical results are validated using the
fractional Adams-Bashforth-Moulton method, also known as the PECE algorithm [24,25], implemented
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in MATLAB R2016b. The parameter values used for numerical examples are given in Table 2. Given
the importance of the fractional order in capturing memory effects and its influence on the entire
system, it has been thoroughly examined in the numerical analysis. Additionally, the constructive
impact parameter and harvesting rates, unique to this study, are analyzed in detail. The numerical
outputs are given with their biological and ecological interpretations.

Figure 1. Prey (blue) and predator (red) populations concerning time and phase portraits for
γ = 0.95 (a)(d); γ = 0.94134 (b)(e); γ = 0.90 (c)(f)

Firstly, we investigate the impact of the fractional order γ. For chosen parameter values given in
Table 2, the existence conditions of the interior equilibrium point are satisfied, and it is calculated
as E∗ = (u∗, v∗) = (0.8, 0.560377). Moreover, the eigenvalues of JE∗ are complex conjugate numbers
λ1,2 = 0.0262713 ± 0.284327i with positive real parts. By Theorem 3.4, the LAS depends on the
fractional order parameter γ. The critical value of γ is calculated as γh = 0.941344 on which Hopf
bifurcation occurs about E∗ (Figure 1 (b)(e) and Figure 2). Above this value, the oscillations gets
higher and E∗ is not LAS (Figure 1 (a)(d) and Figure 2). This indicates that predator-prey interactions
become more unsettled when historical effects weaken due to a higher fractional order, leading to
sustained population cycles or destabilization. However, below this value (i.e., γ < γh), the memory
effect is sufficient to dampen the oscillations, allowing the populations to stabilize at the interior
equilibrium E∗ = (u∗, v∗) (Figure 1 (c)(f) and Figure 2). Biologically, this suggests that both species
regulate their populations based on immediate environmental conditions and past population dynamics.
The stronger memory effect introduces ecological resilience, enabling a more stable coexistence by
smoothing out extreme fluctuations in population densities.

Table 2. Parameter values used for numerical examples

k c h1 α δ

5 0.35 0.45 0.8 0.3

In Figure 3, time-series solutions of the system (2.5) are given for four different values of h1. For h1 = 1,
the equilibriums E1 and E∗ do not exist, and the extinction state is LAS (Figure 3 (a)(e) and Figure
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Figure 2. Bifurcation diagram concerning fractional order parameter γ
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Figure 3. Time-series solutions with phase portraits where h1 = 1 (a)(e); h1 = 0.90 (b)(f); h1 = 0.70
(c)(g); h1 = 0.45 (d)(h)

4). For lower values of h1, we always have the boundary equilibrium E1. For given parameter values in
Table 2, the critical value for the LAS of E1 is calculated as h = 0.88417; this is also the existence
threshold for interior equilibrium E∗. For 0.88417 < h1 < 1, we have LAS predator-free equilibrium
E∗. For h < 0.88417, E1 loses its stability while the interior equilibrium E∗ exist (Figure 3 (c)(g) and
Figure 4). While h1 gets lower, E1 is LAS since the Jacobian JE∗ has negative real eigenvalues until
h1 ≈ 0.8705. After this value until h1 ≈ 0.5905, the eigenvalues of JE∗ are complex numbers with
negative real parts. Hence, despite periodic oscillations have seen, E∗ is LAS irrespective of fractional
order parameter γ ∈ (0, 1] since |arg(λ1,2)| >

π

2 ≥ γπ

2 . Below the value h1 ≈ 0.5905, the intensifying
memory effect (i.e., decreasing the fractional order γ) can turn an unstable E∗ into LAS one or vice
versa. Even for h1 = 0, the critical value of fractional order γ is calculated as γh = 0.826042 at which
Hopf bifurcation happens while below it E∗ is LAS. As shown in Figure 4, a lower harvesting rate h1
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results in a higher predator population v∗ of the equilibrium point E∗. Biologically, this highlights that
reducing prey exploitation increases available resources, promoting predator survival and growth. If
prey harvesting is excessive, the predator population collapses due to insufficient food, whereas lower
harvesting levels enable a more sustainable predator-prey balance.

Figure 4. Bifurcation diagram with respect to harvesting rate h1 of prey

Figure 5. Bifurcation diagram with varying c for γ = 0.92

Figure 5 presents a bifurcation diagram concerning constructive impact parameter c. What we observe
here can be seen as an alternative perspective on the paradox of enrichment, a concept introduced by
Rosenzweig in predator-prey dynamics. This phenomenon describes how increasing the food supply
available to the prey can destabilize the ecosystem [26]. Biologically, as c increases, it enhances the
prey’s access to resources, allowing the prey population to grow beyond sustainable levels. This, in
turn, fuels a rapid rise in the predator population, leading to intensified predator-prey interactions.
The resulting instability manifests as persistent population oscillations or even chaotic dynamics, where
population crashes and booms occur unpredictably. Therefore, an increase in c leads to increased
environmental resources for prey, causing destabilization for the system (2.5). This finding aligns with
ecological observations that over-enrichment of an ecosystem, such as through excessive nutrient input,
can lead to severe fluctuations in species populations, increasing the risk of extinction for one or both
species.

For larger values of the constant carrying capacity term k, the constructive impact parameter c does
not influence the existence of the interior equilibrium E∗ (See Figure 5). This suggests that additional
environmental enhancements do not significantly alter species coexistence when the ecosystem has
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a sufficiently high baseline carrying capacity. However, lower values of k can influence that context.
We take k = 0.8 for Figure 6 and again give the bifurcation diagram concerning c. Initially, for c = 0,
the third condition h1 < 1 − u∗

k + cu∗ of existence of E∗ is not satisfied and the system (2.5) goes to
predator-free equilibrium. Biologically, this means that when the constant carrying capacity k and
constructive impact parameter c are too low, the prey population cannot sustain predators, leading to
predator extinction. Then, for c ≈ 0.4848, transcritical bifurcation occurs where E1 loses its stability,
and E∗ becomes to appear. At this point, the prey population has grown sufficiently due to increased
resource availability, allowing the predator population to establish itself. This transition represents
shifting from a prey-only ecosystem to a balanced predator-prey coexistence. Beyond that, with c

increasing, prey component u∗ of E∗ remains constant, while predator component v∗ of E∗ increases
due to the increased available resources.

Figure 6. Bifurcation diagram with varying c for k = 0.8 and γ = 0.95

In Figure 7, we illustrate the bifurcation diagram concerning δ ∈ (0.5, 0.8). Remember that this
parameter contains the predator death rate and predator harvesting rate. This figure can be taught as
a bifurcation diagram concerning predator harvesting. If predator harvesting is low, prey populations
are at low levels but can sustain predator populations. While predator harvesting rates get higher, two
Hopf bifurcations occur for the system (2.5) around the interior equilibrium point E∗: δhopf1 ≈ 0.1225
and δhopf2 ≈ 0.2945. This situation is specific to using the fractional derivative since we obtain complex
eigenvalues with positive real parts until δ ≈ 0.409. After δ > 0.619, the third condition for the
existence of the interior equilibrium point is not satisfied, and (2.5) converges to boundary equilibrium
E1.

Figure 7. Bifurcation diagram for δ ∈ [0.05, 0.8] (or h2 ∈ [0, 0.75]) where γ = 0.94
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5. Conclusion

This study investigates a predator-prey system within a fractional-order framework, incorporating
the unique aspect of the prey’s constructive impact on its carrying capacity. The model follows a
Holling type-II functional response and includes linear harvesting for both populations. The existence,
uniqueness, and non-negativity of solutions are established. A thorough analysis of local stability for
all equilibrium points is conducted. For the extinction and predator-free states, stability properties
align with those in ordinary systems, as the eigenvalues of the associated Jacobian matrix are real.
However, for the coexistence equilibrium, the situation differs, as the eigenvalues may be complex.
Additionally, the occurrence of Hopf bifurcation, influenced by the order of the fractional derivative, is
proven. To support the theoretical results, numerical simulations using the predictor-corrector scheme
demonstrate the dynamics of prey and predator populations. These simulations highlight the effects of
the fractional-order parameter γ, the constructive impact parameter c, and the harvesting rates h1 and
h2.

Future studies could delve into more complex prey-predator dynamics involving variable carrying
capacities. For instance, investigating varying carrying capacities alongside other biological factors,
such as different functional responses or the Allee effect, could lead to intriguing findings. Prey species
with a constructive influence often exhibit collaborative behavior, which motivates us to study them
in conjunction with the Allee effect. Similarly, as many ecosystem-engineering species rely on refuge,
the role of refuge could also be examined alongside variable carrying capacity. Moreover, delayed
differential equations could explore varying carrying capacity, while fractional derivatives might also
be incorporated as another memory mechanism. Adding fractional-order derivatives into the model
could significantly enhance the system’s dynamic complexity.
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