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1. Introduction 
Traditional survey measurements of point estimation are 
usually riddled with errors (Ghilani and Wolf, 2012; Peprah 
and Mensah, 2017; Yakubu et al., 2018a). This has thus put 
the demand to understand the underlying structures of the set 
of data, hence the effective study of accuracy improvement 
for point estimates (Devi and Karthikeyan, 2015; Booij et al., 
2011; Okwuashi, 2014). These investigations typically 
examine the characteristics of datasets that exhibit deviations 
from a normal distribution (Kriegel et al., 2010). These 
diversities and discrepancies in the Global Positioning 
System (GPS) readings can be a result of several factors that 

involve human errors, instrument errors, natural variation in 
the population, malicious acts, changes in system behavior, 
or system failure (Devi and Karthikeyan, 2015; Kizza et al., 
2011).  
 
Conversely, it could be due to tectonic movement within the 
Earth's crust (Agnew, 2007), and the ionospheric propagation 
delay of the signal (Rao et al., 2016; Otsuka et al., 2001). On 
the other hand, poor choice of processing software 
compromises the accuracy of the outputs in the final result 
(Mohammed and Eldin, 2011; Bala et al., 2018). The 
classical least square technique is one of the most used in 
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This study seeks to conduct an empirical evaluation of the performances of two soft 
computing methodologies comprising the Levenberg-Marquardt Back Propagation 
Artificial Neural Network (LMBPANN) and the Bayesian Regularisation 
Backpropagation Artificial Neural Network (BRBPANN). The study also assesses the 
performance of the soft computing techniques with the conventional Total Least Square 
(TLS) approach to calibrating Real-Time Kinematics Global Positioning System (RTK-
GPS) survey data. The horizontal displacements (HD), arithmetic mean error (AME), 
arithmetic mean square error (AMSE), and arithmetic standard deviation (ASD) are the 
model evaluation and validation criteria used for the performance assessment. The 
analysis of results from the statistics viewpoint demonstrated that LMBPANN, 
BRBPANN, and TLS precisely adjusted RTK-GPS survey data with good precision in 
the study area. However, TLS better adjusts RTK-GPS survey data compared to 
LMBPANN and BRBPANN. Corresponding to the mean horizontal displacement 
measurement, the AME, AMSE, and ASD for TLS reached 1.41459E-09 m, 2.00428E-18 
m, and 9.760E-14 m, and for the LMBPANN and BRBPANN, they reached 0.005595 
m, 4.99277E-05 m, 0.000137 m, and 0.001287 m, 0.3.30633E-06 m, 4.06585E-05 m, 
correspondingly. The study concludes that although TLS is the most precise, BRBPANN 
offers a good alternative for adjusting RTK-GPS data in Ghana, thereby establishing a 
precise realistic technique for national and local applications.  
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handling adjustment field data of ground truth points (Peprah 
and Mensah, 2017). In the past several decades, the least 
squares regression model developed by Gauss (1823) has 
addressed several challenges within the geosciences (Qin et 
al., 2020). This model finds extensive applications across 
various areas of earth science research (Jarmolowski and 
Bakula, 2013). Notably among some of its applications in 
Ghana are adjustment of survey field data (Yakubu et al. 
2018a; Peprah and Mensah, 2017; Annan et al., 2016a; 
Ansah, 2016), and determination of datum transformation 
parameters (Okwuashi and Eyoh, 2012a; Annan et al., 
2016b; Kumi-Boateng and Ziggah, 2016a; Kumi-Boateng 
and Ziggah, 2016b; Okwuashi and Eyoh, 2012b; Laari et al., 
2016; Ziggah et al., 2013; Ziggah et al., 2016a). These 
classical techniques have found successful applications, but 
they suffer from some practical disadvantages discussed in 
detail by several authors (Acar et al., 2006; Annan et al., 
2016a; Qin et al., 2020). 
 
In traditional ordinary least squares methodologies, the 
alteration of the observation matrix is implemented with the 
understanding that only the observations are treated as 
stochastic, aiming to minimize the total of the residuals (Acar 
et al., 2006; Annan et al., 2016a). However, there are cases 
where the elements of the design matrix include errors that 
are often overlooked in classical ordinary least squares 
approaches, thereby contributing to uncertainties in the 
resulting solutions (Peprah and Mensah, 2017). Thus, it is 
clear that errors due to the source of data acquisition are not 
involved with the coefficient matrix of the least squares 
model (Qin et al., 2020). The efficiency of the least square 
collocation (LSC) in data modeling is developed based on 
manipulating the cross-variance function (Ophaug and 
Gerlach, 2017; Darbehesti, 2009). Poor choice of the 
covariance parameter results in inaccurate and imprecise 
values (Jarmolowski and Bakula, 2013).  
 
In the context of the Total Least Square (TLS) estimator, 
large sample characteristics such as strong and weak 
consistency, and asymptotic distribution are observed 
(Yakubu et al., 2018a). The singular value decomposition 
(SVD) on an augmented data matrix has been considered the 
standard approach to the least squares problem (Lemmerling 
et al., 1996). However, SVD does not preserve the structural 
feature of the augmented data matrix. This implies that the 
least square approach will not yield the statistically optimal 
parameter vector in the frequently occurring case where the 
extended data matrix is structured (Golub and Van Loan, 
1980). Hence, there is a need to investigate more 
sophisticated and advanced models for data pruning, 
denoising, and eliminating uncertainties in large datasets 
(Yakubu and Dadzie, 2019). Against this background, 
several researchers have developed various improvements to 
surmount some major challenges confronting the 
geoscientific world. Of these, Artificial Neural Network 
(ANN) stands out as one of the most commonly used soft 
computing methods (Veronez et al., 2011; Kaloop et al., 
2017; Akyilmaz et al., 2009; Suliman and Omarov, 2018). 
 
ANN has been successfully used to develop a correction 
model to rectify field survey data obtained in Ghana (Yakubu 
et al., 2018a; Yakubu and Dadzie, 2019). This new approach 

can resolve complex issues (Kaloop et al., 2019). The ANN 
method, which is largely used in the geoscience area, can 
identify a linear relationship between nonlinear variables 
(Cakir and Konakoglu 2019; Konakoglu and Cakir 2018; 
Ziggah et al., 2016b). Over the last decades, ANN has been 
successfully used in solving different mathematical and 
satellite geodesy problems in Ghana. The suitability for 
practicing the method with other methods of geodetic 
problem solution has also been studied (Yakubu and Dadzie, 
2019; Yakubu et al. 2018a).  
 
Among its many applications in Ghana, some include the 
adjustment of post-processing data from DGPS (Yakubu et 
al., 2018a), modeling uncertainties in DGPS data (Yakubu 
and Dadzie, 2019), the prediction of orthometric height in a 
mining environment (Peprah and Kumi, 2017), air 
overpressure prediction (Temeng et al., 2020), the estimation 
of vertical total electron content in the ionosphere for GPS 
observation (Yakubu et al., 2017), tide prediction at different 
parts of the country of Ghana (Yakubu and Kumi-Boateng, 
2020; Yakubu et al., 2018b), datum transformation (Kumi-
Boateng and Ziggah, 2020a; Ziggah et al., 2019a; Ziggah et 
al., 2019b; Ziggah et al., 2017), the prediction of ground 
vibrations due to blast-induced vibration (Arthur et al., 2019), 
and the normal gravity evaluation (Kumi-Boateng and 
Ziggah, 2020b). Therefore, in general, the results obtained 
using ANN model techniques are encouraging and have very 
good scope for utilization in the future in finding the solution 
to some geodetic problems. It can also be observed from the 
related reviews that, the application of ANN techniques is 
restricted to a few numbers of applications so far and hence, 
remains adequately investigated for appropriateness 
regarding the adjustment of RTK-GPS survey data. 
 
This study compares two machine learning algorithms of the 
Back Propagation Artificial Neural Network (BPANN) 
learning methodology, namely the Levenberg-Marquardt 
approach and Bayesian Regularisation methods, by 
considering the Total Least Squares Technique in 
conjunction with RTK-GPS survey data. These latter models 
will describe the statistical results obtained from the models' 
work efficiently and their functionalities within the 
modification of the RTK-GPS survey data. Data used for this 
study was acquired from the Greater Kumasi Local Geodetic 
Reference Network situated in Ghana. In this regard, since 
all the performance criteria indicators of the modeling 
techniques were done about horizontal displacement, mean 
arithmetic error, arithmetic mean square error and minimum 
and maximum residual values, arithmetic standard deviation 
analysis is made. Therefore, this research will help the 
researchers to understand how well the country's various 
geodetic problems can be solved by soft computing 
techniques. 
 
2. Study Area 
The Kumasi Metropolitan Area consists of the core 
municipality of Kumasi and other surrounding 
municipalities and districts: Kwabre East, Afigya Kwabre 
Districts, Atwima Kwanwoma, and Atwima Nwabiagya 
Districts and Asokore Mampong Municipal, Ejisu-Juaben 
Municipal, and Bosomtwe District. This is geographically 
located between the latitude of 6⁰ 35`N to 6⁰ 40`S and 
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longitudes 1⁰ 30`W and 1⁰ 35`E with an elevation of 
approximately 250 to 350 meters above sea level 
(Acheamfour and Tetteh, 2014). The total land area covers 
2,60 3km² with a total population of 3,190,473 Fields (Oduro 
et al., 2014). The topography is undulating, traversed by a 
major river (Owabi) and streams like Subin, Wiwi, Sisai, 
Aboabo, and Nsuben (Acheamfour and Tetteh, 2014; Atayi 
et al., 2018). The horizontal geodetic datum of the study area 
is the War Office 1926 ellipsoid, and the vertical datum is the 
Mean Sea Level (MSL) which approximates the geoid 
(Peprah and Mensah, 2017; Peprah and Kumi, 2017; Peprah 
et al., 2017). The type of coordinate system utilized in the 
study area is Ghana projected grid derived from the 
Transverse Mercator with 1º W Central Meridian and the 
World Geodetic System 1984, WGS84 (UTM Zone 30N) 
(Yakubu et al. 2018a). The Metropolis is in the wet sub-
equatorial type. The average minimum temperature is about 
21.5 ⁰C, and the maximum average temperature is about 30.7 

⁰C; the average humidity was about 84.16% at sunrise and 
60% at sunset (Atayi et al., 2018). The area has been receiving 
a double maxima rainfall regime of about 214.3 mm in June 
and 165.2 mm in September (Acheamfour and Tetteh, 2014).  
 
This puts the area within the transition forest zone, mainly 
within the moist semi-deciduous Southeast ecological zone 
of Ghana (Acheamfour and Tetteh, 2014). The middle 
Precambrian rock dominates the study area comprising two 
main lithostratigraphic/litho tectonic complexes, namely: 
the Paleoproterozoic supracrustal and intrusive rocks and the 
Neoproterozoic to early Cambrian lithological diverse 
platform sediments, exist in the study area. The unique 
geological structure has led to the development of the 
construction industry in the Metropolis with few small-scale 
mining activities and the proliferation of stone quarrying and 
sand winning Industries (Osei-Nuamah and Appiah-Adjei, 
2017). Fig. 1 shows the map of the study area.

 
 
 

 
 

Fig. 1. Map of the study area 
 
 
 

3. Resources and Methods Used 
3.1. Resources Used 
Primary data for the study comprise topographic data from a 
survey of the Ghana urban water supply project in the 
Greater Kumasi Metropolitan Area (GKMA). Sample data 
consists of 1000 control points collected with Real Time 
Kinematics (RTK) GPS instruments. The RTK-GPS 
recorded data on three-dimensional coordinates of eastings, 
northings, and ellipsoidal heights represented as (E, N, h). A 

sample of the dataset collected from the field is tabulated in 
Table 1. However, it is worth admitting that one of the 
contributory factors to the estimation accuracy of models 
relates to the quality of the datasets used during model 
building (Devi and Karthikiyan, 2015; Dreiseitl and Ohno-
Machado, 2002; Ismail et al., 2012).  
 
Therefore, to ensure that the obtained field data from the 
GPS receivers are reliable, several factors, such as checking 
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of overhead obstruction, observation period, observation 
principles and techniques, as suggested by many researchers 
(Yakubu et al., 2018a; Yakubu and Dadzie, 2019; Ziggah et 
al., 2016c) were performed on the field. In addition, all 
potential issues relating to RTK-GPS survey work were also 
considered. 

 
 
 

Table 1. Sample of data used for the study (units in meters) 
 

ID Easting Northing Elevations (h) 

Pt1 658143.7 741095.1 311.380 
Pt2 658340.9 741791.2 308.365 
Pt3 658340.8 741792.4 308.387 
Pt4 658339.8 741792.3 308.382 
Pt5 658339.9 741791.2 308.386 
Pt6 658342.0 741790.2 308.516 
Pt7 658342.8 741789.6 308.505 
Pt8 658343.1 741787.1 308.585 
Pt9 658340.8 741789.3 308.474 
Pt10 658339.1 741788.8 308.32 
Pt11 658338.4 741788.6 308.302 
Pt12 658338.7 741788.4 307.710 
Pt13 658338.2 741788.4 308.341 
Pt14 658345.1 741772.4 309.595 
Pt15 658346.5 741761.9 310.349 
Pt16 658344.6 741761.7 309.961 
Pt17 658342.3 741761.3 309.439 

 
 
 

3.2. Methods Used  
3.2.1. Backpropagation Artificial Neural Network (BPANN) 
The most widely used supervised learning technique is 
BPANN. It is preferred compared to other models for its 
relative simplicity in understanding and execution (Dilruba 
et al.,2006), and it can handle linear and nonlinear 
relationships (Cakir and Konakoglu, 2019). BPANN consists 
of one input layer with M inputs, one or more hidden layers 
with q units, and one output layer with n outputs. In this 
study, the M inputs were the 2D horizontal coordinates, the 
q units obtained by trial-and-error training by changing the 
number of hidden neurons, and the n outputs were the 
estimated outputs obtained by the BPANN model, 
respectively. The single output neuron model production (𝑦௜) 
is given by Equation 1 (Mihalache, 2012). 
 

 

(1) 

 
where; 𝑊௝  represents the weight between the hidden and 
output layers, 𝑤௝  is the weight between the input and hidden 
layers, and 𝑥௜ represents the input layer.  
 
Learning of a multi-layer feed-forward neural network is 
carried out by the backpropagation algorithm. The data set 
should be preprocessed using transfer functions so that the 
dataset is rendered free from systematic and gross errors. 
Transfer functions normally used in this network are a log-
sigmoid that generates output between 0 to 1, a tan-sigmoid 
that generates output from negative to positive infinity, and a 
linear whose output can take any value. For this analysis, the 
chosen input and output variables were normalized between 
the range -1 to 1 using Equation 2 given as (Mueller and 
Hemond, 2013).  

 

(2) 

                                              
where; 𝑧௜  is normalized data, 𝑥௜ is the value of the measured 
coordinates, and 𝑥௠௜௡  and 𝑥௠௔௫  are the minimum and 
maximum values, respectively, of the measured coordinates. 
𝑦௠௔௫  and 𝑦௠௜௡ are set to values of 1 and -1.  
 
Before training a feedforward network, initial values of the 
weights and network biases are provided (Buscema, 2009). In 
training, the weights and network biases are iteratively 
adjusted to minimize network performance. The optimal 
model is obtained from the arithmetic mean error, arithmetic 
mean square error, minimum residual error, maximum 
residual error, and arithmetic standard deviation. Their 
mathematical representations are given in the model 
performance evaluation section. Like in most literature, 
Hornik et al. (1989), one hidden layer has been considered in 
the BPANN of this research. Also, to infuse nonlinear 
capability in the network, a hyperbolic tangent activation 
function has been selected for the hidden units, while a linear 
function has been used for the output units. Tan-h, the 
hyperbolic tangent function defined by Equation 3 according 
to Yonaba et al. (2010) as: 
 

 
(3) 

 
where; 𝑥 is the sum of the weighted inputs.  
 
Fig. 2 depicts the flowchart of the structured methodology 
adopted in this work using the two ANN training methods. A 
Bayesian Regularisation training algorithm, trainbr, and the 
Levenberg-Marquardt algorithm, trainlm are used to train the 
dataset independently. The models are checked with untrained 
data. The resultant data generated from the various algorithms 
were further compared with the Total Least Square model 
(TLS).  
 
3.2.1.1. Levenberg-Marquardt Algorithm (trainlm) 
The Levenberg-Marquardt model, sometimes called 
(trainlm), is an example of an iterative technique used to 
determine the minimum of a multivariable error function; Z 
as described by Equation 4. This function is defined as the sum 
of the squares of the difference in the actual output, 𝑦௜, and 
target output, 𝑡௜ given by Equation 4 (Adeoti and Osanaiye, 
2013): 
 

    
(4) 

 
The main formula for the trainlm algorithm is specifically 
implemented to obtain the efficiency of second-order training 
without requiring the computation of the Hessian matrix 
(Baghirli, 2015). The Hessian matrix (H) and the gradient (g) 
can be obtained from Equations 5 and Equations 6, 
respectively, by assuming that the performance function is 
defined by a sum of squares (Kisi and Uncouglu, 2005): 
 

    (5) 
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    (6) 
 
where; J is the Jacobian matrix composed of the first 
derivatives of the network errors concerning the biases and 
weights and e is the vector of network errors.  
 
After that, the Jacobian matrix is obtainable by a standard 
backpropagation technique, which is much less complex as 
compared to the computation of the Hessian matrix itself, as 
mentioned by Baghirli (2015). This approximation of the 
Hessian matrix is used for the next Newton-like update as in 
Equation 7. 
 

    
(7) 

 
where, w is the connection weights, δ is the damping term 
and I is the identity matrix.  
 
The trainlm uses the combination of the Gauss-Newton 
method and gradient descent in its iterative process (Arthur 
et al., 2020). When the δ is zero, it becomes a Gauss-Newton 
method, using the approximate Hessian matrix. When the 
parameter δ is considerably large, the approach transitions 
into a gradient descent algorithm characterized by a reduced 
step size (Arthur et al., 2020). Newton's method exhibits 
greater speed and accuracy in proximity to a minimum error 
point; thus, the objective is to transition to Newton's method 
as expeditiously as possible (Baghirli, 2015). Therefore, δ 
decreases after every successful step, that is, after a reduction 
in the performance function, and increases only when a 
presented step would increase the performance function. In 
this way, the performance function will decrease at each step 
of the algorithm (Peprah and Larbi, 2021). However, this 
'trainlm' is an efficient training method compared to other 
traditional gradient descent training methods (Wilamowski, 
2009). 
 
3.2.1.2. Bayesian Regularization (traimbr) 
Change to Bayesian Regularization, referred to as (trainbr), 
updates the weights and bias parameters step by step based 
on Levenberg-Marquardt optimization (Foresee and Hagan, 
1997). The method minimizes a linear combination of 
squares errors and weights, thus finding their optimal 
combination in building a network with the best 
generalization performance (Kaur and Salaria, 2013). 
Regularization is the process used to enhance generalization 
(Arthur et al., 2020). The ultimate goal of the training is to 
minimize the total squared error, 𝜀஽. In other words, the goal 
of the training objective function may be expressed as 𝐹௪ =
𝜀஽ . However, the addition of regularization brings an 
additional term, 𝜀௪. Thus, the objective function is defined 
as presented in Equation 8 (Foresee and Hagan, 1997): 
 

   (8) 
 
where;  𝜀௪ is the sum of squares of the network weights, 𝜀஽ is 
the sum of the network errors, and τ and ϑ are the parameters 
of the objective function.  
 
In the trainlm, the weights given to the network are 
considered as random variables, and also the distribution of 

the network weights and the training set are assumed to be 
Gaussian distribution (Baghirli, 2015). From the work done 
by Foresee and Hagan (1997), the relative size of the 
objective function parameters prescribes the emphasis on 
training. If τ ≪ ϑ then the training algorithm will drive the 
errors smaller and if τ ≫ ϑ, training will emphasize weight 
size reduction at the expense of network errors. Thus, 
producing a smoother network problem.  

 
 
 

 
 

Fig. 2. Flowchart of the BPANN algorithm methodology 
 
 
 

Another big problem associated with the use of regularization 
is how to find appropriate values of the parameters of the 
objective function. The factors τ and ϑ are determined using 
Bayes' theorem. A detailed approach to obtaining the exact 
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values of τ and ϑ is given in the work by Foresee and Hagan 
(1997). Bayes' theorem relates two random variables α and β 
through their prior or marginal probabilities with the 
posterior or conditional probabilities defined in Equation 9 (Li 
and Shi, 2012). 
 

   
(9) 

 

where, 𝑃 ቀ𝛼
𝛽ൗ ቁ is called the posterior probability of α given β 

and 𝑃 ቀ𝛼
𝛽ൗ ቁ is called the prior probability of β conditioned on 

α. P(β) is a non-zero prior probability of an event β and 
normalizing constant. To find the optimum weight space, 
this is the objective function to be minimized as shown in 
Equation 8. It is equivalent to maximizing the posterior as 
given in Equation 10: 
 

   
(10) 

 
where; α and β are the factors needed to be optimized, D is 
the weight distribution, M is the particular neural network 

architecture, 𝑃൫𝐷
𝑀ൗ ൯ is the normalization factor, 𝑝 ቀ

𝛼, 𝛽
𝑀ൗ ቁ 

is the uniform prior density for the regularization parameters 
and 𝑝൫𝐷

𝛼ൗ , 𝛽, 𝑀൯  is the likelihood function of D given by 

𝛼, 𝛽, 𝑚 . Maximizing the posterior function 𝑃 ቀ
𝛼, 𝛽

𝐷, 𝑀ൗ ቁ  is 
equivalent to maximizing the likelihood function 
𝑃 ቀ𝐷

𝛼, 𝛽, 𝑀ൗ ቁ.  
 
This process would compute the most appropriate 
parameters α and β in the given space. Then, this model goes 
to the trainlm stage that, because of the Hessian matrix, will 
allow computation; therefore, the weight space will be 
updated to minimize the objective function by Baghirli 
(2015). In case of no convergence, the algorithm undergoes a 
recalculation for a new estimate of α and β. This is done 
iteratively until convergence is reached (Peprah and Larbi, 
2021).  
 
In this process, optimum values for 𝛼 𝑎𝑛𝑑 𝛽 for a given space 
are found. Hence, trainbr model moves into trainlm phase, 
where Hessian matrix computations take place and updates 
the weight space in order to minimize the objective function 
(Baghirli, 2015). If the convergence is not met, algorithm 
estimates new values for 𝛼 𝑎𝑛𝑑 𝛽 and the entire procedure 
repeats itself until convergence is reached (Peprah and Larbi, 
2021). 
 
3.2.1.3. Total Least Square (TLS) 
TLS stands for a method of solving an overdetermined 
system of linear equations by finding the unknown 
parameters, 𝑋෠  according to Equation 11 (Golub and Van 
Loan, 1980) using the following formulation: 
 

   (11) 
 
where; 𝑉௅ 𝑎𝑛𝑑 𝑉஺ are the vector of discrepancies in 
observation and the data matrix, respectively.  

They become zero 𝑉௅ and 𝑉஺  mean (Felus and Schaffin 
2005). This TLS is normally an iterative algorithm that 
minimizes an error at a given minimizing matrix ൣ𝐴መ, 𝐿෠൧ . 
Iterations continue to run until every 𝑋෠ that satisfies 𝐴መ𝑋෠ = 𝐿෠ 
become the TLS solution (Yanmin et al., 2011). For the 
solution of the TLS problem, singular value decomposition 
of the matrix [𝐴, 𝐿] was used. Through SVD, the [𝐴, 𝐿] can 
be represented as given in Equation 12, expressed by: 
 

   (12) 
 
where; 𝑈 = [𝑈ଵ, 𝑈ଶ], 𝑈ଵ = [𝑈ଵ, … , 𝑈௠], 𝑈ଶ = [𝑈௠ାଵ, … , 𝑈௡], 𝑈்𝑈 =
𝐼𝑛 𝑎𝑛𝑑 𝑈௜ ∈ 𝑅௡, 𝑉 = [𝑉ଵ, … , 𝑉௠, 𝑉௠ାଵ], 𝑉்𝑉 = 𝐼௠ାଵ  and 𝑉ଵ ∈ 𝑅௠ାଵ . 
𝑆 = 𝑑𝑖𝑎𝑔(𝛿ଵ, … , 𝛿௠, 𝛿௠ାଵ), 𝑆 ∈ 𝑅௡(௠ାଵ).  
 
Through the SVD, the solution for the TLS problem is finally 
given by Equation 13. 
 

   
(13) 

 
If 𝑉௠ାଵ, 𝑚 + 1 ≠ 0, then 𝐿෠ = 𝐴መ𝑋෠ = −1

(𝑉௠ାଵ, 𝑚 + 1)ൗ 𝐴መൣ𝑉ଵ,𝑚 +

1, … , 𝑉௠ , 𝑚 + 1൧
்
 which belongs to the column space of 𝐴,෡  so 

𝑋෠ solve the basic TLS problem.  
 
The corresponding TLS correction is expressed by Equation 
14. 
 

   (14) 
 
3.3. Model Performance Assessment 
A statistical error analysis was carried out to check the 
precision of the models used. The statistical tools involved 
horizontal displacement, arithmetic mean error, arithmetic 
mean square error, maximum and minimum residuals, and 
arithmetic standard deviation. The mathematical relations 
for the mentioned indicators could be expressed by Equation 
15 to Equation 20, respectively: 
 

   (15) 

 

   
(16) 

 

   
(17) 
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(19) 

 

   
(20) 

 
where; n is the total number of observations, 𝛼௜ and 𝛽௜ are the 
measured and adjusted 2D horizontal coordinated from the 
various techniques, 𝜇 denotes the residual between the 

 
 







P

PP
P















 M
Dp

MPM
DP

MDP























,
,,

,
,

    nmArankXAL VV AL




,

  V
T

USLA ,

VVX m
mm

T
1

1,1

1
1, 






















     LALALA


 ,,

   NNEEHE 12
2

12
2 

   
n
i ii

n
AME 1

1


   
m
i ii

n
AMSE 1

21 

iir  max

iir  min

  


 
n
in

ASD 1
2

1

1




E. K. Larbi et al. International Journal of Earth Sciences Knowledge and Applications (2024) 6 (3) 323-333

 

329 
 

measured and adjusted field data, 𝜇 ഥ is the mean of the 
residual and i is an integer varying from 1 to n. 
 
4. Results and Discussions 
4.1. Developing ANN Models 
The single-layer BPANN model was first trained using the 
Bayesian Regularisation and Levenberg-Marquardt 
algorithms. The Tansig-Purelin functions for training the 
BPANN model were used in the order of trainbr and trainlm, 
respectively. The best model structure was achieved when the 
number of hidden neurons was set according to a sequential 
hit-and-trial approach for which minimum values of AME, 
AMSE, 𝑟௠௔௫ , 𝑟௠௜௡ , and ASD were acquired. For the model 
developed in the current study, the number of hidden neurons 

varied between 1 and 20 for training. Each training in 
iteration was allowed to train the network up to 5000 epochs, 
with a learning rate of 0.03, minimum performance gradient 
of 0.0000001, goal of 0, maximum validation failures of 6, 
and momentum coefficient of 0.9. It stops at the minimum 
gradient and the maximum epoch during the training of a 
neural network in the process of validation. This ANN 
models trainbr and trainlm training have been implemented 
and coded using MATLAB software, R2018a. After several 
trial-and-error methods, the best model achieved by the 
trainbr model after successive iterative training in adjusting 
the 2D horizontal coordinates northings and eastings were [ 
2 12 1] and [2 3 1] respectively, whiles trainlm achieved [2 1 
1] and [2 4 1], respectively.  

 
 
 

Table 2. Model results for soft computing techniques (units in meters) 
 

BPANN (Northings) 

PCI AME AMSE rmin rmax ASD 
Training -9.07439E-06 4.65074E-07 -0.00177 0.005338 0.000682 
Testing 0.002507 7.49642E-06 0.000399 0.004135 6.37836E-05 

BPANN (Eastings) 

PCI AME AMSE rmin rmax ASD 
Training -7.17116E-06 2.24938E-07 -0.00573 0.002522 1.79496E-05 
Testing 0.001179 1.91465E-06 -0.00011 0.002147 4.19356E-05 

LMBPANN (Northings) 

PCI AME AMSE rmin rmax ASD 
Training 0.000132 4.27018E-06 -0.01871 0.004464 7.80555E-05 
Testing -0.00117 2.35367E-06 -0.00367 0.000826 5.76025E-05 

LMBPANN (Eastings) 

PCI AME AMSE rmin rmax ASD 
Training -0.00013 1.61582E-05 -0.01347 0.023235 0.000152 
Testing 0.009242 0.000116 -0.00323 0.019362 0.000322 

 
 
 

 
 

Fig. 3. Plot of trainbr in adjusting the northing data 
 
 
 

These optimum BRBPANN and LMBPANN model 
structures gave the least minimum value in their statistical 
analysis (AME, AMSE, 𝑟௠௔௫ , 𝑟௠௜௡ , and ASD). Each one of 
these training has done this by changing the number of 
hidden neurons from 0 to a maximum of 20 to reach the best 
outcome. That means the best model obtained from the 
BRBPANN model for modeling the northings is [2 12 1]. 
This represents 2 input features with a maximum of 12 
hidden neurons and 1 output feature. The best BRBPANN 

model developed to predict the changes in eastings was [2 3 
1]. In other words, 2 inputs, 1 layer of a hidden layer with a 
maximum 3 number of hidden neurons, and 1 output. The 
results of the consolidated training and testing done using soft 
computing techniques are given in Table 2.  

 
 
 

 
 

Fig. 4. Plot of trainlm in adjusting the northing data 
 
Remarks based on the statistical results in Table 2 attest to 
the fact that these soft computing techniques give acceptable 
results by adjusting the survey field data of the study area 
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with substantially improved accuracy. The minimum and 
maximum residuals obtained are quite promising. The 
obtained AME, AMSE, and ASD for the training and testing 
data sets present good and similar results. However, the ANN 
has already proved to be an extremely efficient practical 
option in the enhancement of the real-time kinematic GPS 
data for the studied area, presenting substantial improvement 
for better accuracy. 

 
 
 

 
 

Fig. 5. Plot of trainbr in adjusting the easting data 
 
 
 

 
 

Fig. 6. Plot of trainlm in adjusting the easting data 
 
 

Fig. 3 to Fig. 6 depicts the plot of the AMSE over the Epoch 

utilizing the two models in adjusting the Northings and 
Eastings of the RTK survey data. Table 3 tabulates the 
number of epochs and times achieved by each model. 
 
In Table 4, it is observed that the ANN techniques performed 
adequately, as there was no notable difference from the 
classical TLS technique. The explanation is linked to the 
statistical evidence provided. The summary of statistical 
analysis shown in Table 4 strongly indicates that the 
developed supervised ANN models were highly endorsed by 
the TLS technique in terms of prediction with great precision. 
 
 
 

Table 3. Training epoch and time results 
 

NORTHINGS 

Algorithm Epoch Time (Sec) 
BRBPANN 782 11 
LMBPANN 5000 49 

EASTINGS 

Algorithm Epoch Time (Sec) 
BRBPANN 1128 13 
LMBPANN 978 12 

 
 
 

4.2. Comparing the Predictive Performance Results of the ANN 
Models with the TLS Model 
The most optimal model BRBPANN which could adjust the 
northings and eastings with better statistics was established at 
a structure comprising of 2 inputs, a hidden layer of 12 and 3 
neurons, and 1 output. Likewise, the optimal structure of 
LMBPANN which performed the best in RTK-GPS data 
adjustments was 2 inputs, a maximum of 1 hidden layer with 
4 neurons, and 1 output. The ANN models (BRBPANN and 
LMBPANN) used in this work have been compared to the 
classical TLS techniques using all the data points. Their 
statistical analysis has been provided in Table 4. Table 4 
shows the maximum residuals of BRBPANN and 
LMBPANN supervised techniques, which were found to be 
satisfactory and measured 0.007828 m, and 0.023526 m 
respectively for BRBPANN and LMBPANN. Seeing their 
statistical results, it becomes clear that the classical model has 
a minimum residual (𝑟௠௔௫) of 1.48173E-09 m and ASD of 
9.76E-14 m respectively for the TLS model. The adjustment 
of the study area RTK-GPS data is done better using the 
BRBPANN-based supervised techniques than the 
LMBPANN-based supervised techniques. This means that 
the former may also be applied as an alternative approach to 
the classical TLS technique. 

 
 
 

Table 4. Statistical Analysis of all the models (Units in meters) 
 

 
 
 

5. Conclusions and Recommendations 
In the past, conventional ways of establishing ground truth 
stationery and non-stationary points were insufficient, 
however, the development of science and technology have 
improved the traditional ways of coordinating stationary 

positions. It is a common practice to use a GPS (Global 
Positioning System) also known as GLONASS, for the 
densification of points in developing countries like Ghana 
especially in cadastral, topographical and higher engineering 
surveys. This method of point positioning still requires post-

PCI rmax rmin AME AMSE ASD 

BRPANN 0.007828 4.97E-05 0.001287 3.30633E-06 4.06585E-05 
LMBPANN 0.023526 0.000147 0.005595 4.99277E-05 0.000137 

TLS 1.48173E-09 1.31709E-09 1.41459E-09 2.00428E-18 9.76E-14 
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processing of raw data utilizing specified recommended 
software to be effective. It is also necessary to modify the 
statement, which attests that post-processed RTK-GPS 
survey data and results are precise, accurate, and applicable 
for any engineering works due to minimal human input, as 
indeed manufactured post-processed field data has errors and 
needs adjustments. This involves the adjustment and 
computation of field data, which has become one of the 
major research disciplines to determine the magnitude of 
errors and examine error normal distributions and whether 
they are within acceptable tolerances. Survey field data have 
been adjusted in many studies throughout the years using 
classical least squares techniques and more advanced 
methods. Yet, the current literature mostly refers to 
traditional methods of survey data adjustment. In RTK-GPS 
survey data collection, few studies have only reported using 
artificial intelligence to correct post-processed field data using 
supervised methods for Data Adjustment of RTK-GPS 
Survey by ANN. Hence, the main purpose of this study was 
to investigate two learning algorithms from soft computing 
methods and classical TLS technique concerning each 
method's performance in adjusting RTK-GPS survey data, as 
well as to propose the best learning training for the study area 
using the available datasets. In terms of automatic 
adjustment of the survey field data for the study area, the 
statistical analysis gave a better result to the classical TLS 
compared with those two supervised techniques. 
Nevertheless, BRPANN outperformed LMBPANN methods 
in fitting field data with remarkable accuracy and exactness. 
Therefore, the use of soft computing approaches as 
alternative methods for the adjustment of RTK-GPS survey 
data in the same problem area has provided a realistic and 
feasible alternative to traditional least squares techniques. In 
assessing the effectiveness of applying soft computing 
techniques for estimating an accurate mobile point, these 
methods can be beneficial to the geospatial professionals 
within Ghana. Nevertheless, engaging other training learning 
soft computing techniques like Variable learning rate 
algorithm, Resilient algorithm, Quasi-Newton algorithm, 
Broyden-Fletcher-Goldfard-Shanno, Scaled Conjugate 
Gradient and more needs to be done in Ghana. The 
implications of this research are in the interest of geospatial 
professionals in Ghana and also provide added value to 
scientific knowledge considering the application of soft 
computing in solving evolutionary problems during the 
conductance of space geodetic operations.  
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