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 The combination of rapid, uncontrolled population growth and economic and industrial 
development has significantly accelerated land use/land cover (LULC) changes. 
Assessing these changes is one of the most effective ways to understand and manage land 
transformation. The advancement of remote sensing technology and increased 
accessibility to satellite data have made it more feasible to produce accurate and up-to-
date LULC maps through the development of classifier algorithms. This has enabled 
better assessment and management of ecosystem and land use changes. The main 
objective of this study is to evaluate the performance of four machine learning 
algorithms—RF, SVM, CART, and GTB—using Sentinel-2 and Landsat 9 satellite images 
for the Soma district of Turkiye, on the Google Earth Engine (GEE) platform. In the study, 
a kernel function was applied to the SVM algorithm. Downloaded satellite images were 
visually inspected, and Google Earth Pro images were utilized to create training and test 
samples. Sentinel-2 and Landsat 9 images were classified using these training data and 
machine learning algorithms on the GEE platform. In the evaluation of the results, an 
error matrix was generated for the classified images, using the test samples for 
validation. The evaluation showed that the overall accuracy of the SVM algorithm, using 
the kernel function, was 92.6% for Sentinel-2 and 87% for Landsat 9, placing it third in 
terms of accuracy. The GTB algorithm provided the highest overall accuracy, with 94.4% 
for Sentinel-2 and 88.3% for Landsat 9. The RF algorithm achieved 93.2% accuracy for 
Sentinel-2 and 87% for Landsat 9, matching the accuracy of SVM for Landsat 9. CART 
demonstrated the lowest performance, with 86.4% accuracy for Sentinel-2 and 91.4% 
for Landsat 9. Additionally, Sentinel-2 imagery performed better than Landsat 9 across 
all algorithms due to its higher spatial resolution and spectral characteristics. This study 
provides valuable insights for local and provincial planners, authorities, and decision-
makers regarding proper land management and the production of reliable LULC maps, 
especially in mining regions. 

 
 
 

1. INTRODUCTION  
 
The dynamic process of land use/land cover 

change worldwide is an indispensable source of 
concern, signaling global environmental change. It 
represents one of the most remarkable regional 
anthropogenic degradations of the environment. At 
the same time, even though land is an extremely 
precious natural resource and has all the material 

wealth for mankind, the extraction of natural 
resources through mining activities inevitably leads 
to changes in land use and land cover (Garai & 
Narayana, 2018). In this context, knowledge of land 
use and land cover at various scales contributes to 
the study of a wide range of current and future global 
phenomena, including drought, flooding, erosion, 
and climate change. 

https://orcid.org/0000-0002-2732-5425
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Continuous and accurate analysis of land use 
and land cover (LULC) is an integral part of 
sustainable development activities in any region. 
Earth science and remote sensing organizations have 
a traditional interest in accurate and up-to-date 
monitoring, providing valuable data for 
understanding the relationships between people and 
their environment (Praticò et al., 2021). Detailed and 
accurate land cover maps are recognized as an 
important input in various scientific studies, such as 
climate change impacts on streamflow and water 
budgets (Sridhar et al., 2019|; Kumar et al., 2022), 
geomorphology (Sujatha and Sridhar, 2018; Jayappa 
et al., 2006), groundwater management (Xiao et al., 
2022b), social information management of natural 
resources (Sridhar et al., 2021) and agricultural land 
monitoring (Sierra-Soler et al., 2015). LULC maps 
contribute to the control of land degradation in 
agriculture and watershed management in general 
or because of mining activities (Cihlar, 2000; Chen et 
al., 2020). 

Remote sensing satellite imagery is one of the 
primary data sources that facilitates access to vast 
amounts of data and information for Earth 
observation and monitoring. Remote sensing 
techniques are widely used to study urban 
expansion, land degradation caused by mining 
activities, and changes in land cover. Satellites 
provide a variety of sensors, image resolutions, 
collection methods, and spatiotemporal 
characteristics to observe the Earth from the surface 
to space (Mangkhaseum and Hanazawa, 2021). 
Today, with tools such as Google Earth Engine (GEE), 
remote sensing, GIS technology, Google Earth, and 
machine learning algorithms, the spatial mapping of 
land use, land cover, and other Earth surface features 
can now be done more quickly and accurately 
(Pande, 2022). 

Producing low-resolution land cover maps over 
large areas requires processing large volumes of 
data, which demands significant storage capacity, 
substantial processing power, and flexibility in using 
various approaches. These needs have been met with 
the release of Google Earth Engine (GEE), which 
makes the technology freely available to everyone 
(Gorelick et al., 2017). GEE provides free access to 
satellite imagery from sources such as Landsat, 
Sentinel, and MODIS. 

Recently, with population growth and industrial 
development, mining activities have been increasing 
to meet energy demands, and the use of modern 
mining techniques and heavy equipment worldwide, 
especially in Turkiye, is causing significant changes 
in land cover, ecology, and hydrology (Garai and 
Narayana, 2018). In general, mining activities lead to 
changes in topography (Manna and Maiti, 2014) and 
drainage patterns (Manna and Maiti, 2016; Kříbek et 
al., 2023), as well as environmental impacts such as 
landscape alteration and degradation (Tadesse et al., 
2017; Y. Shi et al., 2024), soil erosion and 
degradation (Xiao et al., 2022a), and broader 

environmental changes (Tripathi et al., 2024; Mehta 
et al., 2024). 

As a developing country, Turkiye's energy needs 
are increasing daily. Consequently, to meet the 
demand for energy production through thermal 
power plants, the coal mining industry is steadily 
ramping up its production, driven by the reliance on 
coal for electricity generation. The Soma coal basin, 
situated in the Soma district of Manisa province, 
contains one of the most significant coal reserves in 
the country. This basin is vital for lignite coal 
production and contributes substantial value to the 
Turkish economy. It plays a critical role in fulfilling 
Turkiye's energy requirements and serves as the 
primary fuel source for thermal power plants in the 
region. However, sustainable mining practices and 
effective environmental management strategies are 
essential for ensuring the long-term availability of 
coal and safeguarding the environmental health of 
the basin. In this context, it is crucial to study the 
impact of mining on land use and land cover changes 
in the region to mitigate the environmental impacts 
of mining activities and facilitate efficient land 
management and decision-making processes (Wang 
et al., 2019). 

When we examine the literature, the researcher 
has used various remote-sensing images for LULC 
classification. These studies focused on the 
classification and extraction of features such as 
cultivated land, shrubland, agriculture, bare land, 
and water bodies (Wang et al., 2019; Pande, 2022; 
Praticò et al., 2021). Lu and Weng (2007) showed 
that the results of land use/cover mapping depend 
not only on the suitability of the imagery but also on 
the appropriate choice of classification methods. 
Various classification approaches have been 
developed and evaluated for land use/cover 
assessment using remotely sensed data. Various 
classifiers have been used in land use/cover 
assessment, including unsupervised algorithms such 
as the ISODATA clustering algorithm or K-means, 
parametric supervised algorithms such as maximum 
likelihood (ML), and machine learning algorithms 
such as artificial neural networks (ANN), k-nearest 
Neighbors (kNN), decision trees (DT), support vector 
machine (SVM), random forest (RF), and 
Classification and Regression Trees (CART) (Friedl 
and Brodley, 1997; Waske and Braun, 2009; Li et al., 
2014; Shao and Lunetta, 2012; Chen et al., 2020) (Oo 
et al., 2022; Zhao et al., 2024). Nonparametric 
approaches, especially machine learning-based 
algorithms, have received significant attention in 
remote sensing studies over the last decade (Thanh 
Noi and Kappas, 2018; Oo et al., 2022). 

Many studies have been conducted to determine 
the best algorithm for land use/land cover 
classification by evaluating their performance. 
However, the results obtained can vary significantly. 
In a land cover classification study conducted by 
(Dixon and Candade, 2008) using Landsat TM data, 
SVM performed well, while Maximum Likelihood 
performed much worse. Moreover, previous studies 
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have shown that SVM outperforms traditional 
classification algorithms such as maximum 
likelihood (ML), k-nearest neighbor (kNN), and 
neural networks (NN) in hyperspectral remote 
sensing classification (Huang et al., 2002; Melgani 
and Bruzzone, 2004; Pal and Mather, 2005). Oo et al. 
(2022) compared four machine learning algorithms, 
namely Maximum Likelihood, Random Forest, 
Support Vector Machine, and CART for Land Cover 
Classification in Gold Mining. As a result of the study, 
the RF algorithm was found to have the highest 
accuracy. Thanh Noi and Kappas. (2018) used RF, K-
Nearest Neighbor, and SVM algorithms for land 
cover classification. At the end of the study, SVM was 
found to have the highest accuracy among the three 
machine learning algorithms. 

There is no denying that in a mining area where 
many human activities take place, there will be many 
disturbances that can change land use/land cover. In 
this context, it has been proven that there is a critical 
relationship between long-term open-cast mining 
activities and land use/land cover changes in the 
mining basin (Paraskevis et al., 2021). Vorovencii. 
(2024) applied Maximum Likelihood, Minimum 
Distance, and SVM algorithms using Landsat image 
series in the assessment of long-term land cover 
changes in the Jiului Valley mining basin in Romania. 
As a result of the classification, forest, residential 
areas, mining areas, and water bodies in the region 
have increased, while pasture, agricultural land, and 
garbage dump areas have decreased. 

A review of the literature reveals a scarcity of 
studies that compare and evaluate the performance 
of machine learning algorithms utilizing Landsat and 
Sentinel-2 imagery, particularly in mining regions. 
This gap underscores the importance of comparing 
and assessing the effectiveness of four specific 
classifiers: Random Forest (RF), Support Vector 
Machine (SVM), Classification and Regression Trees 
(CART), and Gradient Boosting Trees (GBT) in the 
context of land use/land cover (LULC) mapping. 
With the growing demand for reliable LULC data 
derived from extensive satellite imagery, 
understanding the performance of various machine 
learning methods on widely utilized cloud-based 
platforms, such as Google Earth Engine (GEE), has 
become increasingly crucial.   In this study, we 
employ four machine learning classifiers—RF, SVM, 
GBT, and CART—to systematically evaluate the 
performance of Landsat-9 OLI and Sentinel-2A 
satellite imagery for LULC classification in the Soma 
district of Manisa, Turkiye, from June 1 to August 30, 
2023. The objective of this research is twofold: to 
determine which satellite imagery provides superior 
performance in LULC classification and to identify 
which of the machine learning classifiers yields the 
best classification results. 

 
2. STUDY AREA 

 
This study focuses on the Soma district, which 

covers a total area of 838.9 km². As a coal basin, the 

Soma district faces various environmental 
challenges, including mining waste, pollution of 
water resources, and soil contamination. 
Additionally, it was selected as the study area for 
several reasons, such as the expansion of urban areas 
due to the increasing population. Soma is in Manisa 
province in the Aegean Region of Turkiye, positioned 
at approximately 39°11′18″ north latitudes and 
27°36′32″ east longitudes (Figure 1). As one of the 
most important coal basins in Turkiye, Soma attracts 
attention for its natural beauty and historical 
richness, holding both local and regional 
significance. Situated 100 km northeast of Izmir and 
50 km from the Aegean coast, Soma's strategic 
location plays a vital role in its economic and cultural 
activities. Its proximity to Izmir and distance from 
the Aegean coast enhance Soma's prominence, 
making it a distinct and noteworthy region.  

The physical environment of Soma has been 
drastically altered by ongoing lignite exploitation in 
the open coal basins to the northeast and southwest, 
as well as by the thermal power plant operating near 
the city center (Karadağ, 2006). While this change 
has resulted in a series of environmental problems 
due to mining activities and misuse, it has also 
significantly impacted the socio-economic structure 
of the city, introducing a new urban population with 
diverse urban life tendencies and expectations. The 
elevation of Soma varies between 59 m and 1209 m 
above sea level. The main geological formations in 
the area include clay, marn, and limestone, along 
with andesite and basalt rocks 
(https://eli.tki.gov.tr/soma). Due to its location 
under the influence of the Mediterranean climate, 
the average annual temperature in Soma is 
estimated to be between 15.3 °C and 16.1 °C, with 
annual precipitation totaling 554.4 mm. Soma's 
landscape structure and land cover dynamics exhibit 
complex patterns, comprising forests, agricultural 
lands, shrubland, open-pit coal mining activities, 
settlements, bare areas, and water bodies. 

 
 

Figure 1. Geographical location of the study 
 

3. MATERIAL and METHODS  
 

3.1. Dataset 
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A vast amount of Earth observation data (EOD) 
from the past 40 years, including popular satellite 
imagery such as Sentinel, Landsat, and MODIS, as 
well as other geospatial data like climate and 
demographic information, is stored on the cloud-
based Google Earth Engine (GEE) platform. Landsat 
and Sentinel data are accessible through GEE from 
the U.S. Geological Survey (USGS) and the European 
Space Agency (ESA). In this study, Sentinel-2 MSI and 
Landsat 9 OLI satellite images from 2023 were used 
to evaluate four machine learning classifiers for land 
use/land cover classification. To capture the period 

of vegetation growth and obtain cloud-free satellite 
images the months of June to August were selected 
and averaged. The Landsat 5 and Landsat 8 sensors 
have a spatial resolution of 30 meters and a swath 
width of 185 kilometers 
(http://landsat.gsfc.nasa.gov). Sentinel-2 sensors 
feature spatial resolutions of 10, 20, and 60 meters, 
depending on the spectral band, with a swath width 
of 290 kilometers (https://sentinel.esa.int). Table 1 
below shows the characteristics of the satellite 
imagery.

 
Table 1. The primary features of Landsat-9 and Sentinel-2 
 

 
3.2. Image Preprocessing 

 

 
In the Google Earth Engine (GEE) platform, 

machine learning algorithms were used 
comparatively to evaluate the performance of 
Landsat 9 OLI and Sentinel-2A MSI imagery to create 
a land cover/use map of the Soma district in Manisa 
province, Turkiye, which is the study area, for the 
months of June to August 2023 (Figure 2). Image 
preprocessing in the GEE platform is an important 
step that allows for image cropping, cloud masking, 
and the creation of topographically corrected image 
composites. Following image enhancement, a crucial 
step is to extract the normalized difference 
vegetation index (NDVI), normalized difference 
water index (NDWI), and normalized difference 
built-up index (NDBI), which are considered inputs 
for the classification algorithms. These indices are 
then combined with the spectral bands. Therefore, 
NDVI, NDWI, and NDBI are calculated based on the 
band values of Landsat 5, Landsat 8, and Sentinel-2 
images according to the equations provided below, 
and the resulting maps are shown in figure 2. 

The corrected Landsat and Sentinel-2 images 
with the lowest amount of cloud cover were used as 
the initial inputs for classification. The first step after 
importing the satellite data into Google Earth Engine 
(GEE) is to remove cloud shadows and cloud cover. 
Using a cloud mask, pixels contaminated by clouds or 
those with cloud-free conditions were eliminated 
from all available images (Mateo-García et al., 2018). 
In the second stage, Landsat and Sentinel data for 
each selected year were combined into a single 
image using a mean filter to create a composite 
image. Each pixel is assigned an average value from 
the entire image stack, resulting in one composite 
image for the entire collection. In this study, the 
normalized difference vegetation index (NDVI), 
normalized difference water index (NDWI), and 
normalized difference built-up index (NDBI) were 
calculated for the selected years and combined with 
the spectral bands as additional spectral features to 
enhance classification accuracy. NDVI is calculated 
using the near-infrared (NIR) and red bands 
(Townshend & Justice, 2007), NDWI is calculated 
using the green and shortwave infrared (SWIR) 

Sensor Collection Bands Spectral Range (𝜇𝑚) 
Pixel Size 
(m) 

Spectral 
Resolution 

Radiometric 
Resolution 
(bit) 

Revisit 
time 
(days) 

Cloud 
Cover 
(%) 

Landsat-9 

Surface 
Reflectance 
Level 
2, Collection 
2, Tier 1 

 

B1:Coastal/aerosol 0.433–0.453 30 

11 Bands 16 16 > 5 

B2: Blue 0.450–0.515 30 
B3: Green 0.525–0.600 30 
B4: Red 0.630–0.680 30 
B5: NIR 0.845–0.885 30 
B6: SWIR1 1.560–1.660 30 
B7: SWIR2 2.100–2.300 30 
B8: Panchro. 0.500–0.680 15 
B9: cirrus 1.360–1.390 30 
B10: TIRS 1 10.30–11.30 100 
B11: TIRS2 11.50–12.50 100 

Sentinel-2 

Surface 
Reflectance 
Multi Spectral 
Instrument, 
Level 2A 

B1: Coastal 0.433–0.453 60 

13 Bands 12 5 > 5 

B2: Blue 0.457–0.522 10 
B3: Green 0.542–0.577 10 
B4: Red 0.650–0.680 10 
B5: Red Edge  0.679–0.718 20 
B6: Red Edge  0.732–0.747 20 
B7: Red Edge  0.773–0.793 20 
B8: NIR 0.784–0.899 10 
B8A:Red Edge 0.855–0.885 20 
B9: Water vapor 0.935–0.955 60 
B10: Cirrus 1.36–1.39 60 
B11: SWIR1 1.565–1.655 20 
B12: SWIR2 2.10–2.28 20 

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
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bands (McFeeters, 1996), and NDBI is calculated 
using the SWIR and NIR bands (Zha et al., 2003), as 
shown in the following equations. 

 

𝑁𝐷𝑉𝐼 =   
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                                              (1)                                                                                     

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝑆𝑆𝑁 + 𝑆𝑊𝐼𝑅
                                       (2)                                                                                                         

𝑁𝐷𝐵𝐼 =  
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
                                                   (3)                                                                                                     

 
As a final step, the Random Forest (RF), 

Classification and Regression Trees (CART), Support 
Vector Machine (SVM), and Gradient Tree Boosting 
machine learning algorithms in GEE were used to 
train the classifiers for Landsat -9 OLI and Sentinel-2 
images. 

 
3.3. Training and Validation Sample Datasets  

 
In this study, a set of geometric points (features) 

for each category (Water, Forest Area, Settlement 
Area, Agricultural Area, Vegetation, Bare Area, and 
Mining Area) was collected based on visual 
interpretation of the original Landsat and Sentinel-2 
composite images, as well as high-resolution images 
from Google Earth. Training data were then 
generated using this collection of features for each 
category. This training data was divided into 80% for 
training the machine learning classifier models and 
20% for testing to evaluate classification accuracy. 

 
Table 2. Land cover classes are defined in this study 
 

Class Number 
of Point 

Description 

Water 100 Includes rivers, lakes, 
and other water bodies. 

Forest area 107 Land dominated by 
trees. 

Residential 
area 

107 Areas used for 
residential, commercial, 
industrial, or mixed-use 
purposes. 

Agriculture 
area 

108 Includes all 
cultivated land and areas 
used for agricultural 
purposes. 

Vegetation 100 Grassland areas 
including shrubs, 
meadows, and pastures. 

Bare land 103 Typically includes 
soil, sand, or rock with 
minimal vegetation. 

Mining 
Area 

104 

Designated areas for 
mining activities, including 
coal, sand, gravel pits, and 
other extractive industries. 

Total 729  

 

 
 
Figure 2. Flowchart for process of LULC 
classification within the GEE Platform 

 
3.4. Supervised Classification Models  

 
After collecting the training data and 

incorporating features that store the known class 
labels and predictor values, the classifiers need to be 
trained. The Google Earth Engine (GEE) platform 
offers several classifier packages for supervised 
classification using machine learning algorithms. 
However, in this study, four classifiers—Random 
Forest (RF), Support Vector Machine (SVM), 
Classification and Regression Trees (CART), and 
Gradient Tree Boost (GTB)—were used to evaluate 
the performance of Sentinel-2 and Landsat 9 data in 
land cover and land use classification. At this stage, 
the machine learning algorithms were trained using 
the collected training data and applied to the 
Landsat-9 OLI and Sentinel-2A composite image 
bands to produce a classified map of the study area. 
Below is an overview of each classifier algorithm 
used in this study. 

 
Random Forest (RF): The Random Forest (RF) 

algorithm is rooted in the theory of bagging 
ensemble learning, introduced by Prof. Leo Breiman 
at the University of California in 1996 (Breiman, 
2001). The RF algorithm has been extensively 
applied to solve various environmental problems 
and has demonstrated versatility in handling diverse 
data types, including satellite imagery and digital 
datasets (Abdullah et al., 2017). Due to its robustness 
in feature selection, RF is recognized as an effective 
and reliable supervised machine-learning technique 
(Xu & Cheng, 2024). to build the RF classifier model, 
two critical parameters are required: (1) n – the 
number of decision trees, commonly referred to as 
"trees," and (2) m – the number of attributes 
considered at each split, known as "trials" (Oo et al., 
2022). The classification decision is made through a 
majority vote, where each decision tree contributes 
to the result based on its accuracy. The final 
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classification is determined by aggregating the votes 
from all trees in the forest. The following formula is 
used to determine the final classification result (Xu & 
Cheng, 2024). 

 
H(x)=voting ∑ 𝐼(ℎ𝑖(𝑥) =  𝛾𝑘

𝑖=1                                     (4)                                                                                                      

 
Here, H(x) is the classification combination 

model; hi is the classification model of the decision 
tree; I() is the indicator function (this value is 
considered to be 1 when present in the parameter 
set and 0 when not present in the set) and γ 
represents the target variable (or output variable). 

Support Vector Machine (SVM): Support Vector 
Machine (SVM) is a non-parametric algorithm first 
proposed by Vapnik and Chervonenkis (Vapnik & 
Chervonenkis, 1971). The SVM method constructs a 
hyperplane based on the largest margin between the 
given training sample sets and then classifies the 
segmented objects into recognized LULC (Land 
Use/Land Cover) classes. According to Knorn et al. 
(2009) and Shi & Yang (2015), the radial basis 
function (RBF) kernel of the SVM classifier is widely 
used in land cover classification studies and 
demonstrates strong performance. When 
implementing an SVM classifier with an RBF kernel, 
two key parameters need to be tuned: the optimal 
cost parameter (C) and the kernel width parameter 
(γ) (Qian et al., 2015; Ballanti et al., 2016). The C 
parameter controls the trade-off between allowing 
misclassification in the training data and creating a 
simpler decision boundary, thus adjusting the 
rigidity of the classifier. The γ parameter influences 
the smoothness of the class-separating hyperplane 
(Melgani & Bruzzone, 2004). While larger values of γ 
can lead to overfitting, they also affect the shape of 
the class-separating hyperplane, potentially 
impacting classification accuracy (Huang et al., 
2010). 

Classification and Regression Tree (CART): 
Breiman et al. developed the decision tree (DT) 
model, a widely used non-parametric method 
(Breiman et al., 1984). The classification and 
regression tree (CART) algorithm is a particularly 
common decision tree used for various purposes. A 
tree is constructed in CART through a binary 
iterative partitioning process, where the training 
sample set is split into subsets based on an attribute 
value test, and this process is repeated for each 
resulting subset (Shao & Lunetta, 2012; Oo et al., 
2022). The tree-growing process concludes when 
further partitioning of subsets is no longer feasible. 
In the CART algorithm, the maximum depth of the 
tree is a crucial tuning parameter that determines 
the model's complexity. Generally, a greater depth 
allows the creation of a more complex tree, which 
may improve overall classification accuracy. 
However, an excessive number of nodes can lead to 
overfitting, where the model becomes too tailored to 
the training data, potentially reducing its 
generalization capability. 

Gradient Tree Boost (GTB): Gradient Tree 
Boosting (GTB) is a powerful ensemble machine-
learning technique used for regression and 
classification problems. It produces a prediction 
model typically in the form of an ensemble of weak 
prediction models using decision trees and has 
demonstrated significant success across a wide 
range of practical applications (Natekin & Knoll, 
2013). However, the GTB classifier limits the 
complexity of individual decision trees by restricting 
them to weaker prediction models. The algorithm 
minimizes the loss function step-by-step through 
gradient descent optimization, improving 
classification accuracy by iteratively combining 
weak learners into a stronger ensemble of trees 
(Friedman, 2002). Unlike other ensemble classifiers, 
GTB adapts to the residuals of the regression tree at 
each iteration by using negative gradient loss values 
(Ouma et al., 2023). This method stochastically 
reduces the correlation between trees by generating 
new trees based on a selected training subset of the 
data. 

 
4. RESULTS  
 
4.1. Accuracy Assessment and Comparisons  

 
An essential phase in all classification projects is 

the validation and accuracy assessment stage. This 
phase is a critical component of modeling and 
mapping, used to evaluate the effectiveness and 
scientific significance of the classifier models. The 
purpose of accuracy assessment is to compare the 
classified image with another data source, typically 
ground truth data. To assess the performance of the 
classifier models, confusion or error matrices are 
constructed by cross-referencing the classified land 
cover/use results with the test samples. Four 
commonly used metrics in remote sensing image 
classification—producer accuracy, user accuracy, 
overall accuracy, kappa coefficient—and the F1-
score (equations 5–9) are used to evaluate the 
accuracy of the classified land cover/use (Hong et al., 
2023). Producer Accuracy measures the degree of 
correctness and refers to the proportion of instances 
that truly belong to a specific class among all 
instances classified as that class. On the other hand, 
User Accuracy is the proportion of instances 
classified as a particular class relative to all instances 
that genuinely belong to that class (Ouma et al., 
2023). Overall Accuracy represents the ratio of 
correctly classified instances to the total number of 
instances. The Kappa index assesses the level of 
agreement between the predicted and actual classes 
while accounting for the likelihood of correct 
classification occurring by random chance. Finally, 
the F1-measure, which is the harmonic mean of 
Producer and User Accuracy, is calculated to 
evaluate performance at both the classifier and class 
levels. 

𝑈𝐴 =  
𝐾𝑖𝑖

𝐾𝑖+
                                                              (5)                                                                                                                         
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𝑃𝐴 =  
𝐾𝑗𝑗

𝐾𝑗+
                                                                      (6)                                                                                                                                 

𝑂𝐴 =  
∑ 𝐾𝑖𝑖

𝑛
𝑖=1

𝐾𝑖+
                                                               (7)                                                                                                                                 

K =  
𝑇 ∑ 𝐾𝑖𝑖 −  ∑ (𝐾𝑖+ 𝐾𝑗+)𝑛

𝑖,𝑗=1
𝑛
𝑖=1

𝑇2 − ∑ (𝐾𝑖+ 𝐾𝑗+)𝑛
𝑖,𝑗=1

                                     (8)                                                                                                                           

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑈𝐴 × 𝑃𝐴

𝑈𝐴 + 𝑃𝐴
                                         (9)                                                                                                                           

 
Where PA = producer accuracy; UA = user 

accuracy; OA = overall accuracy; K = Kappa index; n 
= number of classes; Kii = number of correctly 
classified classes; Ki+ = i number of pixels in row and 
Kj+ =i number of pixels in column i; and T = number 
of pixels used for accuracy assessment. 

 
4.2. Land Cover Classification  

 
In this study, Landsat-9 OLI and Sentinel-2A 

satellite imagery were comparatively applied on the 
Google Earth Engine (GEE) platform for land cover 
mapping of the Soma district in Turkiye using 
supervised classification methods, including 
Random Forest (RF), Support Vector Machine (SVM), 
Classification and Regression Tree (CART), and 
Gradient Tree Boosting (GTB) algorithms. The 
spectral bands of Landsat-9 OLI and Sentinel-2A 
surface reflectance images, acquired between June 1, 
2023, and August 30, 2023, were utilized for land 
cover classification. Due to cloud cover, the mean 
composite of the images within this period was used. 
The classification was conducted using all Near-
Infrared (NIR), Visible-Near Infrared (VNIR), and 
Shortwave Infrared (SWIR) bands, while Thermal 
Infrared (TIR) bands were excluded.  

Additionally, the Normalized Difference 
Vegetation Index (NDVI), Normalized Difference 
Water Index (NDWI), and Normalized Difference 
Built-up Index (NDBI) were calculated and included 
as additional bands, as they significantly enhance the 
accuracy of land cover classification results (Figure 
3). NDVI is commonly used to assess vegetation 
density, with values typically ranging from -1 to +1. 
In this study, the NDVI values varied between -0.625 
and 0.936, as shown in Figure 3.  

 

NDWI is employed to detect the presence of 
water, with values generally ranging from -1 to +1; in 
this study, NDWI values ranged from -0.857 to 0.800. 
NDBI is used to identify built-up areas and typically 
varies between -1 and +1; in this study, NDBI values 
ranged from -0.583 to 0.710 (Figure 3). 

 

 
Figure 3. (a) Normalized Difference Vegetation 
Index, (b) Normalized Difference Water Index and 
(c) Normalized Difference Build up Index. 
 
4.3. Comparison of Accuracy Analysis Results of 

Machine Learning Algorithms  
 

To analyze the accuracy of land cover/use 
classification results from Sentinel-2 and Landsat-9 
images using RF, SVM, CART, and GTB methods, five 
traditional metrics commonly used in remote 
sensing image classification were employed: 
producer accuracy, user accuracy, F1 score, overall 
accuracy, and kappa coefficient. These accuracy 
metrics are derived from the confusion matrix, 
which shows the agreement between the classified 
results and the reference data. Of the collected data, 
80% was allocated for training and 20% for testing, 
while validation points were used to calculate the 
confusion matrix. The relevant results for Sentinel-2 
and Landsat-9 images are presented in Tables 2 and 
3 a,b below. 
 
 

Table 3. Producer accuracy, user accuracy and F1 score values for machine learning classifier in land cover/use 
classification (PA = Producer Accuracy, UA = User Accuracy and F1 = F1-Score) 
 

Class 

(a) Landsat-9 OLI 

RF  SVM  CART  GTB  

UA PA F1 UA PA F1 UA PA F1 UA PA F1 

Water 100 96 97.95 100 96 97.95 100 96 97.95 100 96 97.95 
Forest area 93.33 86.66 93.33 86.66 86.66 86.66 100 86.66 92.85 87.5 93.33 90.32 
Built area 80.95 76 73.91 82.60 76 79.16 89.47 68 77.27 95 76 84.44 
Agriculture land 80.76 95.65 85.71 75.86 95.65 84.61 73.07 82.60 77.55 80.76 91.30 85.71 
Shrubland 87.47 90.90 91.30 86.95 90.90 88.88 84.61 100 91.66 83.33 90.90 86.95 
Bare land 89.47 90 87.17 100 90 94.73 88.88 80 84.21 90 90 90 
Mining area 80.76 76 82.35 82.60 76 79.16 79.31 92 85.18 84 84 83.99 

Class 

(b) Sentinel-2A 

RF  SVM  CART  GTB  

UA PA F1 UA PA F1 UA PA F1 UA PA F1 

Water 100 100 100 100 100 100 100 100 100 100 100 100 
Forest area 100 96.29 98.11 96.29 96.29 98.11 100 96.29 100 100 96.29 100 
Built area 95.45 100 95.87 87.5 100 93.33 90.9 95.23 95.2 100 90.47 100 
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Agriculture land 87.5 77.77 91.68 95.23 74.07 97.56 90.47 70.37 95.0 92 85.18 95.83 
Shrubland 90.9 100 93.52 90.47 95 95.00 90.9 100 95.2 90.9 100 95.23 
Bare land 82.6 86.36 88.92 80.76 95.45 89.36 74.07 90.9 85.1 86.95 90.9 93.02 
Mining area 95.65 95.65 95.97 100 91.3 95.45 95.45 91.3 97.7 92 100 95.83 

 
Table 3a compares the producer accuracy (PA), 

user accuracy (UA), and F1 score values for machine 
learning algorithms—Random Forest (RF), Support 
Vector Machine (SVM), Classification and Regression 
Trees (CART), and Gradient Tree Boosting (GTB)—
in land cover/use classification using Landsat-9 OLI 
satellite images. As a result of the accuracy analysis, 
the water area class is classified correctly, as it has 
the highest values of user accuracy, producer 
accuracy, and F1 score across all classification 
algorithms. In the forest area class, the CART 
classifier shows the highest UA value (100), although 
its PA value is like those of the other methods. The 
RF classifier demonstrates a high F1 score (93.33) 
and generally provides balanced results. The SVM 
and GTB classifiers exhibit slightly lower 
performance compared to the others, with SVM 
showing lower UA and F1 score values. 

In the residential area class, the GTB classifier 
achieves the highest UA (95), and its F1 score (84.44) 
is also the highest compared to the other methods. 
The CART classifier shows a lower PA (68) but 
maintains a high UA. Both the RF and SVM classifiers 
perform lower than the others, with RF exhibiting a 
particularly low F1 score. 

In the agricultural area class, both the RF and 
GTB classifiers achieved the highest F1 score 
(85.71). SVM and CART classifiers show lower F1 
scores, with CART having notably lower UA and PA 
values. In the shrubland class, CART achieves the 
highest F1 score (91.66) and PA value (100), while 
RF and SVM show similar results, with RF being 
slightly higher in terms of F1 score. The GTB 
classifier performed slightly lower than the others. 
In the bare land class, the SVM classifier outperforms 
the other classifiers, achieving higher UA (100), PA 
(90), and F1 score (94.73). In contrast, the CART 
classifier performs poorly, showing lower values for 
UA, PA, and F1. In the mining area class, the CART 
classifier performed better than the other classifiers, 
showing the highest PA (92) and F1 score (85.18) 
(Table 3 a,b). 

When analyzing the producer accuracy (PA), 
user accuracy (UA), and F1 score values for land 
cover/use classification using Sentinel-2 satellite 
imagery, as presented in Table 3b, it is evident that 
the water area class is classified correctly, having the 
highest values of user accuracy, producer accuracy, 
and F1 score (100) across all classifiers. In the forest 
area class, all classifiers demonstrate high 
performance; however, CART and GTB excel, 
achieving the highest values (100) for both user 
accuracy and F1 score. In the residential area class, 
the GTB classifier attains the highest F1 score (100) 
and user accuracy (100), while RF shows the highest 
producer accuracy (100). In contrast, the SVM and 
CART classifiers perform worse than both RF and 
GTB in terms of user accuracy and F1 score. For the 
farmland class, SVM and CART classifiers achieve the 
highest F1 values of 97.56 and 95.0, respectively, but 
their user accuracy values of 74.07 and 70.37 are 
lower than those of the other classifiers. In the 
shrubland class, the GTB classifier outperforms the 
others, with user and producer accuracy and F1 
values of 90.9, 100, and 95.23, respectively. 

In the bare area class, the GTB classifier also 
surpasses the others, achieving user and producer 
accuracy and F1 values of 86.95, 90.9, and 93.02, 
respectively. In the mining area class, RF and CART 
classifiers yield more balanced results compared to 
the SVM and GTB classifiers, with F1 score values of 
95.97 and 97.7, respectively (Table 3b). Overall, 
Landsat 9 and Sentinel 2 satellite images were 
classified more accurately, particularly in the water 
area class, where user accuracy, producer accuracy, 
and F1 score values were highest among the four 
classifiers used for land cover/use classification. 
Sentinel-2A satellite imagery outperforms Landsat-9 
in land cover/use classification, as evidenced by its 
higher user accuracy, producer accuracy, and F1 
score values across the four classifier methods. This 
superior performance may be attributed to Sentinel-
2A's higher resolution and better spectral coverage. 

 
 

Table 4. Confusion matrix, overall accuracy and kappa coefficient results for each classifier algorithm 
 

(a) Confusion matrix, overall accuracy and kappa results for each classification algorithm on Landsat 9 OLI image. 

ML 
Algorithms 

Class Water 
Forest 
Area 

Built 
Area 

Agriculture 
Land 

Shrubland Bare land 
Mining 
Area 

Total 

RF 
Classifier 

Water 24 0 0 1 0 0 0 25 
Forest area 0 14 0 0 1 0 0 15 
Built area 0 0 17 2 0 1 5 25 

Agriculture land 0 0 0 21 1 1 0 23 

Shrubland 0 1 0 0 21 0 0 22 
Bare land 0 0 2 0 1 17 0 20 
Mining area 0 0 2 2 0 0 21 25 

Overall Accuracy 0.870 
Kappa 0.848 

SVM 
Classifier 

Water 24 0 0 1 0 0 0 25 

Forest area 0 13 0 0 2 0 0 15 
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Built area 0 0 19 2 0 0 4 25 
Agriculture land 0 0 0 22 1 0 0 23 
Shrubland 0 2 0 0 20 0 0 22 
Bare land 0 0 1 1 0 18 0 20 
Mining area 0 0 3 3 0 0 19 25 

Overall Accuracy 0.870 

Kappa 0.848 

CART 
Classifier 

Water 24 0 0 0 0 0 1 25 
Forest area 0 13 0 0 2 0 0 15 

Built area 0 0 17 3 0 0 5 25 

Agriculture land 0 0 1 19 1 2 0 23 
Shrubland 0 0 0 0 22 0 0 22 
Bare land 0 0 1 2 1 16 0 20 
Mining area 0 0 0 2 0 0 23 25 

Overall Accuracy 0.864 
Kappa 0.841 

GTB 
Classifier 

Water 24 0 0 1 0 0 0 25 
Forest area 0 14 0 0 1 0 0 15 
Built area 0 0 19 2 0 0 4 25 
Agriculture land 0 0 0 21 1 2 0 23 
Shrubland 0 2 0 0 20 0 0 22 
Bare land 0 0 0 0 2 18 0 20 
Mining area 0 0 1 2 0 1 21 25 

Overall Accuracy 0.883 
Kappa 0.864 

(b) Confusion matrix, overall accuracy and kappa results for each classification algorithm on Sentinel-2A image. 

ML 
Algorithms 

Class Water 
Forest 
Area 

Built 
Area 

Agriculture 
Land 

Shrubland Bare land 
Mining 
Area 

Total 

RF Classifier 

Water 23 0 0 0 0 0 0 23 
Forest area 0 26 0 0 1 0 0 27 
Built area 0 0 21 0 0 0 0 21 

Agriculture land 0 0 0 21 1 4 1 27 

Shrubland 0 0 0 0 20 0 0 20 
Bare land 0 0 0 3 0 19 0 22 
Mining area 0 0 1 0 0 0 22 23 

Overall Accuracy 0.932 
Kappa 0.921 

SVM 
Classifier 

Water 23 0 0 0 0 0 0 23 
Forest area 0 26 0 0 1 0 0 27 
Built area 0 0 21 0 0 0 0 21 
Agriculture land 0 0 1 20 1 5 0 27 
Shrubland 0 1 0 0 19 0 0 20 
Bare land 0 0 0 1 0 21 0 22 
Mining area 0 0 2 0 0 0 21 23 

Overall Accuracy 0.926 
Kappa 0.914 

CART 
Classifier 

Water 23 0 0 0 0 0 0 23 
Forest area 0 26 0 0 1 0 0 27 
Built area 0 0 20 0 0 0 1 21 
Agriculture land 0 0 0 19 1 7 0 27 
Shrubland 0 0 0 0 20 0 0 20 
Bare land 0 0 0 2 0 20 0 22 
Mining area 0 0 2 0 0 0 21 23 

Over Accuracy 0.914 
Kappa 0.899 

GTB 
Classifier 

Water 23 0 0 0 0 0 0 23 
Forest area 0 26 0 0 1 0 0 27 
Built area 0 0 19 0 0 0 2 21 
Agriculture land 0 0 0 23 1 3 0 27 
Shrubland 0 0 0 0 20 0 0 20 
Bare land 0 0 0 2 0 20 0 22 
Mining area 0 0 0 0 0 0 23 23 

Overall Accuracy 0.944 
Kappa 0.935 

 
Table 4a above presents the error matrices, 

overall accuracy, and kappa coefficient for land 
cover/use classification of Landsat-9 OLI image 
using four different classifiers (RF, Support SVM, 
CART, and GTB). The GTB classifier was found to 

have the highest overall accuracy of 88.3% 
compared to the other classifiers. The CART 
classifier, on the other hand, has the lowest overall 
accuracy of 86.4%. Moreover, the GTB classifier 
performed better as it had the highest Kappa value of 
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0.864. The CART classifier, on the other hand, had the 
lowest Kappa value of 0.841 and performed worse 
than the other classifiers (Table 4a). 

As shown in Table 4b, the error matrices, overall 
accuracy, and kappa coefficient are presented for the 
land cover/use classification of the Sentinel-2 image 
using four different classifiers: RF, SVM, CART, and 
GTB. The GTB classifier achieved the highest overall 
accuracy at 94.4%, outperforming the other 
classifiers. In contrast, the CART classifier recorded 
the lowest overall accuracy at 91.4%. Furthermore, 
the GTB classifier also excelled in terms of the kappa 
coefficient, attaining the highest value of 0.935. 
Conversely, the CART classifier had the lowest kappa 
value at 0.899, indicating its poorer performance 
relative to the other classifiers (Table 4b). In the 
classifications performed on Landsat-9 and Sentinel-
2 satellite images, the GTB classifier achieved the 
highest overall accuracy and kappa coefficient for 
both images, outperforming the other methods. The 
CART classifier exhibited the lowest performance 
across both satellite images. Furthermore, Sentinel-
2 provided higher overall accuracy results compared 
to Landsat-9. This difference can be attributed to the 
higher resolution and broader spectral coverage of 
Sentinel-2. 

In this study the reference points were selected 
based on a stratified random sampling approach to 
ensure representation from all classes. However, due 
to the limited extent of certain land cover types, the 
number of points in some categories, such as water, 
was inherently lower. To mitigate any bias, we 
ensured that the selection process was proportional 
to the availability of each class within the study area. 
The number of accurate assessment points (163) 
was determined based on Abbas Al-Aarajy et al. 
(2024) while we recognize that increasing the 
number of points could enhance the robustness of 
the analysis, logistical constraints and the quality of 
available reference data influenced our decision to 

use 163 points. Nevertheless, we ensured that the 
selected points were well distributed and 
representative of the land cover classes to provide a 
reliable accuracy assessment. 

We appreciate the reviewer’s calculation 
regarding the number of required accuracy 
assessment points. In our study, the number of 
points was determined following standard practices 
in remote sensing literature. However, we agree that 
increasing the number of points could provide a 
more precise estimate of classification accuracy. In 
future study, it must expand the sample size to 
further improve the reliability of the accuracy 
assessment. 

As a result of the study, the importance of a well-
structured accuracy assessment is realized and to 
strengthen it, a more comprehensive review of the 
relevant literature will be conducted in future 
studies. Regarding the selection of sample points, we 
will examine its applicability by comparing it with 
other commonly used sampling strategies to provide 
the most reliable and unbiased accuracy assessment 
by considering the binomial sampling method. We 
will also critically evaluate and improve our 
methodology to address the deficiency in drawing 
conclusions only from existing accuracy analysis 
methods and to minimize possible biases and ensure 
the robustness of our results. 

 
4.4. Assessment of Land Cover Change  

 
The land cover/use classification using Landsat-

9 OLI and Sentinel-2A images was conducted on the 
GEE platform by applying four different classifiers: 
RF, SVM, CART, and GTB. The classification resulted 
in seven classes: water, forest, settlement, 
agriculture, shrubland, open space, and mining area. 
The areas covered by each class are presented in 
square kilometers (km²) and as a percentage (%) in 
Table 5 below. 

 
Table 5. Comparison of the area covered by the classes 

Class 

(a) Landsat-9 OLI 

RF SVM CART GTB 

Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) 

Water 8.167 0.987 5.902 0.987 9.999 1.208 8.272 1.000 
Forest area 117.330 14.180 133.604 14.180 128.520 15.533 111.363 13.459 
Built area 52.870 6.390 48.544 6.390 65.891 7.963 42.161 5.095 
Agriculture land 210.482 25.438 229.960 25.438 174.935 21.142 222.563 26.898 
Shrubland 290.193 35.072 275.570 35.072 276.016 33.358 294.881 35.638 
Bare land 112.070 13.544 102.353 13.544 121.607 14.697 111.995 13.535 
Mining area 36.313 4.389 31.492 4.389 50.456 6.098 36.189 4.374 

 

Class 

(b) Sentinel-2A 

RF SVM CART GTB 

Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) 

Water 8.056 0.974 5.928 0.716 10.411 1.258 7.205 0.871 
Forest area 163.227 19.727 161.350 19.500 164.523 19.884 158.581 19.166 
Built area 53.750 6.496 47.137 5.697 41.608 5.029 47.311 5.718 
Agriculture land 256.481 30.998 237.407 28.692 229.837 27.777 241.456 29.182 
Shrubland 224.124 27.087 241.049 29.132 214.605 25.937 244.793 29.585 
Bare land 97.004 11.724 111.298 13.451 134.689 16.278 102.751 12.418 
Mining area 24.782 2.995 23.255 2.811 31.751 3.837 25.328 3.061 
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When analyzing the areas covered by the classes 
resulting from the classification of the Landsat-9 OLI 
image in Table 5a, it is determined that shrubland 
occupies the most land in the Soma region, 
accounting for 35.072%, 35.072%, 33.358%, and 
35.638% in the RF, SVM, CART, and GTB classifiers, 
respectively. The agricultural area ranks second, 
covering 25.438%, 25.438%, 21.142%, and 26.898% 
in the RF, SVM, CART, and GTB classifiers, 
respectively. The forest area ranks third, with land 
cover percentages of 14.180%, 14.180%, 15.533%, 
and 13.459% in the RF, SVM, CART, and GTB 
classifiers, respectively. The bare area ranks fourth, 
covering 13.544%, 13.544%, 14.697%, and 13.535% 
of the land area, respectively. The settlement area 
ranks fifth, with 6.39%, 6.390%, 7.963%, and 
5.095% coverage, respectively. The mining area 
ranks sixth, with land coverage of 4.389%, 4.389%, 
6.098%, and 4.374%, respectively. The water area 
was found to cover the least amount of land, with 
0.987%, 0.987%, 1.208%, and 1.000% in the RF, 
SVM, CART, and GTB classifiers, respectively (Table 
5a). The GTB and CART classifiers predicted larger 
areas for most classes, while the RF and SVM 
classifiers were generally more conservative. This 
difference may be attributed to the varying abilities 
of each classifier to process spectral information and 
distinguish between land types. 
As a result of the classification of the Sentinel-2A 
image presented in Table 5b, the agricultural area 
covers the largest percentage of land, with 30.998%, 
28.692%, 27.777%, and 29.182% in the RF, SVM, 
CART, and GTB classifiers, respectively. Scrubland 
ranks second, occupying 27.087% in RF, 29.132% in 
SVM, 25.937% in CART, and 29.585% in GTB. The 
SVM and CART classifiers showed higher 
percentages in shrubland compared to the other 
classifiers. The forest area ranks third, covering 
19.727% in RF, 19.500% in SVM, 19.884% in CART, 
and 19.166% in GTB. The bare area ranks fourth, 
with coverage of 11.724%, 13.451%, 16.278%, and 
12.418%, respectively. Settlements ranked fifth, 
occupying 6.496% in RF, 5.697% in SVM, 5.029% in 
CART, and 5.718% in GTB. Mining areas are in sixth 
place, occupying 2.995% in RF, 2.811% in SVM, 
3.837% in CART, and 3.061% in GTB. The water area 
occupies the least land, with 0.974% in RF, 0.716% 
in SVM, 1.258% in CART, and 0.871% in GTB. 
Notably, the CART classifier appears to give the 
highest percentage value (1.258%) for the water 
area (Table 5b). 
When comparing the areas covered by the classes 
resulting from the classification of Landsat-9 OLI and 
Sentinel-2A images, it is observed that Landsat-9 
OLI, with a spatial resolution of 30 meters, is 
successful in classifying larger areas. However, it 
may be more limited than Sentinel-2A in classifying 
detailed and smaller areas. Sentinel-2A, with a 
spatial resolution of 10-20 meters, is better able to 
classify smaller and finer structural differences in 
detail. Among the classifiers, GTB and CART 

predicted larger areas in both satellite images, while 
RF and SVM provided more limited results. 
Figures 4a and 4b below show the land cover/use 
thematic maps for the Soma district, which was 
determined as the study area using four machine 
learning perceptron, namely RF, SVM, CART, and 
GTB, for the classification of Sentinel-2 and Landsat-
9 images. Radial Basis Function (RBF) was used as 
the kernel function in the SVM classifier. RBF is a 
function widely used in complex and nonlinear 
classification problems. By transforming the data, 
the RBF creates more distinct boundaries between 
classes, thereby improving the accuracy of machine 
learning models. 
 

 
Figure 4a. Land cover/use map obtained from 
Landsat-9 OLI image 

 

 
Figure 4b. Land cover/use map obtained from 
Sentinel-2A image 
 

 
5. DISCUSSION  

 
This study evaluated the performance of 

Sentinel-2 and Landsat-9 imagery for land use and 
land cover (LULC) mapping of coal deposits in the 
Soma region of Turkiye by comparing four machine 
learning algorithms: Random Forest (RF), Support 
Vector Machine (SVM), Classification and Regression 
Trees (CART), and Gradient Boosting Trees (GBT). 
Sentinel-2 and Landsat-9 images were downloaded 
from the Google Earth Engine (GEE) platform, where 
geometric and atmospheric corrections were 
applied. Subsequently, training samples were 
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collected, and machine learning algorithms were 
employed for LULC classification through visual 
interpretation and Google Earth Pro. Among these 
algorithms, the radial basis function (RBF), 
commonly used in non-parametric SVM algorithms, 
was utilized. 

The classification results indicate that the GBT 
algorithm outperformed the other machine learning 
models in terms of overall accuracy and kappa 
coefficient for both Sentinel-2 and Landsat-9 
imagery. Additionally, Sentinel-2 imagery exhibited 
slightly higher classification accuracy across all four 
machine learning algorithms compared to Landsat-
9. Accuracy assessment metrics, including user 
accuracy, producer accuracy, and F1 score, were 
calculated from the error matrix to evaluate 
classification performance. The study identified 
seven distinct LULC classes in the Soma district: 
water, forest area, residential area, agricultural area, 
scrub area, bare area, and mining area. The water 
class was distinguished with the highest accuracy for 
both Sentinel-2 and Landsat-9 imagery. The forest 
area class ranked second in classification accuracy 
across both sensors. However, the mining area class 
exhibited the lowest classification accuracy, 
primarily due to its high spectral similarity with bare 
terrain and areas undergoing land degradation 
caused by mining activities. 

The comparative analysis revealed that while 
advanced machine learning algorithms such as RF 
and SVM generally provide high classification 
accuracy for various terrain classes, GBT performed 
better in distinguishing the mining area class. This 
advantage is attributed to the GBT algorithm's ability 
to iteratively combine decision trees, allowing for 
improved classification performance without 
assuming a specific data distribution. RF and SVM, as 
widely recognized supervised classification 
algorithms, typically yield high accuracy for LULC 
mapping but may struggle with classes that have 
overlapping spectral signatures. 

To contextualize the findings, the results of this 
study were compared with previous research on 
LULC classification. Shao and Lunetta (2012) applied 
the SVM algorithm to MODIS time series data for the 
Albemarle-Pamlico Estuarine System (APES) region 
in the United States and found that SVM 
outperformed neural networks (NN) and CART, 
achieving an overall accuracy of 77-80%. Similarly, 
Zhao et al. (2024) compared RF, SVM, and CART for 
LULC assessment in Mardan, Pakistan, using 
Sentinel-2 imagery, reporting overall accuracy 
values of 96.25%, 97%, and 98.68%, respectively, 
with CART performing best. Thanh Noi and Kappas 
(2018) evaluated RF, k-nearest neighbor (kNN), and 
SVM in Vietnam's Red River Delta, finding that SVM 
consistently achieved the highest accuracy, ranging 
from 90% to 95%. Other studies, such as those by 
Ghayour et al. (2021) and Talukdar et al. (2020), 
further corroborate the effectiveness of machine 
learning algorithms for LULC classification, with RF 

and SVM consistently yielding high accuracy in 
various geographic settings. 

The performance of machine learning 
algorithms in classification studies is influenced by 
both satellite data and the characteristics of the 
study area. Decision tree-based models, such as 
CART, are prone to overfitting and are highly 
sensitive to variations in training datasets (Prasad et 
al., 2006). SVM algorithms, while computationally 
efficient in high-dimensional spaces, often require 
extensive fine-tuning and can be challenging to 
interpret (Huang et al., 2010). The findings of this 
study align with previous research, confirming that 
supervised classification algorithms such as RF, SVM, 
CART, and GBT provide reliable and high-accuracy 
results for Sentinel-2 and Landsat-9 imagery. 
Notably, the GBT algorithm demonstrated superior 
classification performance, particularly for the 
mining area class, which is often difficult to 
distinguish from residential and bare land classes. 

This study also highlights environmental 
changes in the Soma region, particularly the decline 
in green areas due to expanding mining activities. 
These findings emphasize the need for effective land 
management strategies to mitigate the 
environmental impacts of mining. Sustainable land 
use policies should consider factors such as forest 
quality, vegetation cover, climate change, and human 
activities to ensure ecological balance and minimize 
land degradation. 

Despite the study's contributions, certain 
limitations should be acknowledged. The 
classification accuracy of some LULC classes, 
particularly mining areas, was lower due to their 
spectral similarity with other land cover types. This 
challenge underscores the difficulty of distinguishing 
land cover categories with overlapping spectral 
signatures, even with advanced machine learning 
algorithms. Additionally, the study relied on a 
limited number of accuracy assessment points (163), 
which may have introduced bias, especially for 
underrepresented classes such as water. While 
stratified random sampling was used to ensure 
proportional representation, increasing the sample 
size could enhance result generalizability. 
Furthermore, since this study focused on a single 
region (Soma), its findings may not be directly 
applicable to other geographic locations with 
distinct LULC characteristics. Future studies should 
address these limitations by incorporating larger 
sample sizes, exploring additional spectral indices, 
and testing the methodology in diverse 
environments to enhance robustness and 
applicability. 

Overall, this study provides valuable insights for 
local and regional land management authorities by 
demonstrating the efficacy of machine learning 
algorithms in LULC mapping. The findings contribute 
to the development of more accurate land 
classification techniques, ultimately aiding 
policymakers and researchers in making informed 
decisions regarding sustainable land management. 
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Future research should focus on refining 
classification methodologies, integrating additional 
data sources, and leveraging advanced remote 
sensing techniques to improve LULC mapping 
accuracy. 

 
6. CONCLUSIONS  

 
This study evaluated the performance of four 

supervised machine learning algorithms—Random 
Forest (RF), Support Vector Machine (SVM), 
Classification and Regression Trees (CART), and 
Gradient Boosting Trees (GBT)for Land Use Land 
Cover (LULC) classification using Sentinel-2 and 
Landsat 9 imagery on the Google Earth Engine (GEE) 
platform. Additionally, NDVI, NDWI, and NDBI 
indices were incorporated into the classification 
process to enhance class separation. The radial basis 
function (RBF) kernel was applied with SVM to 
assess its impact on classification accuracy. 

The accuracy assessment results indicate that 
the GBT algorithm achieved the highest overall 
classification performance for both Sentinel-2 and 
Landsat 9 images, followed closely by RF. The SVM 
algorithm with the RBF kernel showed overall 
accuracy rates of 92.6% for Sentinel-2 and 87% for 
Landsat 9, performing better than CART but slightly 
lower than RF and GBT. Sentinel-2 imagery 
consistently outperformed Landsat 9 in class 
separability, likely due to its higher spatial 
resolution and spectral characteristics. The 
classification performance was further evaluated 
based on user accuracy and producer accuracy, 
revealing that the water class had 100% user 
accuracy across all algorithms. However, spectral 
similarity between certain classes, such as mining 
areas and bare land, led to reduced user accuracy in 
some cases, ranging from 80% to 95%. 

To address this spectral similarity issue, future 
research should explore additional spectral indices 
or feature selection methods to improve class 
distinction. While NDVI, NDWI, and NDBI were used 
in this study, additional indices—such as soil-
adjusted vegetation index (SAVI), built-up indices, or 
texture-based features—could be investigated to 
enhance classification accuracy. Moreover, the 
effectiveness of these indices should be 
systematically compared to determining their 
impact on resolving class confusion. 

This study contributes to the literature by 
integrating multiple machine learning algorithms 
and satellite data sources while analyzing 
classification challenges in a complex LULC setting. 
Future studies should further assess classification 
performance under varying geomorphic and 
environmental conditions, incorporating additional 
datasets to refine classification methodologies. 
Developing more accurate and adaptable 
classification approaches will support reliable LULC 
mapping, which is essential for effective land 
management and policymaking. To overcome the 
limitations identified in this study, future research 

should focus on increasing the sample size for 
accuracy assessment to enhance the robustness of 
the results. Additionally, a comprehensive review of 
sampling strategies, including the binomial sampling 
method, should be conducted to ensure a more 
reliable and unbiased accuracy assessment. 
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