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Identification of fractional order PI controllers ensuring desired gain and phase 

margins for a time-delayed single-area load frequency control system with 

demand response  

Talep yanıtı ile zaman gecikmeli bir bölgeli yük frekans kontrolü sistemi için 

istenen kazanç ve faz marjlarını sağlayan kesir dereceli PI denetleyicilerinin 

tanımlanması 
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Abstract   Öz  

This research presents a load frequency control (LFC) 

system with demand response (DR) studied for robust 

stability analysis based on gain and phase margins (GPMs) 

utilizing a fractional-order proportional-integral (FOPI) 

controller. Electric power systems contain many parametric 

uncertainties. FOPI controller gains are adjustable 

parameters and can be designed to provide the desired 

frequency control and dynamic performance. Therefore, in 

this article, the robust stability regions containing a set of 

robust FOPI controller gains are designed for the range 

model of the load frequency control system using 

Kharitonov’s theorem, considering the uncertainties in the 

LFC-DR system parameters and the time delay. Further, the 

robust performance of the interval LFC-DR system in terms 

of design features, including GPMs, is investigated. 

Simulation studies indicate that GPM parameters provide a 

better dynamic performance in terms of fast damping of 

oscillations, less settling time, and overshoot time for the 

interval LFC-DR system. 

 Bu araştırma, kesir dereceli oransal-integral (KDOI) 

denetleyici kullanılarak, talep yanıtı (TY) ile yük frekans 

kontrolü (YFK) sisteminin gürbüzlük analizi için kazanç ve 

faz marjları (KFM'ler) temelinde incelendiği bir sistemi 

sunmaktadır. Elektrik güç sistemleri birçok parametre 

belirsizlik içermektedir. KDOI denetleyici kazançları 

ayarlanabilir parametrelerdir ve istenen frekans kontrolü ve 

dinamik performans sağlamak için tasarlanabilirler. Bu 

nedenle, bu makalede, YFK-TY sistem parametrelerindeki 

belirsizlikler ve zaman gecikmesi göz önünde 

bulundurularak, Kharitonov Teoremi kullanılarak yük 

frekans kontrol sisteminin aralık modelinin tasarımında 

gürbüz KDOI denetleyici kazançları içeren gürbüzlük 

bölgeleri tasarlanmıştır. Ayrıca, KFM'ler gibi tasarım 

özellikleri açısından aralık YFK-TY sisteminin güzbüz 

performansı incelenmiştir. Simülasyon çalışmaları, KFM 

parametrelerinin, aralık YFK-TY sistemi için salınımların 

hızlı bir şekilde sönümlenmesi, yerleşme zamanının ve 

aşım süresinin daha düşük olması açısından daha iyi bir 

dinamik performans sağladığını göstermektedir. 

Keywords: Gain margin, Phase margin, Demand response, 

Fractional-order controller, Robust stability region 

 Anahtar kelimeler: Kazanç marjı, Faz marjı, Talep yanıtı, 

Kesir dereceli denetleyici, Sağlamlık bölgesi 

1 Introduction  

A need for renewable energy sources (RESs) has 

emerged because of the decreasing availability of 

conventional resources, the environmental effects of 

greenhouse gas emissions from fossil fuel combustion, and 

the rapid increase in energy demand [1, 2]. It is challenging 

to use renewable energy sources for load frequency 

management because of their drawbacks, such as significant 

intermittency and power fluctuation [3, 4]. Demand response 

(DR) is used in load frequency control systems to overcome 

the intermittency of wind and solar power generation and 

regulate system frequency and cope with fluctuations in load 

demand [5-7]. Demand response control is an effective 

method to shift or reduce the peak load on the demand side 

(user side) to ensure the balance of production and 

consumption in the power grid [8]. In the study conducted in 

[9], frequency control of power systems using renewable 

energy sources was implemented using demand response and 

storage battery, utilizing a real 10-bus power system model. 

In the study conducted in [10], using a simplified model of 

Australia's eastern seaboard developed in DIgSILENT 

PowerFactory, it was observed that both DR and large-scale 

battery energy storage systems (BESSs) effectively reduced 

frequency deviations. In this way, the reliability and 

flexibility of load frequency control (LFC) systems are 

increased. Controlled loads such as air conditioners (ACs), 

electric water heaters (EWH), HVAC, and thermostatically 

controlled loads (TCL) are included in frequency control to 

involve demand response in LFC systems [11-13]. 

Measurement data and control commands in power 

systems need to be transmitted back and forth between 

control centers, stations, and DR, and a private or open 
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communication network that meets the performance needs of 

the system is needed. When the command signal is being 

transmitted from the control system to the reacting loads, 

there are communication delays that could negatively impact 

the dynamics and stability of the LFC-DR system [14]. 

Studies have been conducted on calculating the stability time 

delay margin of time-delayed LFC-DR systems for specific 

system and controller parameters [15, 16]. However, no 

studies have been undertaken on obtaining all values of the 

proportional-integral (PI) controller parameters, known as 

the stability region, which ensure the stable operation of 

time-delayed LFC-DR systems. 

Because PI controllers are practical, straightforward, and 

have reliable performance, they are employed to enhance the 

dynamic behavior of LFC-DR systems [17-19]. In recent 

years, fractional-order PI (FOPI) controllers have been 

preferred to improve systems that have experienced 

parametric uncertainty and external degradation because 

they provide a greater degree of freedom and flexibility. In 

this study, a FOPI controller is employed instead of FOPD 

or FOPID controllers, as the use of these higher-order 

controllers would increase the dimensionality of the 

controller space and significantly complicate the stability 

region analysis. In previous studies [20, 21], researchers used 

a fractional order PI controller to control a single area time-

delayed LFC system. In the study cited [22], a single input 

interval type-2 fuzzy fractional-order PI (SIT2-FFOPI) 

controller based on stability boundary locus (SBL) was 

proposed to be used in the LFC system of the time-delayed 

microgrid (MG) of a ship. In [23], an efficient and robust 

FOPID control method called MOGOA-FOPID, using the 

multi-objective grasshopper optimization algorithm 

(MOGOA) for frequency control in an MG consisting of 

RESs, diesel generators, FCs, flywheels, and a battery 

storage system was proposed. A FOPI controller was also 

used in this study. 

This study examines the effect of the FOPI controller of 

the LFC-DR system that contains parametric uncertainties on 

robust stability. Kharitonov's Theorem provides a more 

flexible, faster, and computationally efficient way to 

determine the stability of systems with parameter 

uncertainties compared to Lyapunov theory. The Kharitonov 

method simplifies the analysis and can be applied to time-

varying systems as well [24-26]. This study adds to the body 

of knowledge by using Kharitonov's theorem to evaluate 

robust stability areas of the interval LFC-DR system that 

contain communication time delay and a FOPI controller. 

Firstly, all possible characteristic polynomials of the 

perturbed interval LFC-DR system are obtained using 

Kharitonov's theorem. Then, the stability regions in the PI 

controller plane that will stabilize each Kharitonov 

polynomial are calculated using a simple graphical method 

called the stability boundary locus (SBL) method [27, 28]. 

Lastly, the region that is the intersection of the calculated 

stability regions, provides the interval system’s PI controller 

plane’s robust stability region. This approach has been used 

to study the stability regions of time-delayed communication 

systems for large wind turbines [29], time-delayed two-area 

load-frequency systems based on gain and phase margins 

and micro-grid systems [30, 31], and time-delayed one-area 

load-frequency systems with fractional-order PI controllers 

and fuel cell micro-grids [20, 32]. One of the principal areas 

of study in recent years has been the robust stability analysis 

of fractional-order systems with parametric uncertainty. In 

the study cited as [33], sixteen Kharitonov polynomials were 

used for numerator and denominator polynomials of the open 

loop transfer function of a time-delayed micro-grid system 

that is time-delayed based on gain and phase margins to 

design robust FOPI controller gains and robust stability areas 

were obtained. In the study cited as [34], a robust FOPID 

controller was designed for LFC systems containing 

perturbed (interval) non-reheated and reheated turbines 

using Kharitonov polynomials. In the study cited as [35], an 

interval fractional order proportional integral derivative 

(INFOPID) controller was proposed for a two-area LFC 

system, and Kharitonov polynomials were obtained due to 

parametric uncertainties. Robust stability areas were found 

using the stability boundary locus method. 

The design of robust PI controllers and the identification 

of robust stability areas should take into account robust 

stability margins as well as design elements like gain 

margins (GM) and phase margins (PM) that guarantee the 

robust dynamic performance of the interval LFC-DR system. 

The consideration of GPM in frequency design features such 

as damping, transcendental, and settling times, which is the 

second contribution of this study to the literature, also allows 

us to select several PI controller parameters for frequency 

responses. A gain-phase margin tester (GPMT) was 

incorporated into the time-delayed LFC system model in this 

work as a “virtual compensator” to the forward transfer 

direction [36, 37]. 

The following are some of the significant contributions 

this study made to the literature. A single-area interval LFC-

DR system was preferred in the study to demonstrate the 

effectiveness of the proposed robust controller design at a 

fundamental level. These contributions focus on gain and 

phase margin (GPM) based robust stability areas of a time-

delayed single-area load frequency control (LFC) system 

that includes demand response (DR) and fractional order 

proportional integral (FOPI) controller: 

• The robust stability areas of the interval LFC-DR 

system with a FOPI controller were determined under 

parametric uncertainties using the Kharitonov theorem and 

the SBL approach. 

• After studying how the fractional value affected the 

integral controller's robust stability areas, it was found that 

utilizing a FOPI controller expanded those regions. 

• A load change scenario was created, and through time-

domain simulations, the robust stability areas’ performances 

were examined [38]. 

• Finally, using FOPI controllers chosen from the 

regions, the performance of the system was evaluated along 

with the impact of GPMs on robust stability areas. GPMs 

have been seen to enhance the system's performance. 

This article consists of five parts. A model of a time-

delayed single-area interval LFC-DR system with a GPMT-

attached FOPI controller is shown in Section 2. In Section 3, 

the application of the Kharitonov theorem and the SBL 
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method for calculating the robust stability areas is presented 

in detail. In Section 4, the proposed method is applied to a 

single-area interval LFC-DR control system, the robust 

stability areas based on the FOPI controller and GPMs are 

calculated, and the results of time domain simulations are 

presented. The conclusion of the article is presented in 

Section 5. 

2 Model of single area a time-delayed LFC-DR system 

Power systems are large-scale systems represented by 

nonlinear dynamics. Figure 1 shows the model of a single 

area interval LFC-DR system with a time delay and added 

GPMT and, the FOPI controller is used as load frequency 

controller. Furthermore, on the DR side, a proportional-

integral type controller (PI) is used [15]. The model of 

interval LFC-DR consists of a load, a generator and 

governor, a thermal turbine, and droop characteristics. The 

system model’s parameter nomenclature is given. With the 

addition of the DR to the LFC system, the required control 

effort is denoted by Ω, showing the sharing between the DR 

and conventional generation units [39]: 

 
𝛥𝑃𝑔(𝑠) = 𝛼0𝛺

𝛥𝑃𝐷𝑅(𝑠) = 𝛼1𝛺
 (1) 

 

The sharing factor of the conventional turbine-generator 

system is 𝛼0 and the DR control loop is 𝛼1, and their sum is 

equal to one. Also, λ, 𝐾𝐼 , and 𝐾𝑃 refer to the fractional-order 

value of the integral controller and the FOPI controller gain 

values. To perform various control functions in the system, 

it is necessary to consider the measurement and 

communication time delays between the classical production 

unit and the central controller. The total amount of 

communication delay is τ, represented by the expression 𝑒−𝑠𝜏 
in the LFC system. 

 

𝐺(𝑠) =
∆𝑓

∆𝑋𝐶
=

𝐺𝑇(𝑠)𝐺𝐺(𝑠)𝐺𝐿(𝑠)

1 + 𝐺𝐷𝑅(𝑠)𝐺𝐿(𝑠) + 𝐺𝑇(𝑠)𝐺𝐺(𝑠)𝐺𝐿(𝑠)/𝑅
 (2) 

 

where 

• The governor dynamics are as follows: 

𝐺𝐺(𝑠) =
𝛥𝑋𝑔

𝛥𝑋𝑐
=

1

1 + 𝑠𝑇𝑔
 (3) 

 

• The turbine dynamics are as follows: 

𝐺𝑇(𝑠) =
𝛥𝑃𝑔

𝛥𝑋𝑔
=

1 + 𝑠𝐹𝑝𝑇𝑟
(1 + 𝑠𝑇𝑟)(1 + 𝑠𝑇𝑐)

 (4) 

 

• The power system (load and generator) dynamics are as 

follows: 

𝐺𝐿(𝑠) =
𝛥𝑓

𝛥𝑃𝐿
=

1

𝐷 + 𝑠𝑀
        (5) 

 

• The demand response dynamics are as follows: 

𝐺𝐷𝑅(𝑠) =
𝛥𝑓

𝛥𝑃𝐷𝑅
= 𝐾𝑃(𝐷𝑅) +

𝐾𝐼(𝐷𝑅)

𝑠
 (6) 

 

• 𝐺𝐶(𝑠) is FOPI controller as follows: 

𝐺𝐶(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠𝜆
 (7) 

 

where λ is the fractional order of the integral controller and 

its value is chosen from 0<λ<2 [40]. To calculate the robust 

stability regions and apply Kharitonov’s theorem to the time-

delayed interval LFC-DR system with a FOPI controller, the 

transfer function of the interval LFC-DR system can be 

represented as follows using Equations (3)-(6): 

 

𝐺(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=

𝑏2𝑠
2 + 𝑏1𝑠

𝑎5𝑠
5 + 𝑎4𝑠

4 + 𝑎3𝑠
3 + 𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0
    (8) 

 

where the coefficients of N(s) and D(s) polynomials, 𝑎𝑖(𝑖 =
0,1,2,3,4,5) and 𝑏𝑖(𝑖 = 1,2), are given as Equation (26) in 

Appendix A in terms of interval LFC-DR system parameters. 

 

.

 

 

Figure 1. Block diagram of LFC-DR system with an additional GPMT and FOPI controller 
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3 Calculation of the robust stability regions 

3.1  Kharitonov’s theorem 

In control systems, uncertainties in system parameters, 

changes in load, and errors in modeling the system could 

reduce system performance and cause system instability. 

Kharitonov’s theorem is a graphical technique used to 

examine the interval polynomials’ stability, whose complex 

or real coefficients vary within a certain interval [41, 42]. 

According to this theorem, four vertex polynomials are 

obtained by utilizing the maximum and minimum values of 

the given coefficient range from an interval polynomial 

whose coefficients vary within a certain range. The 

polynomials are considered stable if all four of them are 

Routh Hurwitz stable. Kharitonov polynomials are as shown 

in Equation (9) and (10). 

 

𝑁1(𝑠) = 𝑏1𝑠 + 𝑏2𝑠
2

𝑁2(𝑠) = 𝑏1𝑠 + 𝑏2𝑠
2

𝑁3(𝑠) = 𝑏1𝑠 + 𝑏2𝑠
2

𝑁4(𝑠) = 𝑏1𝑠 + 𝑏2𝑠
2

 (9) 

 

𝐷1(𝑠) = 𝛼0 + 𝛼1𝑠 + 𝛼2𝑠
2 + 𝛼3𝑠

3 + 𝛼4𝑠
4 + 𝛼5𝑠

5

𝐷2(𝑠) = 𝛼0 + 𝛼1𝑠 + 𝛼2𝑠
2 + 𝛼3𝑠

3 + 𝛼4𝑠
4 + 𝛼5𝑠

5

𝐷3(𝑠) = 𝛼0 + 𝛼1𝑠 + 𝛼2𝑠
2 + 𝛼3𝑠

3 + 𝛼4𝑠
4 + 𝛼5𝑠

5

𝐷4(𝑠) = 𝛼0 + 𝛼1𝑠 + 𝛼2𝑠
2 + 𝛼3𝑠

3 + 𝛼4𝑠
4 + 𝛼5𝑠

5

 (10) 

 

where 𝑁𝑘(𝑠) and 𝐷𝑙(𝑠) (𝑘, 𝑙 = 1,2,3,4) are vertex 

polynomials of G(s) given in Equation (8). The coefficient 

of vertex polynomials 𝛼𝑖 ≤ 𝑎𝑖 ≤ 𝛼𝑖 (𝛼𝑖 , 𝛼𝑖 ≠ 0, 𝑖 =

0,1,2,3,4,5) and 𝑏𝑖 ≤ 𝑏𝑖 ≤ 𝑏𝑖 (𝑏𝑖 , 𝑏𝑖 ≠ 0, 𝑖 = 1,2) represent 

the minimum and maximum value of perturbed system 

parameters of the interval LFC-DR system. The values of the 

interval coefficients given by Equations (9) and (10) are 

given as Equation (27) in Appendix A. Using Equations (9) 

and (10), the set of sixteen transfer functions for the interval 

model of the LFC-DR system including FOPI given in 

Equation (8) can be formed as, 

 

𝐺𝑖(𝑠) =
𝑁𝑘(𝑠)

𝐷𝑙(𝑠)
 

 𝑖 = 1,2,3, . . . ,16, 𝑘 = 1,2,3,4, 𝑙 = 1,2,3,4. 

(11) 

 

3.2 Identification of fractional order PI controller for 

interval LFC-DR system 

This section suggests a procedure for designing the FOPI 

controller in the time-delayed single-area interval LFC-DR 

system using a GPMT. In this technique, the GPMT 

𝐶(𝐴, 𝜙) = 𝐴𝑒−𝑗𝜙 is introduced to the feed-forward loop of 

the interval LFC-DR system as shown in Figure 1. Here, A 

and ϕ represent gain margin and phase margin. The GPMT 

does not exist in the physical system; it is merely a virtual 

compensator to specify the desired frequency parameters. 

The system's overall closed-loop transfer function is as 

follows: 

 

𝐺(𝑠)𝐶(𝐴𝑒−𝑗𝜙)𝐺𝐶(𝑠)𝛽𝛼0𝑒
−𝑠𝜏

1 + 𝐺(𝑠)𝐶(𝐴𝑒−𝑗𝜙)𝐺𝐶(𝑠)𝛽𝛼0𝑒
−𝑠𝜏

 (12) 

 

The following form should be used to indicate the entire 

system’s characteristics equation: 

 

𝛥(𝑠, 𝜆, 𝜏) = 𝑃(𝑠, 𝜆) + 𝑄(𝑠, 𝜆)𝑒−(𝑠𝜏+𝑗𝜙) (13) 

 

𝑃(𝑠, 𝜆) = 𝑝5𝑠
5+𝜆 + 𝑝4𝑠

4+𝜆 + 𝑝3𝑠
3+𝜆 +

          𝑝2𝑠
2+𝜆 + 𝑝1𝑠

1+𝜆 + 𝑝0𝑠
𝜆

𝑄(𝑠, 𝜆) = 𝑞3𝑠
𝜆+2 + 𝑞2𝑠

𝜆+1 + 𝑞1𝑠
2 + 𝑞0𝑠

 (14) 

 

where p and q coefficients depending on the parameters of 

the interval LFC-DR system are given as Equation (28) in 

the Appendix A. To identify the stability regions, first 

substitute s=jω with ω>0 in Equation (14), we get, 

 

𝛥(𝑗𝜔, 𝜆, 𝜏) = 𝑝5(𝑗𝜔)
5+𝜆 + 𝑝4(𝑗𝜔)

4+𝜆 +

                        𝑝3(𝑗𝜔)
3+𝜆 + 𝑝2(𝑗𝜔)

2+𝜆 +

                   𝑝1(𝑗𝜔)
1+𝜆 + 𝑝0(𝑗𝜔)

𝜆 +

       𝐾𝑃(𝑞3
′ (𝑗𝜔)2+𝜆 + 𝑞2

′ (𝑗𝜔)1+𝜆)𝑒−𝑗(𝜔𝜏+𝜙) +

𝐾𝐼(𝑞1
′′(𝑗𝜔)2 + 𝑞0

′′(𝑗𝜔))𝑒−𝑗(𝜔𝜏+𝜙) = 0

 (15) 

 

It is to be noted that 𝑞′ and 𝑞′′ coefficients in Equation 

(15) do not contain 𝐾𝑃 and 𝐾𝐼 . These coefficients are given 

as Equation (28) in the Appendix A depending on the interval 

LFC-DR system parameters. Solving Equation (15) using the 

mathematical identities, 

 

𝑒−𝑗(𝜔𝜏+𝜙) = cos(𝜔𝜏 + 𝜙) − 𝑗sin(𝜔𝜏 + 𝜙) 

𝑗𝜆 = cos(
𝜆𝜋

2
)   + 𝑗sin(

𝜆𝜋

2
)

 (16) 

 

Substituting Equation (16) into Equation (15), we can 

obtain the equation separating the imaginary and real parts 

as: 

 

𝑝5𝜔
5+𝜆 {cos(5 + 𝜆)

𝜋

2
+ 𝑗sin(5 + 𝜆)

𝜋

2
} +

𝑝4𝜔
4+𝜆 {cos(4 + 𝜆)

𝜋

2
+ 𝑗sin(4 + 𝜆)

𝜋

2
} +

𝑝3𝜔
3+𝜆 {cos(3 + 𝜆)

𝜋

2
+ 𝑗sin(3 + 𝜆)

𝜋

2
} +

𝑝2𝜔
2+𝜆 {cos(2 + 𝜆)

𝜋

2
+ 𝑗sin(2 + 𝜆)

𝜋

2
} +

𝑝1𝜔
1+𝜆 {cos(1 + 𝜆)

𝜋

2
+ 𝑗sin(1 + 𝜆)

𝜋

2
} +

𝑝0𝜔
𝜆 {cos

𝜆𝜋

2
+ 𝑗sin

𝜆𝜋

2
} +

cos(𝜔𝜏 + 𝜙) −
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𝑗sin(𝜔𝜏 + 𝜙)

{
 
 
 
 

 
 
 
 
𝐾𝑃(𝑞3

′𝜔2+𝜆 {
cos(2 + 𝜆)

𝜋

2
+

𝑗sin(2 + 𝜆)
𝜋

2

} +

𝑞2
′𝜔1+𝜆 {

cos(1 + 𝜆)
𝜋

2
+

𝑗sin(1 + 𝜆)
𝜋

2

}) +

𝐾𝐼(−𝑞1
′′𝜔2 + 𝑗𝑞0

′′𝜔) }
 
 
 
 

 
 
 
 

= 0

 (17) 

 

𝛥(𝑗𝜔, 𝜆, 𝜏) = ℜ(𝛥(𝑗𝜔, 𝜆, 𝜏)) +

𝑗ℑ(𝛥(𝑗𝜔, 𝜆, 𝜏)) = 0

𝛥(𝑗𝜔, 𝜆, 𝜏) = 𝐾𝑃𝐴1(𝜔) + 𝐾𝐼𝐵1(𝜔) + 𝐶1(𝜔) +

𝑗[𝐾𝑃𝐴2(𝜔) + 𝐾𝐼𝐵2(𝜔) + 𝐶2(𝜔)] = 0

 (18) 

where 𝐴𝑖, 𝐵𝑖 , and 𝐶𝑖 (𝑖 = 1,2) polynomials expressions are: 

 

𝐴1(𝜔) = 𝑞3
′𝜔2+𝜆(cos (𝜔𝜏 + 𝜙)(cos (2 + 𝜆)

𝜋

2
) +

sin (𝜔𝜏 + 𝜙)(sin (2 + 𝜆)
𝜋

2
)) +

𝑞2
′𝜔2+𝜆(cos (𝜔𝜏 + 𝜙)(cos (2 + 𝜆)

𝜋

2
) +

sin (𝜔𝜏 + 𝜙)(sin (2 + 𝜆)
𝜋

2
));

𝐵1(𝜔) = −𝑞1
′′𝜔2 cos(𝜔𝜏 + 𝜙) +

𝑞0
′′𝜔 sin(𝜔𝜏 + 𝜙) ;

𝐶1(𝜔) = 𝑝5𝜔
5+𝜆 cos(5 + 𝜆)

𝜋

2
+

𝑝4𝜔
4+𝜆 cos(4 + 𝜆)

𝜋

2
+ 𝑝3𝜔

3+𝜆 cos(3 + 𝜆)
𝜋

2
+

𝑝2𝜔
2+𝜆 cos(2 + 𝜆)

𝜋

2
+ 𝑝1𝜔

1+𝜆 cos(1 + 𝜆)
𝜋

2
+

𝑝0𝜔
𝜆cos

𝜆𝜋

2
;

𝐴2(𝜔) = 𝑞3
′𝜔2+𝜆(−sin (𝜔𝜏 + 𝜙)(cos (2 + 𝜆)

𝜋

2
)

+cos (𝜔𝜏 + 𝜙)(sin (2 + 𝜆)
𝜋

2
)) +

𝑞2
′𝜔2+𝜆(−sin (𝜔𝜏 + 𝜙)(cos (2 + 𝜆)

𝜋

2
) +

cos (𝜔𝜏 + 𝜙)(sin (2 + 𝜆)
𝜋

2
));

𝐵2(𝜔) = 𝑞1
′′𝜔2 sin(𝜔𝜏 + 𝜙) +

𝑞0
′′𝜔 cos(𝜔𝜏 + 𝜙) ;

𝐶2(𝜔) = 𝑝5𝜔
5+𝜆 sin(5 + 𝜆)

𝜋

2
+

𝑝4𝜔
4+𝜆 sin(4 + 𝜆)

𝜋

2
+ 𝑝3𝜔

3+𝜆 sin(3 + 𝜆)
𝜋

2
+

𝑝2𝜔
2+𝜆 sin(2 + 𝜆)

𝜋

2
+ 𝑝1𝜔

1+𝜆 sin(1 + 𝜆)
𝜋

2

𝑝0𝜔
𝜆sin

𝜆𝜋

2

  (19) 

 

Setting both the imaginary and real parts equating to 0, 

we obtain: 

 
𝐾𝑃𝐴1(𝜔) + 𝐾𝐼𝐵1(𝜔) + 𝐶1(𝜔) = 0

𝐾𝑃𝐴2(𝜔) + 𝐾𝐼𝐵2(𝜔) + 𝐶2(𝜔) = 0
 (20) 

 

Depending on ω crossing frequency, Equation (20) 

solved for (𝐾𝑃 , 𝐾𝐼) to achieve the stability boundary locus 

ℓ(𝐾𝑃 , 𝐾𝐼 , 𝜔) in the (𝐾𝑃 , 𝐾𝐼) plane shown as: 

 

𝐾𝑃 =
𝐵1(𝜔)𝐶2(𝜔) − 𝐵2(𝜔)𝐶1(𝜔)

𝐴1(𝜔)𝐵2(𝜔) − 𝐴2(𝜔)𝐵1(𝜔)

𝐾𝐼 =
𝐴2(𝜔)𝐶1(𝜔) − 𝐴1(𝜔)𝐶2(𝜔)

𝐴1(𝜔)𝐵2(𝜔) − 𝐴2(𝜔)𝐵1(𝜔)

 (21) 

 

For a fixed τ and λ, the solution to these two equations in 

Equation (21) is referred to as the interval LFC-DR system's 

complex root boundaries (CRBs). In addition to these 

stability boundaries, for ω=0 from Equation (20) such a 

stability change occurs only for 𝐾𝐼 = 0 and is called the real 

root boundary (RRB) of the stability region. Consequently, 

the RRB and CRB locus divide the (𝐾𝑃 , 𝐾𝐼) –plane into 

stable and unstable regions. The PI controller values to 

stabilize each Kharitonov polynomial are calculated by 

following the steps shown in Equations (13)-(21). Sixteen 

stability regions are calculated in the PI controller parameter 

space defined as 𝛥𝑛(𝑠, 𝜆, 𝜏) with each Kharitonov 

polynomial n=1,2,...,16. The intersection of these sixteen 

stability areas, which is described as follows, indicates a 

region with robust PI controller gains that ensure the interval 

LFC-DR system remains stable despite uncertainties in the 

interval LFC-DR system parameters: 

 

ℓ𝐽(𝐾𝑃 , 𝐾𝐼 , 𝜔) = ∩ ,16
𝑛=1 ℓ𝑛(𝐾𝑃 , 𝐾𝐼 , 𝜔) (22) 

 

4 Results 

This section presents the robust stability region results 

for the time-delayed single-area interval LFC-DR system 

with FOPI and GPM specifications. The Kharitonov theorem 

is primarily applicable to interval polynomial systems and 

cannot be directly applied to time-delay or non-polynomial 

systems. Similarly, the SBL method may become 

computationally intensive for high-order systems and, due to 

the discrete nature of frequency sweeping, may only provide 

approximate stability boundaries. Following this analysis, 

verification studies are carried out under large disturbance 

events involving load fluctuations. The parameters of the 

interval LFC-DR system are provided in Table 1. 

 

Table 1. LFC-DR system parameters [43] 

Parameters M D 𝐹𝑃 R 𝛽 𝑇𝑔 𝑇𝑐 𝑇𝑟 

 8.8 1 1/6 1/11 21 0.2 0.3 12 

 

The steps of applying the Kharitonov theorem to the 

interval LFC-DR system are given as follows: 

Step 1: In the interval LFC-DR system, δ=±10% 

parametric uncertainty is assumed the time delay value is 

τ=1s and the controller parameters DR participation 

𝐾𝑃(𝐷𝑅) = 0.5 and 𝐾𝐼(𝐷𝑅) = 0.7 are selected based on their 

frequent use in the literature as reference parameters for 

analyzing system performance under various conditions [44, 

45]. In addition, the participation factors of the classical 

production unit and DR group are determined as 𝛼0 = 0.6 

and 𝛼1 = 0.4 [15], the fractional order degree is λ=0.8, and 

it is assumed that the system is without GPM specifications 
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 (𝐴 = 1, 𝜙 = 0∘). The minimum and maximum values of the 

system parameters are calculated as follows: 

 
𝑀 ∈ [7.92; 9.68], 𝐷 ∈ [0.9; 1.1],

𝐹𝑃 ∈ [0.15; 0.1833], 𝑅 ∈ [0.0818; 0.1],

𝑇𝑔 ∈ [0.18; 0.22], 𝑇𝑐 ∈ [0.27; 0.33], 𝑇𝑟 ∈ [10.8; 13.2]
 
   (23) 

 

 

Step 2: The upper and lower limit values of the transfer 

function G(s) and coefficients are obtained as follows: 

 

𝐺(𝑠) =
[𝑏2 𝑏2] 𝑠

2 + [𝑏1 𝑏1] 𝑠

[𝑎5 𝑎5]𝑠5 + [𝑎4 𝑎4]𝑠4 + [𝑎3 𝑎3]𝑠3 +

[𝑎2 𝑎2]𝑠2 + [𝑎1 𝑎1]𝑠 + [𝑎0 𝑎0]

 
(24) 

 

𝑎0 ∈ [𝑎0 𝑎0] = [0.0229 0.028];

𝑎1 ∈ [𝑎1 𝑎1] = [1.3477 1.515];

  𝑎2 ∈ [𝑎2 𝑎2] = [3.3930 5.3808];

     𝑎3 ∈ [𝑎3 𝑎3] = [7.7438 14.2901];

  𝑎4 ∈ [𝑎4 𝑎4] = [3.2280 7.2225];

  𝑎5 ∈ [𝑎5 𝑎5] = [0.3401 0.9277];

𝑏1 ∈ [𝑏1 𝑏1] = [1.0309 1.26];

𝑏2 ∈ [𝑏2 𝑏2] = [1.6701 3.0492].

 (25) 

 

Step 3: Sixteen characteristic equations are obtained by 

substituting in Equation (13) the lower and upper limit values 

of the characteristic equation coefficients found in Step 2. 

Then, with the help of the SBL method given in Equations 

(16) - (21), the stability region for each vertex polynomial of 

the system is obtained. Finally, the robust stability region 

represented by the shaded area in Figure 2 is produced by the 

intersection of the sixteen stability areas obtained using 

vertex polynomials. 

 

 

Figure 2. The stability regions and robust stability region 

obtained from vertex polynomials for λ=0.8 and τ=1s 

 

Moreover, to investigate the impact of fractional-order 

parameters on the robust stability regions four different 

fractional-order parameters are selected, i.e., λ=0.6, λ=0.8, 

λ=1 and λ=1.2, whereas 𝐴 = 1, 𝜙 = 0∘, the time delay is 

fixed at τ=1s, participation factors α_0=0.6 and α_1=0.4, 

uncertainty of δ=±10%. As may be seen in Figure 3 the size 

of robust stability regions increases when the fractional-

order parameter value is smaller than one (λ<1) and the size 

of robust stability regions decreases when the fractional-

order parameter value is bigger than one (λ≥1).To examine 

the interval LFC-DR system's frequency response, a load 

change scenario graph is created and applied to the system 

as shown in Figure 4. The system's frequency response under 

the effect of load disturbance is shown in Figure 5 at the 

robust PI parameter (𝐾𝑃 = 0.5, 𝐾𝐼 = 0.13) indicated with ‘*’ 

selected over the robust stability regions obtained by using 

different fraction order values from Figure 3. Table 2 

illustrates how the system performs better when the 

frequency response λ<1, and a significant decrease in peak 

overshoots of frequency deviation. In addition, for all 

fractional-order values, it is seen that the oscillations in the 

frequency response of the system are damped in a short time 

and the system reaches stability. 

 

 

Figure 3. Robust stability regions for different fractional 

order values 

 

 

Figure 4. Load variation graph applied to the interval 

LFC-DR system 

 

 

Figure 5. Different fractional order values on the system’s 

frequency response 

 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1243-1252 

D. Katipoğlu 

 

1249 

Table 2. Frequency response performance metrics for 

different λ values 

λ value Rise Time (s) Settling Time (s) Overshoot (Hz) 

0.6 5.0 65 0.1742 

0.8 5.5 67 0.1772 

1.0 6.2 69 0.1798 

1.2 7.0 72 0.1803 

 
Also, the change of the robust stability regions for 

parametric uncertainties of δ=±0%,δ=±5%,±8%,±11%,and 

±14% are obtained. For this case, the time delay, fractional-

order value, and GPM specifications are chosen as τ=2s, 

λ=0.8 and 𝐴 = 1, 𝜙 = 0∘ and the robust stability regions are 

displayed in Figure 6. As seen in Figure 6, as the rate of 

change in the system parameters, that is, the uncertainty in 

the interval LFC-DR system parameters, increases, the 

robust stability regions become smaller. Moreover, the 

effects of gain and/or phase margins on the robust stability 

regions are investigated and the time delay, variations in 

system parameters, fractional order degree, and the crossing 

frequency range are selected as τ=1s, δ=±10%, λ=0.8 and 

ω∈[0,1.1], respectively. Firstly, a specific PM is chosen as 

𝜙 = 20∘ (A=1) and the robust stability region is calculated 

using Equations (15)-(22) and shown in Figure 7. Similarly, 

Kharitonov theorem Equations (15)-(22) is employed to 

identify the robust stability region for specific GM as A=1.5 

(𝜙 = 0∘) and is depicted in Figure 7. As can be seen from 

Figure 7 the robust stability region for 𝜙 = 20∘ (A=1) is 

much smaller as compared with the robust region for 𝐴 =
1.5 (𝜙 = 0∘). It is seen that the gain margin is more effective 

on the robust stability regions than the phase margin. Finally, 

using Equations (15)–(22), the robust stability region not 

having GPM specification (𝐴 = 1, 𝜙 = 0∘) is calculated and 

displayed in Figure 7. When compared to specific PM and 

GM, the robust regions without GPM specification are 

significantly larger. Finally, the PI controller gains selected 

from the robust stability regions shown with ‘*’ in Figure 7 

and the test scenario in Figure 4 are applied to the interval 

LFC-DR system and the frequency responses are examined 

within t=250s. These PI controller gains are (𝐾𝑃 = 0.3, 𝐾𝐼 =
0.05) in 𝜙 = 20∘ (𝐴 = 1), 𝐾𝑃 = 0.1944, 𝐾𝐼 = 0.1226) in 

𝐴 = 1.5 (𝜙 = 0∘) and (𝐾𝑃 = 0.0927, 𝐾𝐼 = 0.2401) in 𝐴 =
1, 𝜙 = 0∘, respectively. The robust frequency responses of 

the interval LFC-DR in this case are shown in Figure 8 for 

three robust controller parameters. As illustrated in Figure 8, 

it is seen that for all three robust PI controller parameters, the 

oscillations in the frequency response of the system are 

damped in a short time and the system reaches stability. 

Preliminary analyses revealed that altering either 𝐾𝑃 or 𝐾𝐼  
while holding the other constant results in comparable 

system dynamics and performance characteristics. 

Consequently, consistent with established practices in the 

literature and to facilitate a clearer comparative evaluation, 

𝐾𝑃 was fixed while 𝐾𝐼  is systematically varied throughout 

the study [46]. Additionally, Table 3 shows that the system's 

performance characteristics, such as settling time, overshoot, 

and rising time, are improved by gain and/or phase margin 

specifications as compared to the dynamical response in the 

absence of GPMs (𝐴 = 1, 𝜙 = 0∘). 
 

 

Figure 6. Robust stability regions at different rates of 

change of system parameters 

 

 

Figure 7. Robust stability regions for GPMs 

 

 

Figure 8. Frequency responses for robust PI parameters 

selected from robust stability regions 

 

Table 3. Frequency response performance metrics for 

different control parameter values 

Parameter 

Values 

Rise Time (s) Settling Time 

(s) 
Overshoot 

(Hz) 

Kp=0.0927, 
Ki=0.2401 

3.8 22 0.18 

Kp=0.1226, 
Ki=0.1944 

4.2 25 0.19 

Kp=0.3, 
Ki=0.05 

5.5 15 0.17 

 

5 Conclusion 

In conclusion, using Kharitonov's theorem, this study has 

demonstrated the impact of GPMs and the fractional order PI 

controller on robust stability regions of the time-delayed 

interval LFC-DR system. Using this technique, the robust PI 

values are calculated, which ensures the robust stability and 
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performance of the interval LFC-DR system. The findings 

indicate that when λ is smaller than 1, robust stability regions 

widen, enhancing the system's robustness margin compared 

to the PI controller. Additionally, it has been noted that the 

robust PI values chosen from the robust stability regions 

based on GPMs exhibit better dynamic performance, as seen 

by reduced settling times and fast damping. Lastly, the 

impact of the uncertainty ratio on the system parameters on 

the robust stability regions is investigated and it is found that 

the robust stability regions shrink with increasing 

uncertainty. Future work will focus on the computation of 

stability regions of multi-area LFC-DR systems with FOPI 

controllers including incommensurate time delays. 

Appendix A 

Coefficients of N(s) and D(s) expressed in Equation (8) 

are as follows: 

 

𝑎5 = 𝑀𝑅𝑇𝑔𝑇𝑐𝑇𝑟; 𝑎4 = 𝑀𝑅𝑇𝑟(𝑇𝑔 + 𝑇𝑐) +

𝑀𝑅𝑇𝑔𝑇𝑐+ D𝑅𝑇𝑔𝑇𝑟𝑇𝑐 +𝛼1𝑅𝐾𝑃(𝐷𝑅)𝑇𝑔𝑇𝑟𝑇𝑐;

𝑎3 = 𝑀𝑅(𝑇𝑔 + 𝑇𝑐) + 𝑀𝑅𝑇𝑟 +

𝐷𝑅𝑇𝑟(𝑇𝑔 + 𝑇𝑐) + D𝑅𝑇𝑔𝑇𝑐 + 𝛼1𝑅𝐾𝑃(𝐷𝑅)𝑇𝑟(𝑇𝑔 + 𝑇𝑐) +

𝛼1𝑅𝐾𝑃(𝐷𝑅)𝑇𝑔𝑇𝑐 + 𝛼1𝑅𝐾𝐼(𝐷𝑅)𝑇𝑔𝑇𝑟𝑇𝑐 ,

𝑎2 = 𝑀𝑅 + 𝐷𝑅𝑇𝑟 + 𝐷𝑅(𝑇𝑔 + 𝑇𝑐) +

𝛼1𝑅𝐾𝑃(𝐷𝑅)(𝑇𝑔 + 𝑇𝑐) + 𝛼1𝑅𝐾𝐼(𝐷𝑅)𝑇𝑔𝑇𝑐 +

𝛼1𝑅𝐾𝐼(𝐷𝑅)𝑇𝑟(𝑇𝑔 + 𝑇𝑐) + 𝐹𝑃𝑇𝑟 +

𝛼1𝑅𝐾𝑃(𝐷𝑅)𝑇𝑟; 

𝑎1 = 1 + 𝐷𝑅 + 𝛼1𝑅𝐾𝑃(𝐷𝑅) + 𝛼1𝑅𝐾𝐼(𝐷𝑅)𝑇𝑟 +

𝛼1𝑅𝐾𝐼(𝐷𝑅)(𝑇𝑔 + 𝑇𝑐); 𝑎0 = 𝛼1𝑅𝐾𝐼(𝐷𝑅);

𝑏2   = 𝑅𝐹𝑃𝑇𝑟; 𝑏1 = 𝑅.

 (26) 

 

The minimum and maximum value of G(s) in Equation 

(9) and (10) are: 

 

𝑎5
¯
= 𝑀

¯
𝑅
¯
𝑇𝑔
¯

𝑇𝑐
¯
𝑇𝑟
¯
; 𝑎5̅̅ ̅ = 𝑀̅𝑅̅𝑇𝑔̅𝑇𝑐̅𝑇𝑟̅;

𝑎4
¯
= 𝑀

¯
𝑅
¯
𝑇𝑟
¯
(𝑇𝑔
¯

+ 𝑇𝑐
¯
) + 𝑀

¯
𝑅
¯
𝑇𝑔
¯

𝑇𝑐
¯

+

𝐷
¯
𝑅
¯
𝑇𝑔
¯

𝑇𝑟
¯
𝑇𝑐
¯

 +𝛼1𝑅
¯
𝐾𝑃(𝐷𝑅)𝑇𝑔

¯

𝑇𝑟
¯
𝑇𝑐
¯
;

𝑎4̅̅ ̅ = 𝑀̅𝑅̅𝑇𝑟̅(𝑇𝑔̅ + 𝑇𝑐̅) + 𝑀̅𝑅̅𝑇𝑔̅𝑇𝑐̅

𝐷̅𝑅̅𝑇𝑔̅𝑇𝑟̅𝑇𝑐̅ +𝛼1𝑅̅𝐾𝑃(𝐷𝑅)𝑇𝑔̅𝑇𝑟̅𝑇𝑐̅;

𝑎3
¯
= 𝑀

¯
𝑅
¯
(𝑇𝑔
¯

+ 𝑇𝑐
¯
) + 𝑀

¯
𝑅
¯
𝑇𝑟
¯

+𝐷
¯
𝑅
¯
𝑇𝑟
¯
(𝑇𝑔
¯

+ 𝑇𝑐
¯
) + 𝐷

¯
𝑅
¯
𝑇𝑔
¯

𝑇𝑐
¯
+

𝛼1𝑅
¯
𝐾𝑃(𝐷𝑅)𝑇𝑟

¯
(𝑇𝑔
¯

+ 𝑇𝑐
¯
) + 𝛼1𝑅

¯
𝐾𝑃(𝐷𝑅)𝑇𝑔

¯

𝑇𝑐
¯
+

𝛼1𝑅
¯
𝐾𝐼(𝐷𝑅)𝑇𝑔

¯

𝑇𝑟
¯
𝑇𝑐
¯
; 𝑎3̅̅ ̅ = 𝑀̅𝑅̅(𝑇𝑔̅ + 𝑇𝑐̅) +

𝐷̅𝑅̅𝑇𝑟̅(𝑇𝑔̅ + 𝑇𝑐̅) + 𝐷̅𝑅̅𝑇𝑔̅𝑇𝑐̅ +

𝛼1𝑅̅𝐾𝑃(𝐷𝑅)𝑇𝑟̅(𝑇𝑔̅ + 𝑇𝑐̅) + 𝛼1𝑅̅𝐾𝑃(𝐷𝑅)𝑇𝑔̅𝑇𝑐̅

+𝛼1𝑅̅𝐾𝐼(𝐷𝑅)𝑇𝑔̅𝑇𝑟̅𝑇𝑐̅; 𝑎2
¯
= 𝑀

¯
𝑅
¯
+ 𝐷

¯
𝑅
¯
𝑇𝑟
¯

+𝐷
¯
𝑅
¯
(𝑇𝑔
¯

+ 𝑇𝑐
¯
) + 𝛼1𝑅

¯
𝐾𝑃(𝐷𝑅)(𝑇𝑔

¯

+ 𝑇𝑐
¯
) +

 

𝛼1𝑅
¯
𝐾𝐼(𝐷𝑅)𝑇𝑔

¯

𝑇𝑐
¯
+ 𝛼1𝑅

¯
𝐾𝐼(𝐷𝑅)𝑇𝑟

¯
(𝑇𝑔
¯

+ 𝑇𝑐
¯
) +

𝐹𝑃
¯
𝑇𝑟
¯
+ 𝛼1𝑅

¯
𝐾𝑃(𝐷𝑅)𝑇𝑟

¯
; 𝑎2̅̅ ̅ = 𝑀̅𝑅̅ + 𝐷̅𝑅̅𝑇𝑟̅ +

𝐷̅𝑅̅(𝑇𝑔̅ + 𝑇𝑐̅) + 𝛼1𝑅̅𝐾𝑃(𝐷𝑅)(𝑇𝑔̅ + 𝑇𝑐̅)

+𝛼1𝑅̅𝐾𝐼(𝐷𝑅)𝑇𝑔̅𝑇𝑐̅ + 𝛼1𝑅̅𝐾𝐼(𝐷𝑅)𝑇𝑟̅(𝑇𝑔̅ + 𝑇𝑐̅) +

𝐹𝑃̅̅ ̅𝑇𝑟̅ + 𝛼1𝑅̅𝐾𝑃(𝐷𝑅)𝑇𝑟̅; 𝑎1
¯
= 1 + 𝐷

¯
𝑅
¯
+ 𝛼1𝑅

¯
𝐾𝑃(𝐷𝑅)

+𝛼1𝑅
¯
𝐾𝐼(𝐷𝑅)𝑇𝑟

¯
+ 𝛼1𝑅

¯
𝐾𝐼(𝐷𝑅)(𝑇𝑔

¯

+ 𝑇𝑐
¯
);

𝑎1̅̅ ̅ = 1 + 𝐷̅𝑅̅ + 𝛼1𝑅̅𝐾𝑃(𝐷𝑅) + 𝛼1𝑅̅𝐾𝐼(𝐷𝑅)𝑇𝑟̅ +

𝛼1𝑅̅𝐾𝐼(𝐷𝑅)(𝑇𝑔̅ + 𝑇𝑐̅); 𝑎0
¯
= 𝛼1𝑅

¯
𝐾𝐼(𝐷𝑅);

𝑎0̅̅ ̅ = 𝛼1𝑅̅𝐾𝐼(𝐷𝑅); 𝑏2
¯

  = 𝑅
¯
𝐹𝑃
¯
𝑇𝑟
¯
; 𝑏2̅̅ ̅ = 𝑅̅𝐹𝑃̅̅ ̅𝑇𝑟̅;

𝑏1
¯
= 𝑅

¯
; 𝑏1̅ = 𝑅̅

 (27) 

 

Coefficients of P(s,λ) and Q(s,λ) expressed in Equation (14) 

are as follows: 

 
𝑝5 = 𝑎5; 𝑝4 = 𝑎4; 𝑝3 = 𝑎3; 𝑝2 = 𝑎2; 𝑝1 = 𝑎1;

𝑝0 = 𝑎0;
𝑞3 = 𝐴𝛼0𝛽𝐾𝑃𝑏2; 𝑞2 = 𝐴𝛼0𝛽𝐾𝑃𝑏1;
𝑞1 = 𝐴𝛼0𝛽𝐾𝐼𝑏2; 𝑞0 = 𝐴𝛼0𝛽𝐾𝐼𝑏1

𝑞3
′ = 𝐴𝛼0𝛽𝑏2; 𝑞2

′ = 𝐴𝛼0𝛽𝑏1; 𝑞1
′′ = 𝐴𝛼0𝛽𝑏2;

𝑞0
′′ = 𝐴𝛼0𝛽𝑏1.

 (28) 
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