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Abstract. Let A and B be two associative rings, I be a two-sided ideal of B,

and f ∈ Hom(A,B). In this paper, we study the involutions on amalgamated

algebras. Further, we construct a specific type of involutions on A ./f I

named amalgamated involutions. The paper investigates the Hermitian and

skew-Hermitian elements of A ./f I and determines the sets H(A ./f I)

and S(A ./f I) for amalgamated involutions. Moreover, the paper derives

several identities that establish the commutativity of A ./f I when A is prime.

This allows to construct non-prime rings in which these identities imply their

commutativity.
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1. Introduction

In this paper, every ring is considered associative and ideals are two-sided. An

involution ∗ on a ring R is an additive map on R verifying: (1) (x.y)∗ = y∗.x∗,

and (2) (x∗)∗ = x, for every x, y ∈ R. A ring that has an involution is known

as a ring with involution or a ∗-ring. Involution holds significant importance in

algebraic operations (see [1,12]) and finds recently numerous applications in coding

theory and cryptography (see for instance [2,9,11]). In particular, involutions that

possess only a limited number of fixed points are of interest in cryptography [2].

Fixed points of an involution on R are called Hermitian elements of R, and the

set of Hermitian elements of R is denoted by H(R). As well, an element x of R

verifying x∗ = −x is called skew-Hermitian, and the set of skew-Hermitian elements

is denoted by S(R). Let Z(R) be the center of R. If Z(R) ⊆ H(R), then the

involution is of the first kind. Otherwise, the involution is of the second kind, in

this case, we have S(R) ∩ Z(R) 6= (0). Recall that R is called prime if the ideal

(0) is prime. Also, a derivation on R is an additive map d : R → R such that

d(x.y) = d(x).y + x.d(y), for any x, y ∈ R. Involutions have been widely used to
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study the commutativity of prime rings, when some derivations identities hold (see

for example [1,10]).

Assume that A and B are two rings, I is an ideal of B, and f ∈ Hom(A,B).

The amalgamated algebra of A and B along I with respect to f is the subring of

A×B defined as follows:

A ./f I := {(a, f(a) + i) | a ∈ A, i ∈ I}.

In particular, if A = B and f = idA, the amalgamated algebra is called the amal-

gamated duplication denoted by A ./ I. It was introduced by D’Anna and Fontana

[3,4], since then it knows several developments and applications (for more details

see [6]). Due to its special structure, the amalgamated algebra A ./f I covers many

class of algebras (see for example [8]), this has made it interesting to study in recent

years; especially, Ebadian and Jabbari [5] studied C∗-algebras defined by amalga-

mated duplication of C∗-algebras, and Idrissi and Oukhtite [7] studied derivations

over amalgamated algebras.

In this paper, we give a complete description of involutions over amalgamated

algebras. In particular, we show a special construction of involutions over A ./f I

from involutions over A and I, which we call amalgamated involutions. Further,

we study Hermitian and skew-Hermitian elements of A ./f I, and we determine

H(A ./f I) and S(A ./f I) in the case of amalgamated involutions. This allows us

to characterize amalgamated involutions of the first kind and those of the second

kind. Finally, we give some identities which imply the commutativity of A ./f I,

when A is prime. This provides the possibility to construct non-prime rings in

which those identities imply their commutativity.

2. Preliminaries

Throughout this paper, A and B are two rings, I is an ideal of B and f ∈
Hom(A,B). Let φ be an additive map on A ./f I, π1 and π2 be projections over

A ./f I, defined by π1 : (a, f(a) + i) ∈ A ./f I 7→ a ∈ A, and π2 : (a, f(a) + i) ∈
A ./f I 7→ f(a) + i ∈ B. We write φ1(a) := π1 ◦ φ(a, f(a)), φ′1(i) := π1 ◦ φ(0, i),

and φ2(a) := π2 ◦ φ(a, f(a)), φ′2(i) := π2 ◦ φ(0, i); namely, φ(a, f(a) + i) = (φ1(a) +

φ′1(i), φ2(a) + φ′2(i)).

Recall that, for any θ, β ∈ Hom(A,B), an additive map d : A → B is called

(β, θ)-derivation from A into B if d(x, y) = d(x).θ(y) + β(x).d(y) for any x, y ∈ A.

Let us show the construction of derivations over A ./f I.
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Lemma 2.1. [7, Theorem 1] Let A and B be two rings, I be an ideal of B, and

f ∈ Hom(A,B). Suppose that d is an additive map on A ./f I. Then, the map d

is a derivation on A ./f I if and only if the following conditions hold:

(1) d1 is a derivation on A,

(2) d2 is an (f, f)-derivation from A into B,

(3) For all a ∈ A and i, i′ ∈ I, the map d′1 verifies the following properties:

• d′1(i.i′) = 0,

• d′1(f(a).i) = a.d′1(i),

• d′1(i.f(a)) = d′1(i).a.

(4) For all a ∈ A and i, i′ ∈ I, the map d′2 verifies the following properties:

• d′2(i.i′) = d′2(i).i′ + i.d′2(i′),

• d′2(f(a).i) = d2(a).i+ f(a).d′2(i),

• d′2(i.f(a)) = d′2(i).f(a) + i.d2(a).

Next, we show some results on the center of A ./f I.

Lemma 2.2. [7, Lemma 4] Let A and B be two rings, I be an ideal of B and

f ∈ Hom(A,B). Then,

Z(A ./f I) = (A ./f I) ∩ (Z(A)× Z(f(A) + I)).

In particular, Z(A ./f I) = Z(A) ./f I if and only if I ⊆ Z(f(A) + I).

We prove this result that we will need later.

Lemma 2.3. Let A and B be two rings, I be an ideal of B and f ∈ Hom(A,B).

Then, the following statements are equivalent:

(1) A ./f I is commutative if and only if A is commutative,

(2) f(A) ⊆ ZB(I) := {b ∈ B | b.i = i.b,∀i ∈ I} and I is commutative.

Proof. Let (a, f(a), i), (a′, f(a′) + i′) ∈ A ./f I. Then, we have

(a, f(a) + i).(a′, f(a′) + i′) = (a.a′, f(a.a′) + f(a).i′ + i.f(a′) + i.i′),

and

(a′, f(a′) + i′).(a, f(a) + i) = (a′.a, f(a′.a) + f(a′).i+ i′.f(a) + i′.i).

It is easy to see that the commutativity of A ./f I implies the commutativity of A.

So, we can rewrite the first statement as “A is commutative implies that A ./f I is

commutative”.

(1) ⇒ (2) Suppose that either f(A) 6⊆ ZB(I) or I is not commutative. We

distinguish it into two cases:
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Case 1: If f(A) 6⊆ ZB(I), then there exist x ∈ A and j ∈ I such that f(x).j 6=
j.f(x). Suppose that A is commutative, then we have:

(x, f(x)).(0, j) = (0, f(x).j) 6= (0, j.f(x)) = (0, j).(x, f(x)).

Then, A ./f I is not commutative.

Case 2: If I is not commutative, then there exist j, j′ ∈ I such that j′.j 6= j.j′.

Suppose that A is commutative, then we have:

(0, j).(0, j′) = (0, j.j′) 6= (0, j′.j) = (0, j′).(0, j).

Then, A ./f I is not commutative.

This proves the desired result.

(2) ⇒ (1) Suppose that f(A) ⊆ ZB(I) := {b ∈ B | b.i = i.b,∀i ∈ I} and I is

commutative. If A is commutative, then we obtain

(a, f(a) + i).(a′, f(a′) + i′) = (a.a′, f(a.a′) + f(a).i′ + i.f(a′) + i.i′),

= (a′.a, f(a′.a) + i′.f(a) + f(a′).i+ i′.i),

= (a′, f(a′) + i′).(a, f(a) + i).

Therefore, A ./f I is commutative. �

Let us recall this important result on the primeness of A ./f I.

Lemma 2.4. [7, Lemma 2] Let A and B be two rings, I be an ideal of B and

f ∈ Hom(A,B). Then, the following statements are equivalent:

(1) A ./f B is a prime ring,

(2) f(A) + I is a prime ring and f−1(I) = {0}.

3. Characterization of involutions over A ./f I

In this section, we study the construction of involutions over A ./f I.

Lemma 3.1. Let ϕ be an additive map of A ./f I into A ./f I. Then, the following

properties hold:

• ϕ2(a)− f(ϕ1(a)) ∈ I for any a ∈ A,

• ϕ′2(i)− f(ϕ′1(i)) ∈ I for any i ∈ I.

Proof. Since ϕ(a, f(a) + i) =
(
ϕ1(a) +ϕ′1(i), ϕ2(a) +ϕ′2(i)

)
∈ A ./f I, there exists

j ∈ I such that ϕ2(a)+ϕ′2(i) = f(ϕ1(a)+ϕ′1(i))+j; namely, ϕ2(a)+ϕ′2(i)−f(ϕ1(a)+

ϕ′1(i)) = j ∈ I. In particular, if i = 0, then we get that ϕ2(a)− f(ϕ1(a)) ∈ I, and

if a = 0, then we get that ϕ′2(i)− f(ϕ′1(i)) ∈ I. �
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Theorem 3.2. Let A and B be two rings, I be an ideal of B, and f ∈ Hom(A,B).

Suppose that inv is an additive map on A ./f I. Then, the map inv is an involution

on A ./f I if and only if the following conditions hold:

(1) inv1(a.a′) = inv1(a′).inv1(a) and inv2(a.a′) = inv2(a′).inv2(a) for every

a, a′ ∈ A,

(2) inv′1(i.i′) = inv′1(i′).inv′1(i) and inv′2(i.i′) = inv′2(i′).inv′2(i) for every i, i′ ∈
I,

(3) For all a ∈ A and i ∈ I, we have the following properties:

(a) inv′1(i.f(a)) = inv1(a).inv′1(i) and inv′2(i.f(a)) = inv2(a).inv′2(i),

(b) inv′1(f(a).i) = inv′1(i).inv1(a) and inv′2(f(a).i) = inv′2(i).inv2(a),

(c) inv1
(
inv1(a)

)
= a − inv′1

(
inv2(a) − f(inv1(a))

)
and inv2

(
inv1(a)

)
=

f(a)− inv′2
(
inv2(a)− f(inv1(a))

)
,

(d) inv1
(
inv′1(i)

)
= inv′1

(
f(inv′1(i))− inv′2(i)

)
and inv2

(
inv′1(i)

)
=

i− inv′2
(
inv′2(i)− f(inv′1(i))

)
.

Proof. Let (a, f(a) + i), (a′, f(a′) + i′) ∈ A ./f I. Then, we have

inv((a, f(a) + i).(a′, f(a′) + i′)) = inv(a′, f(a′) + i′).inv(a, f(a) + i).

It follows that

π1 ◦ inv((a, f(a) + i).(a′, f(a′) + i′)) = inv1(a′).inv1(a) + inv1(a′).inv′1(i)

+inv′1(i′).inv1(a) + inv′1(i′).inv′1(i).

Also, we have:

inv((a, f(a) + i).(a′, f(a′) + i′)) = inv(a.a′, f(a.a′) + f(a).i′ + i.f(a′) + i.i′).

Taking i = i′ = 0, we get that

inv1(a.a′) = inv1(a′).inv1(a).

As well as, taking a = a′ = 0, we get that

inv′1(i.i′) = inv′1(i′).inv′1(i).

Further, if a = 0 and i′ = 0, then we get:

inv′1(i.f(a′)) = inv1(a′).inv′1(i).

And if a′ = 0 and i = 0, then we get:

inv′1(f(a).i′) = inv′1(i′).inv1(a).
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By the same method, we get that
inv2(a.a′) = inv2(a′).inv2(a),

inv′2(i.i′) = inv′2(i′).inv′2(i),

inv′2(i.f(a′)) = inv2(a′).inv′2(i),

inv′2(f(a).i′) = inv′2(i′).inv2(a).

Since inv2 = inv, we get that

inv1
(
inv1(a) + inv′1(i)

)
+ inv′1

(
inv2(a) + inv′2(i)− f(inv1(a) + inv′1(i))

)
= a,

and

inv2
(
inv1(a) + inv′1(i)

)
+ inv′2

(
inv2(a) + inv′2(i)− f(inv1(a) + inv′1(i))

)
= f(a) + i.

Let i = 0, then we obtain

inv1
(
inv1(a)

)
+ inv′1

(
inv2(a)− f(inv1(a))

)
= a,

and

inv2
(
inv1(a)

)
+ inv′2

(
inv2(a)− f(inv1(a))

)
= f(a).

Then,

f
(
inv1

(
inv1(a)

)
+ inv

′
1

(
inv2(a)− f(inv1(a))

))
= inv2

(
inv1(a)

)
+ inv

′
2

(
inv2(a)− f(inv1(a))

)
.

Further, we obtain

inv1
(
inv′1(i)

)
= inv′1

(
f(inv′1(i))− inv′2(i)

)
,

and

inv2
(
inv′1(i)

)
= inv′2

(
f(inv′1(i))− inv′2(i)

)
+ i.

Conversely, we have

L := inv
(
(a, f(a) + i).(a′, f(a′) + i′)

)
,

= inv
(
a.a′, f(a.a′) + f(a).i′ + i.f(a′) + i.i′

)
,

=
(
inv1(a.a

′) + inv′
1(f(a).i

′ + i.f(a′) + i.i′), inv2(a.a
′) + inv′

2(f(a).i
′ + i.f(a′) + i.i′)

)
.

Then,

π1(L) = inv1(a.a
′) + inv′1(f(a).i

′) + inv′1(i.f(a
′)) + inv′1(i.i

′),

= inv1(a
′).inv1(a) + inv′1(i

′).inv1(a) + inv1(a
′).inv′1(i) + inv′1(i

′).inv′1(i),

=
(
inv1(a

′) + inv′1(i
′)
)
.
(
inv1(a) + inv′1(i)

)
,

= π1

(
inv(a′, f(a′) + i′).inv(a, f(a) + i)

)
.

As well as, we have

π2(L) = inv2(a.a
′) + inv′2(f(a).i

′) + inv′2(i.f(a
′)) + inv′2(i.i

′),

= inv2(a
′).inv2(a) + inv′2(i

′).inv2(a) + inv2(a
′).inv′2(i) + inv′2(i

′).inv′2(i),

=
(
inv2(a

′) + inv′2(i
′)
)
.
(
inv2(a) + inv′2(i)

)
,

= π2

(
inv(a′, f(a′) + i′).inv(a, f(a) + i)

)
.
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Therefore, we obtain

inv
(

(a, f(a) + i).(a′, f(a′) + i′)
)

= inv(a′, f(a′) + i′).inv(a, f(a) + i).

On the other hand, we have

M := inv
(
inv

(
(a, f(a) + i)

))
,

= inv
(
inv1(a) + inv′

1(i), inv2(a) + inv′
2(i)

)
,

= inv
(
inv1(a) + inv′

1(i), f(inv1(a) + inv′
1(i)) + inv2(a)− f(inv1(a)) + inv′

2(i)− f(inv′
1(i))

)
.

Then, we get that

π1(M) = inv1
(
inv1(a) + inv′1(i)

)
+ inv′1

(
inv2(a)− f

(
inv1(a)

)
+ inv′2(i)− f

(
inv′1(i)

))
,

= inv1(inv1(a)) + inv1(inv
′
1(i)) + inv′1

(
inv2(a)− f

(
inv1(a)

))
+ inv′1

(
inv′2(i)− f

(
inv′1(i)

))
,

=

(
inv1(inv1(a)) + inv′1

(
inv2(a)− f

(
inv1(a)

)))
+

(
inv1(inv

′
1(i)) + inv′1

(
inv′2(i)− f

(
inv′1(i)

)))
,

= a.

As well as, we have

π2(M) = inv2
(
inv1(a) + inv′1(i)

)
+ inv′2

(
inv2(a)− f

(
inv1(a)

)
+ inv′2(i)− f

(
inv′1(i)

))
,

= inv2(inv1(a)) + inv2(inv
′
1(i)) + inv′2

(
inv2(a)− f

(
inv1(a)

))
+ inv′2

(
inv′2(i)− f

(
inv′1(i)

))
,

=

(
inv2(inv1(a)) + inv′2

(
inv2(a)− f

(
inv1(a)

)))
+

(
inv2(inv

′
1(i)) + inv′2

(
inv′2(i)− f

(
inv′1(i)

)))
,

= f(a) + i.

Therefore, we obtain

inv
(
inv(a, f(a) + i)

)
= (a, f(a) + i).

Thus, inv is an involution on A ./f I. �

Corollary 3.3. Let A be a ring and I be an ideal of A. Suppose that inv is an

additive map on the amalgamated duplication A ./ I. Then, the map inv is an

involution on A ./ I if and only if the following conditions hold:

(1) inv1(a.a′) = inv1(a′).inv1(a) and inv2(a.a′) = inv2(a′).inv2(a) for every

a, a′ ∈ A,

(2) inv′1(i.i′) = inv′1(i′).inv′1(i) and inv′2(i.i′) = inv′2(i′).inv′2(i) for every i, i′ ∈
I,

(3) For all a ∈ A and i ∈ I, we have the following properties:

• inv′1(i.a) = inv1(a).inv′1(i) and inv′2(i.a) = inv2(a).inv′2(i),

• inv′1(a.i) = inv′1(i).inv1(a) and inv′2(a.i) = inv′2(i).inv2(a),

• inv1
(
inv1(a)

)
= a− inv′1

(
inv2(a)− inv1(a)

)
and

inv2
(
inv1(a)

)
= a− inv′2

(
inv2(a)− inv1(a)

)
,

• inv1
(
inv′1(i)

)
= inv′1

(
inv′1(i)− inv′2(i)

)
and

inv2
(
inv′1(i)

)
= i− inv′2

(
inv′2(i)− inv′1(i)

)
.

Next, we show a special construction of involutions over A ./f I, which we call

amalgamated involutions.
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Theorem 3.4. Let A and B be two rings, I be an ideal of B, and f ∈ Hom(A,B).

Suppose that ∗ is an involution on A and ι is an involution on I such that ι(i.f(a)) =

f(a∗).ι(i) and ι(f(a).i) = ι(i).f(a∗) for every a ∈ A and i ∈ I. Then, there exists

an involution inv on A ./f I, where:

• inv1 = ∗,
• inv′1 = 0,

• inv2(a) = f(a∗) for every a ∈ A,

• inv′2 = ι.

In this case, the involution inv is called the amalgamated involution on A ./f I

associated to ∗ and ι.

Proof. We verify that all the properties of Theorem 3.2 hold.

Let a, a′ ∈ A and i, i′ ∈ I.

(1) We have inv1(a.a′) = (a.a′)∗ = (a′)∗.a∗ = inv1(a′).inv1(a). As well,

inv2(a.a′) = f((a.a′)∗) = f((a′)∗.a∗) = f((a′)∗).f(a∗) = inv2(a′).inv2(a).

(2) It is obvious that inv′1(i.i′) = inv′1(i′).inv′1(i) = 0. Moreover,

inv′2(i.i′) = ι(i.i′) = ι(i′).ι(i) = inv′2(i′).inv′2(i).

(3) (a) Obviously, we have inv′1(i.f(a)) = inv1(a).inv′1(i) = 0. Moreover,

inv′2(i.f(a)) = ι(i.f(a)) = f(a∗).ι(i) = inv2(a).inv′2(i).

(b) Similarly, we get inv′1(f(a).i) = inv′1(i).inv1(a) and

inv′2(f(a).i) = inv′2(i).inv2(a).

(c) We have inv1(inv1(a)) = (a∗)∗ = a, and

a− inv′1(inv2(a)− f(inv1(a))) = a− 0 = a.

Then, inv1(inv1(a)) = a− inv′1(inv2(a)− f(inv1(a))).

Also, we have inv2(inv1(a)) = f
(
(a∗)∗

)
= f(a), and

f(a)− inv′2
(
inv2(a)− f(inv1(a))

)
= f(a)− ι

(
f(a∗)− f(a∗)

)
= f(a).

Therefore, inv2(inv1(a)) = f(a)− inv′2
(
inv2(a)− f(inv1(a))

)
.

(d) It is obvious that inv1
(
inv′1(i)

)
= inv′1

(
f(inv′1(i)) − inv′2(i)

)
= 0.

Moreover, it is clear that inv2(inv′1(i)) = 0, and we have

i− inv′2
(
inv′2(i)− f(inv′1(i))

)
= i− ι

(
ι(i)
)

= i− i = 0.

Therefore, inv2(inv′1(i)) = i− inv′2
(
inv′2(i)− f(inv′1(i))

)
.

By Theorem 3.2, we conclude that inv is an involution on A ./f I. �
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4. Hermitian and skew-Hermitian elements of A ./f I

In this section, we study Hermitian and skew-Hermitian elements of A ./f I.

We leave the proof of these following easy lemmas to the reader.

Lemma 4.1. Let A and B be two rings, I be an ideal of B, and f ∈ Hom(A,B).

Suppose that inv is an involution on A ./f I and (a, f(a) + i) ∈ A ./f I. Then, we

have the following statements:

• (a, f(a) + i) is Hermitian if and only if inv1(a) + inv′1(i) = a and inv2(a) +

inv′2(i) = f(a) + i,

• (a, f(a) + i) is skew-Hermitian if and only if inv1(a) + inv′1(i) = −a and

inv2(a) + inv′2(i) = −f(a)− i.

Lemma 4.2. Let A and B be two rings, I be an ideal of B, and f ∈ Hom(A,B).

Suppose that inv is an involution on A ./f I. Then, the involution inv is of the first

kind if and only if for any (a, f(a) + i) ∈ Z(A ./f I), we have inv1(a) + inv′1(i) = a

and inv2(a) + inv′2(i) = f(a) + i.

Let us show Hermitian and skew-Hermitian elements of A ./f I in the case of

amalgamated involutions.

Theorem 4.3. Let A and B be two rings, I be an ideal of B, and f ∈ Hom(A,B).

Suppose that inv is an amalgamated involution on A ./f I. Then,

H(A ./f I) = H(A) ./f H(I) and S(A ./f I) = S(A) ./f S(I).

Proof. Let ∗ be the involution on A and ι be the involution on I such that inv

is associated to ∗ and ι. Let (a, f(a) + i) ∈ H(A ./f I). Then, inv(a, f(a) + i) =

(a, f(a) + i). It follows from Lemma 4.1 that{
inv1(a) + inv′1(i) = a,

inv2(a) + inv′2(i) = f(a) + i,

namely, we get {
a∗ = a,

f(a∗) + ι(i) = f(a) + i.

Thus, a is Hermitian in A and i is Hermitian in I; namely, (a, f(a) + i) ∈ H(A) ./f

H(I). This shows that H(A ./f I) ⊆ H(A) ./f H(I). Let now (a, f(a) + i) ∈
H(A) ./f H(I). Then, a ∈ H(A) and i ∈ H(I); namely, a∗ = a and ι(i) = i.
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Therefore,

inv(a, f(a) + i) = (inv1(a) + inv′1(i), inv2(a) + inv′2(i)),

= (a∗, f(a∗) + ι(i)),

= (a, f(a) + i).

Thus, (a, f(a) + i) ∈ H(A ./f I). Hence, H(A ./f I) = H(A) ./f H(I). Suppose

now that (a, f(a) + i) ∈ S(A ./f I). Then, inv(a, f(a) + i) = (−a,−f(a)− i). By

Lemma 4.1, we get that{
inv1(a) + inv′1(i) = −a,
inv2(a) + inv′2(i) = −f(a)− i,

so that {
a∗ = −a,
f(a∗) + ι(i) = f(−a)− i.

Thus, a is skew-Hermitian in A and i is skew-Hermitian in I; namely, (a, f(a)+i) ∈
S(A) ./f S(I). This proves that S(A ./f I) ⊆ S(A) ./f S(I). On the other hand,

if (a, f(a) + i) ∈ S(A) ./f S(I), then a ∈ S(A) and i ∈ S(I); namely, a∗ = −a and

ι(i) = −i. Therefore,

inv(a, f(a) + i) = (inv1(a) + inv′1(i), inv2(a) + inv′2(i)),

= (a∗, f(a∗) + ι(i)),

= (−a, f(−a)− i).

It follows that (a, f(a) + i) ∈ S(A ./f I). Hence, S(A ./f I) = S(A) ./f S(I). �

So, we can now characterize amalgamated involutions of the first kind and of the

second kind.

Theorem 4.4. Let A and B be two rings, I be an ideal of B such that I ⊆
Z(f(A) + I), and f ∈ Hom(A,B). Suppose that inv is an amalgamated involution

on A ./f I associated to ∗ and ι. Then, inv is an involution of the first kind if and

only if the following statements hold:

• the involution ∗ is of the first kind,

• ι = idI . In this case, I is commutative.

Proof. By Lemma 2.2, we have Z(A ./f I) = Z(A) ./f I and by Theorem 4.3,

we have H(A ./f I) = H(A) ./f H(I). Therefore, Z(A) ⊆ H(A) and I ⊆ H(I);

namely, the involution ∗ is of the first kind and every element in I is Hermitian.

It follows that ι(i) = i, for every i ∈ I. So that ι = idI . Since ι is an involution

on I, for every elements i, j ∈ I, we have x.y = ι(x.y) = ι(y).ι(x) = y.x. Thus I is

commutative. �
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By Theorem 4.4, it is easy to get the following result:

Corollary 4.5. Let A and B be two rings, I be an ideal of B such that I ⊆
Z(f(A) + I), and f ∈ Hom(A,B). Suppose that inv is an amalgamated involution

on A ./f I associated to ∗ and ι. Then, inv is an involution of the second kind if

and only if one of the following statements holds:

• the involution ∗ is of the second kind,

• ι 6= idI .

5. On the commutativity of A ./f I when A is prime

In this section, we investigate the commutativity of A ./f I with amalgamated

involutions provided by derivations satisfying some algebraic identities. Recall that

a ring A is called 2-torsion free, if for any x ∈ A, we have

x+ x = 0⇒ x = 0.

Theorem 5.1. Let A be a 2-torsion free prime ring and B be a ring, I be a

commutative ideal of B, and f ∈ Hom(A,B) such that f(A) ⊆ ZB(I). Suppose

that ∗ is an involution of second kind over A, inv is an amalgamated involution

on A ./f I associated to ∗ and ι and d is a derivation over A ./f I. If one of the

following statements holds:

(1) [d(a, f(a)+i), inv(a, f(a)+i)] ∈ Z(A ./f I) for every (a, f(a)+i) ∈ A ./f I,

(2) d(a, f(a) + i).d(inv(a, f(a) + i)) = ±(a, f(a) + i).inv(a, f(a) + i) for every

(a, f(a) + i) ∈ A ./f I,

(3) [d(a, f(a)+ i), d(inv(a, f(a)+ i))]± [(a, f(a)+ i), inv(a, f(a)+ i)] ∈ Z(A ./f

I) for every (a, f(a) + i) ∈ A ./f I,

then A ./f I is commutative.

Proof. By Lemma 2.1, we have d1 is a derivation on A. Let i ∈ I. Since I is

commutative and f(A) ⊆ ZB(I), for every j ∈ I and a ∈ A, we get that

i.(f(a) + j) = i.f(a) + i.j = f(a).i+ j.i = (f(a) + j).i;

namely, I ⊆ Z(f(A)+I). Then, by Lemma 2.2, we get that Z(A ./f I) = Z(A) ./f

I. Let a ∈ A.

(1) Set E1 = [d(a, f(a)), inv(a, f(a))]. Then, we obtain

E1 = d(a, f(a)).inv(a, f(a))− inv(a, f(a)).d(a, f(a)),

=
(
d1(a), d2(a)

)
.
(
a∗, f(a∗)

)
−
(
a∗, f(a∗)

)
.
(
d1(a), d2(a)

)
,

=
(
d1(a).a∗, d2(a).f(a∗

)
−
(
a∗.d1(a), f(a∗).d2(a)

)
,

=
(
[d1(a), a∗], [d2(a), f(a∗)]

)
.
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Since E1 ∈ Z(A ./f I), we get that [d1(a), a∗] ∈ Z(A). Then, Theorem 3.7

in [12] proves that A is commutative. Thus, Lemma 2.3 shows that A ./f I

is commutative.

(2) Set E2 = d(a, f(a)).d(inv(a, f(a)))±(a, f(a)).inv(a, f(a)). Then, we obtain

E2 = d(a, f(a)).d(inv(a, f(a)))± (a, f(a)).inv(a, f(a)),

=
(
d1(a), d2(a)

)
.
(
d1(a∗), d2(a∗)

)
± (a, f(a)).(a∗, f(a∗)),

=
(
d1(a).d1(a∗), d2(a).d2(a∗)

)
±
(
a.a∗, f(a).f(a∗)

)
,

=
(
d1(a).d1(a∗)± a.a∗, d2(a).d2(a∗)± f(a.a∗)

)
.

Since E2 = (0, 0), we get that d1(a).d1(a∗)± a.a∗ = 0. Then, Theorem 2.6

in [1] proves that A is commutative. Thus, Lemma 2.3 shows that A ./f I

is commutative.

(3) Set E3 = [d(a, f(a)), d(inv(a, f(a)))] ± [(a, f(a)), inv(a, f(a))]. Then, we

obtain

E3 = [d(a, f(a)), d(inv(a, f(a)))]± [(a, f(a)), inv(a, f(a))],

= [(d1(a), d2(a)), (d1(a∗), d2(a∗))]± [(a, f(a)), (a∗, f(a∗))],

= (d1(a), d2(a)).(d1(a∗), d2(a∗))− (d1(a∗), d2(a∗)).(d1(a), d2(a))

±
(
(a, f(a)).(a∗, f(a∗))− (a∗, f(a∗)).(a, f(a))

)
,

= (d1(a).d1(a∗), d2(a).d2(a∗))− (d1(a∗)d1(a), d2(a∗).d2(a))

±
(
(a.a∗, f(a.a∗))− (a∗.a, f(a∗.a))

)
,

=
(
[d1(a), d1(a∗)], [d2(a), d2(a∗)]

)
±
[
a, a∗], [f(a), f(a∗)]

)
,

=
(
[d1(a), d1(a∗)]± [a, a∗], [d2(a), d2(a∗)]± [f(a), f(a∗)]

)
.

Since E3 ∈ Z(A ./f I), we get that [d1(a), d1(a∗)] ± [a, a∗] ∈ Z(A). Then,

Theorem 3.1 in [12] proves that A is commutative. Thus, Lemma 2.3 shows

that A ./f I is commutative. �

Remark 5.2. If f(A) + I is not prime or f−1(I) 6= {0}, then Lemma 2.4 shows

that A ./f I is not prime. In this case, we get an example in which the identities

of Theorem 5.1 imply the commutativity of a non-prime ring.

Theorem 5.3. Let A be a prime ring such that char(A) 6= 2 and B be a ring, I be

a commutative ideal of B, and f ∈ Hom(A,B) such that f(A) ⊆ ZB(I). Suppose

that ∗ is an involution of second kind over A, inv is an amalgamated involution on

A ./f I associated to ∗ and ι, and d is a derivation over A ./f I. If one of the

following statements holds:

(1) d
(
[(a, f(a) + i), inv(a, f(a) + i)]

)
= (0, 0) for every (a, f(a) + i) ∈ A ./f I,

(2) d(a, f(a) + i).d(inv(a, f(a) + i))± (a, f(a) + i).inv(a, f(a) + i) = (0, 0) for

every (a, f(a) + i) ∈ A ./f I,
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(3) d(a, f(a) + i).d(inv(a, f(a) + i))± inv(a, f(a) + i).(a, f(a) + i) = (0, 0) for

every (a, f(a) + i) ∈ A ./f I,

(4) d
(
(a, f(a) + i).inv(a, f(a) + i)

)
± (a, f(a) + i).inv(a, f(a) + i) = (0, 0) for

every (a, f(a) + i) ∈ A ./f I,

(5) d
(
(a, f(a) + i).inv(a, f(a) + i)

)
± inv(a, f(a) + i).(a, f(a) + i) = (0, 0) for

every (a, f(a) + i) ∈ A ./f I,

then A ./f I is commutative.

Proof. Let a ∈ A.

(1) Set F1 = d
(
[(a, f(a)), inv(a, f(a))]

)
. Then

F1 = (0, 0) ⇒ d
(
[(a, f(a)), (a∗, f(a∗))]

)
= (0, 0),

⇒ d
(
(a.a∗, f(a.a∗))− (a∗.a, f(a∗.a))

)
= (0, 0),

⇒ d
(
[a, a∗], [f(a), f(a∗)]

)
= (0, 0),

⇒ d1
(
[a, a∗]

)
= 0.

By Theorem 2.2 in [1], we get that A is commutative. Thus, Lemma 2.3

shows that A ./f I is commutative.

(2) Set F2 = d(a, f(a)).d(inv(a, f(a)))± (a, f(a)).inv(a, f(a)). Then,

F2 = (0, 0) ⇒
(
d1(a), d2(a)

)
.
(
d1(a∗), d2(a∗)

)
± (a, f(a)).(a∗, f(a∗) = (0, 0),

⇒
(
d1(a).d1(a∗, d2(a).d2(a∗)

)
± (a.a∗, f(a.a∗) = (0, 0),

⇒
(
d1(a).d1(a∗)± a.a∗, d2(a).d2(a∗)± f(a.a∗)

)
= (0, 0),

⇒ d1(a).d1(a∗)± a.a∗ = 0.

By Theorem 2.6 in [1], we get that A is commutative. Thus, Lemma 2.3

shows that A ./f I is commutative.

(3) Set F3 = d(a, f(a)).d(inv(a, f(a))) ± inv(a, f(a)).(a, f(a)). By the same

method in the proof of (2), we get F3 = (0, 0) ⇒ d1(a).d1(a∗)± a∗.a = 0.

By Theorem 2.7 in [1], we get that A is commutative. Thus, Lemma 2.3

shows that A ./f I is commutative.

(4) Set F4 = d
(
(a, f(a)).inv(a, f(a))

)
± (a, f(a)).inv(a, f(a)). Then,

F4 = (0, 0) ⇒ d
(
a.a∗, f(a.a∗)

)
± (a.a∗, f(a.a∗) = (0, 0),

⇒
(
d1(a.a∗), d2(a.a∗)

)
± (a.a∗, f(a.a∗) = (0, 0),

⇒
(
d1(a.a∗)± a.a∗, d2(a.a∗)− f(a.a∗)

)
= (0, 0),

⇒ d1(a.a∗)± a.a∗ = 0.

By Theorem 2.4 in [1], we get that A is commutative. It follows by Lemma

2.3 that A ./f I is commutative.
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(5) Set F5 = d
(
(a, f(a)).inv(a, f(a))

)
± inv(a, f(a)).(a, f(a)). By the same

method in the proof of (4), we get F5 = (0, 0) ⇒ d1(a.a∗)± a∗.a = 0.

By Theorem 2.5 in [1], we get that A is commutative. It follows by Lemma

2.3 that A ./f I is commutative. �

Remark 5.4. If f(A) + I is not prime or f−1(I) 6= {0}, then Lemma 2.4 shows

that A ./f I is not prime. In this case, we get an example in which the identities

of Theorem 5.3 imply the commutativity of a non-prime ring.
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