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Abstract 
This research investigates air pollution's health and economic implications, focusing on the effect of fine particulate matter (PM2.5) on 
premature death in the European Union (EU)-27 countries from 2007 to 2019. It employs a robust fixed-effect (FE) panel regression to analyze 
the data. The study considers various economic and demographic factors, including healthcare expenditure as a percentage of GDP, income 
distribution, healthy life expectancy at age 65, fertility rates, and total deaths. The analysis reveals that a 1% increase in PM2.5 causes a 
significant 1.9% rise in premature deaths. These findings urge policymakers to limit air pollution and its destructive impact on public health. 
The results highlight the need to integrate environmental health interventions into economic policies to protect and improve population well-
being. It also adds to the existing economic literature on environmental degradation and its impact on health. 
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Hava kirliliği ve erken ölümler: Avrupa'da PM2.5 etkilerinin panel analizi 
 

Öz 
Bu araştırma, 2007'den 2019'a kadar Avrupa Birliği (AB)-27 ülkelerinde ince partikül maddenin (PM2.5) erken ölümler üzerindeki etkisine 
odaklanarak hava kirliliğinin sağlık ve ekonomik etkilerini araştırmaktadır. Verileri analiz etmek için sağlam sabit etkili (FE) panel regresyonu 
kullanmaktadır. Çalışma, GSYH'nin yüzdesi olarak sağlık harcamaları, gelir dağılımı, 65 yaşında sağlıklı yaşam beklentisi, doğurganlık oranları 
ve toplam ölümler dahil olmak üzere çeşitli ekonomik ve demografik faktörleri dikkate almaktadır. Analiz, PM2.5’teki %1’lik artışın erken 
ölümlerde %1,9 oranında önemli bir artışa neden olduğunu ortaya koymaktadır. Bu bulgular, politika yapıcılarını hava kirliliğini ve bunun halk 
sağlığı üzerindeki yıkıcı etkisini sınırlandırmaya teşvik etmektedir. Sonuçlar, nüfusun refahını korumak ve iyileştirmek için çevre sağlığı 
müdahalelerini ekonomi politikalarına entegre etme ihtiyacını vurgulamaktadır. Ayrıca, çevresel bozulma ve bunun sağlık üzerindeki etkisine 
ilişkin mevcut ekonomik literatüre de katkıda bulunmaktadır. 

Anahtar Kelimeler: Hava Kirliliği, Erken Ölüm, Sabit Etkiler Modeli, Çevre Politikası  JEL Kodları: Q53, I15, I18, Q58 

Introduction 

Air pollution poses a critical threat to both the environment and public health globally. It leads to high mortality and morbidity 
rates, economic losses, and increased pressure on healthcare systems. For example, the European Environment Agency ([EEA], 
2023) reports that while there are reductions in emissions levels in 2021, ambient air pollution (primarily from PM2.5, NO2, and O3) 
still exceeds safe limits, especially in urban areas of Central and Eastern Europe. One of them, PM2.5, is particularly harmful due to 
its small size (diameter of 2.5 µm or less). It deeply penetrates the lungs and bloodstream, causing respiratory, cardiovascular, and 
metabolic diseases (World Health Organization [WHO], 2021). These health issues lead to the loss of healthy years of life and, in 
severe cases, result in premature deaths. The welfare losses due to reduced quality of life from air pollution are considerable, 
extending beyond direct healthcare costs to encompass broader societal impacts (EEA, 2023). PM2.5 exposure is hazardous to 
disadvantaged groups, such as children, older people, and individuals with preexisting health issues. It leads to considerable 
premature deaths and declines in the quality of life across the EU (Organisation for Economic Co-operation and Development 
[OECD], 2016). 

The EU has various environmental policies to reduce air pollution emissions and protect public health. One of them is the European 
Green Deal (EGD), which is a broad policy to achieve climate neutrality by 2050 and significantly enhance environmental health 
across member states. As part of the EGD, the Zero Pollution Action Plan has set goals to decrease premature deaths attributed 
to PM2.5 by at least 55% from 2005 to 2030 (European Commission [EC], 2021). To reach these goals, the EU has revised its Ambient 

https://doi.org/10.33707/akuiibfd.1613250
mailto:mtumay@gumushane.edu.tr
https://orcid.org/0000-0002-3226-3898


KOCATEPEİİBFD 27(2) 

Tümay (2025). 

229 

Air Quality Directives to follow WHO guidelines, which impose stricter pollutant limits for member states (EC, 2022). The EU plans 
to reduce health problems caused by air pollution and improve air quality following these directives. 

European Environment Agency reports that in 2020 alone, PM2.5 caused potential additional premature deaths between 174,000 
and 412,000 in the EU-27. These statistics emphasize the fatal effects of air pollution on people. Furthermore, the economic costs 
of mortality and illness from air pollution are substantial, including lost productivity, increased healthcare expenditures, and 
welfare losses. For example, health issues caused by air pollution are equivalent to €330 to €940 billion per year, indicating a 
significant financial loss to the EU (EC, 2021). This economic strain is even more significant in regions with high pollution levels 
and limited healthcare resources, which worsens socioeconomic disparities. 

Another problem caused by air pollution is socioeconomic inequality, which requires urgent attention. Governments’ precautions 
need to be revised to distribute the pollution burden among different socioeconomic groups because disadvantaged populations 
often experience higher levels of pollution exposure (EEA, 2024). This inequity worsens health and socioeconomic disparities. 
Several studies indicate that air pollution (PM2.5) negatively affects productivity, reduces labor efficiency, and increases health 
issues, which further restricts economic growth in regions that are already facing financial challenges (Deschenes, 2010; Zivin & 
Neidell, 2012; Currie et al., 2014; Hansen-Lewis, 2018). 

The study uses an FE panel regression model to add to the literature on the association between PM2.5 and premature deaths 
across EU-27 countries from 2007 to 2019. The research includes essential economic and demographic variables, such as 
healthcare expenditure, income distribution, healthy life expectancy, fertility rates, and deaths. The analysis reveals a highly 
significant positive effect of increased PM2.5 on premature deaths. These findings urge policymakers to limit air pollution and its 
harmful impact on public health. The results highlight the need to integrate environmental health interventions into economic 
policies to protect and improve population well-being. 

1. Literature 

Air pollution has a direct negative impact on health and economic outcomes and an indirect impact on socioeconomic factors such 
as GDP, labor productivity, and cognitive performance. PM2.5 is identified as one of the most harmful air pollution due to its ability 
to penetrate deep into lung tissue and affect systemic health (WHO, 2024). Numerous studies estimated its direct and indirect 
effects. 

Some studies show its direct and indirect effects on air pollution’s economic and financial burdens. For instance, Matus et al. 
(2012) estimate that PM2.5 led to a GDP loss of US$64 billion in China in 1995 from the economic impact of pollution-induced 
health costs. Zhou & Zhang (2023) estimate firm-level data in China and show that an increase (1 μg/m³) in PM2.5 reduces labor 
share by 0.17 percentage points, indicating the indirect air pollution effect, such as labor dynamics and productivity. Further, Fu 
et al. (2021) use an instrumental variable (thermal inversion) and estimate that a decrease (1 µg/m³) in PM2.5 increases productivity 
by approximately 0.82% in China’s manufacturing sector, demonstrating that the improved air quality has a positive impact on 
potential economic benefits. Another study finds that acute exposure to PM2.5 among older people increases mortality and 
substantial healthcare costs in the U.S. (Deryugina et al., 2019). 

Several studies show that PM2.5 significantly increases mortality rates and reduces life expectancy. Ebenstein et al. (2017) indicate 
that an increase (10 μg/m³) in PM2.5 decreases life expectancy by approximately 0.64 years. Similarly, Wong et al. (2015) show 
that PM2.5 significantly correlates with increased mortality in Hong Kong’s elderly population. Dockery et al. (1993) found a positive 
significant relationship between air pollution and deaths across six U.S. cities. They show increased death rates from lung cancer 
and cardiopulmonary disease in areas with high particulate matter concentrations. Lelieveld et al. (2019) estimate that PM2.5 leads 
to 790,000 deaths annually across Europe, with cardiovascular events accounting for the majority of these fatalities. Yin et al. 
(2017) similarly show that an increase (each 10 μg/m³) in PM2.5 raises mortality hazard ratios for cardiovascular and respiratory 
diseases, especially in high-pollution areas. Jerrett et al. (2009) demonstrate that increasing PM2.5 concentrations are significantly 
related to raising the death risk from cardiovascular causes. 

Other indirect effects of PM2.5 are on educational attainment and cognitive performance, which demonstrates its negative societal 
impacts. Ebenstein et al. (2016) investigated air pollution effects on students in Israel, finding that PM2.5 exposure during high-
stakes exams leads to declines in academic performance, which later correlate with lower educational attainment and earnings. 
Similarly, La Nauze & Severnini (2024) provide evidence that PM2.5 exposure negatively affects adult cognition, with productivity 
implications for prime-age workers. Bedi et al. (2021) indicate the cognitive effects of PM2.5 exposure in Brazil, observing that 
short-term exposure impairs fluid reasoning and working memory, both critical for occupational and educational success. Chang 
et al. (2019) extend these findings to the workplace, showing that PM2.5 exposure negatively impacts worker productivity at a call 
center in China, even at pollution levels standard in many urban areas worldwide. 
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Other research emphasizes air pollution exacerbates socioeconomic inequalities. Persico et al. (2020) examined prenatal 
environmental pollutants exposure and found that children exposed to toxic waste sites experience worse behavioral and 
cognitive outcomes, which affect later-life labor market outcomes. Gourley (2020) analyzes the long-term effect of air pollution 
in the UK, finding that prenatal exposure is associated with lower wages, higher disability rates, and poorer overall health among 
adults. This highlights the multi-generational impact of pollution exposure. 

Some studies also highlight potential premature mortality and morbidity reductions with stricter air quality guidelines. Khomenko 
et al. (2021) assess the potential for preventable mortality in European cities by evaluating compliance with WHO air quality 
standards. Their findings suggest that adherence to these guidelines could prevent tens of thousands of deaths in high-exposure 
urban areas, indicating the health benefits of stringent air quality standards. 

Long-term studies estimate the effects of climate change on PM2.5 levels, predicting increased premature deaths without 
intervention. Climate change increases in PM2.5 will result in approximately 100,000 additional deaths annually by the end of the 
21st century unless proactive measures are taken (Fang et al., 2013). Similar results from Cohen et al. (2017) analyze that PM2.5 
and ozone exposure caused 4.2 million deaths worldwide in 2015. They highlight that ambient air pollution causes an extensive 
global burden of disease. 

Overall, the existing literature clearly shows that PM2.5 not only causes direct health risks but also negatively impacts economic 
productivity, educational outcomes, and social equity. This study aims to contribute to the literature by examining the impact of 
PM2.5 on premature mortality across 27 EU countries while controlling for important socio-economic factors. The findings aim to 
inform policymakers by demonstrating the economic and health benefits of improving air quality. 

2. Data and Variables 

The study uses data from EU-27 countries between 2007 and 2019, focusing on premature death as a dependent variable and air 
pollution as the primary independent variable. Additional control variables include health expenditure, income distribution, 
healthy life years, fertility rates, and total deaths. Data were primarily sourced from EEA and Eurostat, providing a comprehensive 
overview of environmental and socioeconomic factors impacting premature deaths. Table 1 presents definitions and sources for 
each variable, and Table 2 offers descriptive statistics. 

Table 2 indicates descriptive statistics for each variable in the study. The average log value for Premature Deaths due to PM2.5 is 
8.315, with a standard deviation (sd) of 1.707, ranging from 4.248 to 11.137, indicating considerable variation in premature deaths 
across countries and over time. These variations align with the differences in environmental and socioeconomic conditions. PM2.5 
has a mean log value of 2.435 (sd = 0.392), with values spanning from 1.163 to 3.091, reflecting the diverse levels of particulate 
matter exposure. Countries with higher average PM2.5 concentrations are expected to exhibit higher premature mortality rates 
due to the well-established health risks associated with fine particulate matter exposure. Current Health Expenditure has a log 
mean of 2.082 (sd = 0.227), varying between 1.5 and 2.461, showing differences in health spending across countries. Higher health 
expenditure is hypothesized to mitigate the impact of PM2.5 on mortality by enhancing healthcare systems’ ability to address 
pollution-related illnesses. The Income Distribution variable, which captures inequality, shows a mean log value of 1.553 (sd = 
0.230), with a minimum of 1.109 and a maximum of 2.119, suggesting considerable disparity in income distribution among the 
countries in the sample. Disparities in income distribution might exacerbate premature deaths due to unequal access to healthcare 
and vulnerability to environmental hazards. Healthy Life Years at Age 65 averages 2.1 (sd = 0.329), with a wide range from 1.03 to 
2.785, implying variability in health outcomes for elderly populations. This indicator reflects the broader health outcomes and 
quality of life of elderly populations, which could influence the effect of air pollution on mortality rates. Fertility Rates have a mean 
log of 0.433 (sd = 0.125) and range from 0.135 to 0.722. While not directly linked to premature deaths, fertility rates could provide 
insights into demographic structures influencing health outcomes. The Number of Deaths shows a mean log value of 11.187 (sd = 
1.431), with a range from 8.01 to 13.769. This variable captures general mortality trends, serving as a control for baseline 
differences in death rates across countries. These descriptive statistics illustrate diverse health and socioeconomic conditions 
across the countries analyzed and provide information on the PM2.5 impact on premature deaths. 
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Table 1: Variables, Definitions, and Sources 
Variables Definition Source 

Premature Deaths PM2.5 
Estimated premature deaths due to exposure to fine 
particulate matter (PM2.5). 

European Environment Agency 
(EEA), 2022 * 

Air Pollution Average PM2.5 [µg/m³] Average PM2.5 concentration levels in µg/m³. 
European Environment Agency 
(EEA), 2022 * 

Current Health Expenditure (% of GDP) 
Health expenditure as a percentage of GDP, covering 
healthcare goods and services. 

WHO Global Health Expenditure 
Database, 2024 

Income Distribution the ratio between the top and bottom quintiles. Eurostat, 2024 

Healthy Life Years at Age 65 
Expected years of life in a healthy condition at age 65, 
combining mortality and morbidity data. 

Eurostat, 2024 

Fertility Rates Total fertility rate. Eurostat, 2024 
Number of Deaths The total annual number of deaths. Eurostat, 2024 

Source: *European Environment Agency (EEA), “Air Quality Health Risk Assessments” 

Table 2: Descriptive Statistics 
Variables Mean Std. Dev Min Max 
Log Premature Deaths PM2.5 8.315 1.707 4.248 11.137 
Log Air Pollution Average PM2.5 2.435 0.392 1.163 3.091 
Log Current Health Expenditure (% GDP) 2.082 0.227 1.5 2.461 
Log Income Distribution 1.553 0.230 1.109 2.119 
Log Healthy Life Years at Age 65 2.1 0.329 1.03 2.785 
Log Fertility Rates 0.433 0.125 0.135 0.722 
Log Number of Deaths 11.187 1.431 8.01 13.769 

3. Estimation Strategy 

The study exploits an FE panel regression model to analyze the impact of PM2.5 on premature deaths across EU-27 countries from 
2007 to 2019. This model controls time-invariant country-specific characteristics across countries for unobserved heterogeneity, 
allowing us to find the unbiased impact of PM2.5 on premature mortality. Also, the suitability of this estimation method is 
determined, and several diagnostic tests are conducted to ensure robust results. 

The Hausman test is used to distinguish whether a FE or RE model is more suitable. The null hypothesis of the Hausman test 
assumes that the random disturbance term is not associated with the regressors, suggesting that the RE model would be consistent 
and efficient (Hausman, 1978). However, the test results indicated that this assumption does not hold (p-value<0.05), leading us 
to reject the null hypothesis that RE is consistent (Wooldridge, 2010). Consequently, the FE model is considered more appropriate, 
as it controls for unobserved heterogeneity and provides consistent estimates when individual effects correlate with the 
regressors. Test statistic: 

𝐻𝐻 = � �̂�𝛽𝑅𝑅𝑅𝑅 −  �̂�𝛽𝐹𝐹𝑅𝑅  �′ [ 𝑉𝑉𝑉𝑉𝑉𝑉� �̂�𝛽𝑅𝑅𝑅𝑅� − 𝑉𝑉𝑉𝑉𝑉𝑉 ��̂�𝛽𝐹𝐹𝑅𝑅�]−1 � �̂�𝛽𝑅𝑅𝑅𝑅 −  �̂�𝛽𝐹𝐹𝑅𝑅  � (1) 

Where, �̂�𝛽𝑅𝑅𝑅𝑅  and �̂�𝛽𝐹𝐹𝑅𝑅  are coefficients from the random effects models and the FE models, respectively. 

The study tests for the necessity of including time-fixed effects due to potential common shocks or time-specific factors that may 
simultaneously affect all countries in the sample (e.g., economic downturns, EU-wide policy changes). The test results indicate 
that time-fixed effects are incorporated, improving the model’s capacity to control these annual fluctuations. Test statistic: 

𝐿𝐿𝐿𝐿𝐿𝐿 (𝑌𝑌𝑖𝑖𝑖𝑖) =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + �𝜆𝜆𝑖𝑖𝐷𝐷𝑖𝑖

𝑇𝑇−1

𝑖𝑖=1

+ 𝜖𝜖𝑖𝑖𝑖𝑖 (2) 

Where, 𝐷𝐷𝑖𝑖  are dummy variables for each year. Joint significance of 𝜆𝜆𝑖𝑖 determines the necessity of time-fixed effects. 𝛼𝛼𝑖𝑖  denotes 
country-fixed effects, and 𝜖𝜖𝑖𝑖𝑖𝑖 is the error term. 

Cross-sectional dependence can bias the standard errors in panel data, implying that shocks in one country may correlate with 
outcomes in others (Baltagi, 2021). So, the Breusch-Pagan Lagrange Multiplier (B-P/LM) test is conducted for cross-sectional 
dependence (Breusch & Pagan, 1980). The test yielded a p-value (0.0000) lower than 0.05, indicating that we reject the null 
hypothesis of no cross-sectional dependence. Additionally, the Pesaran CD test has a p-value of 0.0814, suggesting weak evidence 
of cross-sectional dependence. Since at least one test confirms cross-sectional dependence, standard errors need correction. The 
Breusch-Pagan test statistic: 
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𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝑁𝑁 − 1)/2 � � 𝜌𝜌𝑖𝑖𝑖𝑖2
𝑁𝑁

𝑖𝑖=𝑖𝑖+1

𝑁𝑁−1

𝑖𝑖=1

 (3) 

Where, N is the number of cross-sectional units (27 countries). 𝜌𝜌𝑖𝑖𝑖𝑖2  is the correlation between residuals of country i and country j. 
Given the presence of cross-sectional dependence, standard errors are corrected using Driscoll-Kraay standard errors (Driscoll & 
Kraay, 1998), which account for heteroskedasticity, serial correlation, and cross-sectional dependence. 

Heteroskedasticity in panel data can lead to inefficiency and biased standard errors, potentially affecting the reliability of statistical 
inference (Wooldridge, 2010; Greene, 2018; Baltagi, 2021). The Breusch-Pagan test for heteroskedasticity confirms its presence 
(p-value < 0.05). Consequently, the Driscoll-Kraay variance-covariance matrix is used to correct both heteroskedasticity and cross-
sectional dependence. 

To correct heteroskedasticity, the robust variance-covariance matrix for the FE model is: 

𝑉𝑉𝑉𝑉𝑉𝑉 ��̂�𝛽�
𝐹𝐹𝑅𝑅,𝐷𝐷𝐷𝐷

= (𝑋𝑋�′𝑋𝑋�)−1(�𝑋𝑋�′𝑖𝑖

𝑇𝑇

𝑖𝑖=1

Ω��𝑖𝑖𝑋𝑋�𝑖𝑖)(𝑋𝑋�′𝑋𝑋�)−1 (4) 

Where, Ω��𝑖𝑖 is the Driscoll-Kraay HAC estimator applied to demeaned residuals. 𝑋𝑋�𝑖𝑖is the demeaned regressor matrix (within 
transformation applied). 

Multicollinearity can inflate the variance of coefficient estimates, potentially leading to unreliable and unstable estimates. Each 
regressor's Variance Inflation Factor (VIF) is calculated to detect potential multicollinearity among the independent variables. All 
VIF values were below 10, suggesting no severe multicollinearity concerns (Greene, 2018). Therefore, all independent variables 
were retained in the model. Test: 

𝑉𝑉𝑉𝑉𝑉𝑉 (𝑋𝑋𝑘𝑘) =  
1

1 −  𝑅𝑅𝑘𝑘2
 (5) 

Where, 𝑅𝑅𝑘𝑘2 is coefficient of determination from regressing 𝑋𝑋𝑘𝑘  on all other independent variables. 

The final model specification, incorporating both country-fixed and time-fixed effects and Driscoll-Kraay standard errors, is 
expressed as follows: 

𝑙𝑙𝐿𝐿𝐿𝐿(𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝐷𝐷𝑃𝑃𝑉𝑉𝑃𝑃ℎ𝑖𝑖𝑖𝑖)
= α + β1𝑙𝑙𝐿𝐿𝐿𝐿 (𝑃𝑃𝐿𝐿2.5𝑖𝑖𝑖𝑖) + β2𝑙𝑙𝐿𝐿𝐿𝐿 (𝐻𝐻𝑃𝑃𝑉𝑉𝑙𝑙𝑃𝑃ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝐿𝐿𝐸𝐸%𝐺𝐺𝐷𝐷𝑃𝑃𝑖𝑖𝑖𝑖)
+ β3𝑙𝑙𝐿𝐿𝐿𝐿 (𝑉𝑉𝐸𝐸𝐼𝐼𝐿𝐿𝑃𝑃𝑃𝑃𝐷𝐷𝐸𝐸𝐼𝐼𝑃𝑃𝑉𝑉𝐸𝐸𝐼𝐼𝑃𝑃𝑃𝑃𝐸𝐸𝐿𝐿𝐸𝐸𝑖𝑖𝑖𝑖) + β4𝑙𝑙𝐿𝐿𝐿𝐿 (𝐻𝐻𝑃𝑃𝑉𝑉𝑙𝑙𝑃𝑃ℎ𝐿𝐿𝐸𝐸𝐸𝐸𝑃𝑃𝑌𝑌𝑃𝑃𝑉𝑉𝑉𝑉𝐼𝐼𝑖𝑖𝑖𝑖)
+ β5𝑙𝑙𝐿𝐿𝐿𝐿 (𝑉𝑉𝑃𝑃𝑉𝑉𝑃𝑃𝐸𝐸𝑙𝑙𝐸𝐸𝐹𝐹𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) + β6𝑙𝑙𝐿𝐿𝐿𝐿 (𝐷𝐷𝑃𝑃𝑉𝑉𝑃𝑃ℎ𝐼𝐼𝑖𝑖𝑖𝑖) + γ𝑖𝑖 + η𝑖𝑖 +  ε𝑖𝑖𝑖𝑖 

(5) 

Where, 𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝐷𝐷𝑃𝑃𝑉𝑉𝑃𝑃ℎ𝑖𝑖𝑖𝑖  represents the premature mortality in country i at time t, PM2.5𝑖𝑖𝑖𝑖 is the measure of air pollution (fine 
particulate matter), γ𝑖𝑖 denotes time-fixed effects, η𝑖𝑖  denotes country-fixed effects, and ε𝑖𝑖𝑖𝑖  is the error term. 

This estimation strategy ensures the model robustly captures air pollution’s impact on premature deaths while addressing 
unobserved heterogeneity, serial correlation, heteroskedasticity, cross-sectional dependence, and multicollinearity issues. The 
fixed effects approach, combined with time-fixed effects and Driscoll-Kraay standard errors with lag(1), improves the model’s 
reliability in estimating the relationship between PM2.5 and premature deaths across EU-27 countries. 

4. Results and Discussion 

The study exploits FE estimators to analyze the PM2.5 impact on premature death. Table 3 shows the estimation results for three 
models examining the relationship between PM2.5 and premature deaths. These models are the FE model, the FE model with time-
fixed effects, and the FE model with time-fixed effects and Driscoll-Kraay standard errors (lag=1), showing the process of 
eliminating heteroskedasticity and other potential biases. 

The coefficient for PM2.5, the primary independent variable, is highly statistically significant and positive across all models, with 
values of 1.785, 1.865, and 1.865, respectively. This high significance level suggests that increased PM2.5 is related to increased 
premature mortality, causing severe public health risks. Specifically, a 1% increase in PM2.5 is associated with an approximate 1.9% 
increase in premature deaths. This result aligns with previous findings in the literature, reinforcing that fine particulate matter 
poses a critical threat to public health (Dockery et al., 1993; Ebenstein et al., 2017; Lelieveld et al., 2019). 

Health Expenditure coefficient indicates a negative and significant relationship with premature deaths across all models, with 
values of -0.284, -0.423, and -0.423. This finding implies that higher health expenditure, as a percentage of GDP, reduces 
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premature deaths, likely due to improved healthcare access and quality. Some studies show that efficient health spending reduces 
the mortality rate (increasing life expectancy), which leads to fewer premature deaths (Adeboya et al., 2024; Plümper, T., & 
Neumayer, E., 2013). On the other hand, health expenditures may not be very effective if the diseases caused by PM2.5, such as 
lung cancer, are insidious and their diagnosis is delayed (Gildea et al., 2017; Jeon et al., 2019). 
Table 3. Estimation Results 

 
Variables 

(1) (2) (3) 

FE FE with Time-Fixed Effect 
FE with Time-Fixed Effect and 
Driscoll-Kraay standard error 

(lag=1) 

Log (PM2.5) 
1.785*** 1.865*** 1.865*** 
(0.059) (0.096) (0.257) 

Log (HealthExp) 
-0.284** -0.423*** -0.423** 
(0.120) (0.134) (0.163) 

Log (IncomeDist) 
0.128 0.116 0.116 

(0.128) (0.133) (0.120) 

Log (HealthLife) 
-0.135* -0.152** -0.152** 
(0.074) (0.074) (0.052) 

Log (FertiliyRate) 
0.702*** 0.730*** 0.730*** 
(0.150) (0.160) (0.175) 

Log (Deaths) 
1.620*** 1.679*** 1.679*** 
(0.237) (0.275) (0.372) 

Constant 
-13.786*** -14.363*** -14.363*** 

(2.760) (3.121) (4.635) 
R-Squared 0.784 0.796 0.796 
No. of Observation 345 345 345 
 Note: Significance levels are * p<0.1, ** p<0.05, *** p<0.010. ( ) are standard error terms. 

The income distribution variable, a measure of income inequality, does not exhibit statistical significance across any of the models, 
indicating that income inequality may not have a direct or immediate effect on premature mortality in this context. This finding 
could suggest that income distribution influences mortality outcomes through more indirect pathways not captured in these 
models, although previous literature emphasizes a link between socioeconomic status and health outcomes (Gourley, 2020; 
Persico et al., 2020). 

Healthy Life Years at age 65 has a negative coefficient in all models, with statistical significance across all models, highlighting that 
longer healthy life expectancy is associated with reduced premature deaths. This relationship underscores the importance of 
healthy aging and suggests that improvements in elderly health may contribute to lower premature mortality rates. For example, 
May et al. (2015) investigated that people who followed all four healthy lifestyle habits (Avoid smoking, low body mass index 
[BMI], regular physical activity, Mediterranean diet) lived at least two years longer in good health compared to those who did not 
follow any. 

Fertility Rate is positively associated with premature deaths across all models, with coefficients of 0.702, 0.730, and 0.730, 
respectively, and statistical significance at conventional levels. This positive association could indicate that countries with higher 
fertility rates may experience different healthcare resource allocation dynamics or demographic pressures that indirectly impact 
premature mortality. Moreover, Le Bourg (2007) indicates that increased fertility could reduce longevity due to biological trade-
offs between reproduction and survival. Although fertility does not consistently reduce longevity under natural fertility conditions, 
modern populations with more than approximately five children might experience slightly elevated mortality risks. 

The death variable also shows a positive and highly significant association with premature mortality, with coefficients ranging 
from 1.620 to 1.679 across the models. This variable captures the general death rate, suggesting that higher mortality levels may 
correlate with elevated risks of premature death, perhaps due to broader systemic health challenges within certain countries. 
Furthermore, the estimation results correspond to studies from other regions, such as the U.S. and China, which show a robust 
link between PM2.5 and increased death rates (Dockery et al., 1993; Ebenstein et al., 2017; Zhou & Zhang, 2023). 

Overall, the high R-squared values of around 0.784 to 0.796 indicate that the models demonstrate a substantial proportion of the 
variation in premature deaths, supporting the relevance of these variables in understanding the determinants of premature 
mortality. The consistency and significance of PM2.5’s impact across models underline the urgent need for policies addressing air 
quality to improve public health outcomes. 
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Table 4 provides the results from a series of diagnostic tests to ensure the selected models’ reliability and validity. These tests 
assess multicollinearity, the suitability of the model, the need for time-fixed effects, and potential issues such as serial correlation, 
cross-sectional dependence, and heteroskedasticity, which could affect the accuracy of the estimations. 

The Variance Inflation Factor (VIF) values for each variable are well below the threshold of 10, indicating no significant 
multicollinearity in the model. Low VIF values indicate that the independent variables do not exhibit problematic levels of 
correlation, meaning each variable contributes uniquely to explaining the variation in premature deaths without redundancy or 
overlap. 

B-P/LM test results indicate that the RE model is preferable over a simple OLS model. This outcome (Prob > chibar2 = 0.0000) 
suggests the presence of unobserved panel effects that vary across countries, which would be unaccounted for in a standard OLS 
regression. Using either Random or Fixed Effects is more appropriate for this data structure. Furthermore, an F-test was conducted 
to compare FE and OLS. The results (F test that all ui=0: F(26, 300) = 12.40  Prob > F = 0.0000) indicate that the FE model should 
be preferred over the OLS model. 

The Hausman Test result supports the FE model over the RE model, with a highly significant result (Prob > chi2 = 0.0001). The 
Hausman Test evaluates whether the individual-specific effects are associated with the independent variables. The significant 
result indicates these correlations exist, and the FE model is more suitable. It controls these unobserved effects and reduces 
potential bias. 

The Time-Fixed Effects Test (Prob > F = 0.0157) indicates the necessity of including time-fixed effects in the model to control time-
specific factors influencing premature deaths across the sample period. The test result suggests that the factors (such as global 
economic changes, health trends, or international policy developments) vary over time and impact the entire sample similarly. By 
including time-fixed effects, the model more accurately isolates the impact of the variables on premature deaths, independent of 
annual fluctuations. 
Table 4. Test Results 

Variables 

(1) (2) (3) (4) (5) (6) (7) 

VIF 
OLS vs RE 
LM Test 

FE vs RE 
Hausman 

Test 

Time-Fixed 
Effect 

Serial 
Correlation 

Cross-sectional 
Dependence 

Heteroskedasticity 

Log (PM2.5) 2.17 

ch
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ar
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 Log (HealthExp) 1.55 

Log (IncomeDist) 1.49 

Log (HealthLife) 1.47 

Log (FertiliyRate) 1.37 

Log (Deaths) 1.28 

Test Results 
No 

Multicollinearity 
RE are needed 
(panel effect) 

FE are more 
appropriate 

Time-Fixed 
effects are 

needed 

No serial 
correlation 

Weak Cross-
sectional 

dependence 

No 
Homoskedasticity 

The Wooldridge Test for serial correlation (Prob > F = 0.9293) shows no evidence of serial correlation in the panel data. Serial 
correlation implies that observations are correlated across time within the same panel, which can cause standard errors to look 
smaller than they are and lead to inefficient estimates. The absence of serial correlation improves the accuracy of the observations 
in each period, which are sufficiently independent for reliable estimation. 

The Breusch-Pagan Lagrange Multiplier (B-P/LM) test is conducted for cross-sectional dependence (Breusch & Pagan, 1980). The 
test yielded a p-value (0.0000) lower than 0.05, indicating that we reject the null hypothesis of no cross-sectional dependence. 
Additionally, the Pesaran CD test has a p-value of 0.0814, suggesting weak evidence of cross-sectional dependence. That is why 
standard errors are corrected using Driscoll-Kraay standard errors (Driscoll & Kraay, 1998), which account for heteroskedasticity, 
serial correlation, and cross-sectional dependence. 
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The Modified Wald Test (Baum, 2000) for heteroskedasticity (Prob > chi2 = 0.0000) indicates heteroskedasticity’s existence in that 
the residuals’ variance is not constant across observations. The result required the application of robust standard errors to address 
heteroskedasticity, which improves the accuracy and reliability of the coefficient estimates. 

In conclusion, the diagnostic results in Table 4 demonstrate that the FE model with time-fixed effects and Driscoll-Kraay standard 
errors (Table 3, column 3) is the most appropriate model for this study. Using the robust model, the model addresses potential 
heterogeneity, serial correlation, cross-sectional dependence, and heteroskedasticity issues and provides robust estimates of the 
relationship between PM2.5 and premature deaths. In this way, the estimation results reported in Table 3 are reliable in terms of 
the methodological rigor of the analysis. The robust analysis (Table 3, column 3) reveals that a 1% increase in PM2.5 causes a 
significant 1.9% rise in premature deaths. These findings urge policymakers to limit air pollution and its destructive impact on 
public health. The results highlight the need to integrate environmental health interventions into economic policies to protect and 
improve population well-being. Strict air quality standards will mitigate the harmful effects of pollution on death and improve 
overall quality of life across Europe. Reducing air pollution will reduce healthcare expenditures, enhance labor productivity, and 
support sustainable development goals. 

Conclusion 

Air pollution poses a critical threat to both the environment and public health globally. PM2.5 is particularly harmful because its 
small size allows it to penetrate deeply into the respiratory system, leading to or exacerbating cardiovascular and respiratory 
diseases (WHO, 2021). The study examines the impacts of PM2.5 on premature deaths across EU-27 countries from 2007 to 2019. 
The result demonstrates a highly significant positive relationship between PM2.5 and premature death by exploiting FE panel 
regression models. Specifically, the valid result, shown in the FE with Time-Fixed Effect and Driscoll-Kraay standard error model in 
Table 3, column 3, indicates a highly significant positive impact of a 1% increase in PM2.5, causing a 1.9% increase in premature 
deaths. These findings urge policymakers to limit air pollution and its harmful effects on public health. 

In light of these findings, reducing PM2.5 pollution should be a fundamental public health priority for policymakers. This requires 
strengthening the enforcement of air quality regulations, such as stricter emission standards for vehicles, power generation, and 
industry, to control fine particulate emissions at their sources. Investments in cleaner energy sources and sustainable urban 
transport, such as expanded public transit and electric mobility options, will further help lower ambient PM2.5 levels. Such 
evidence-based interventions can provide significant health benefits, as this study finds that even minor improvements in air 
quality can lead to notable reductions in premature mortality. While increased healthcare spending can reduce premature 
mortality, it cannot replace the need for pollution prevention. Moreover, preventing pollution is still essential for protecting 
societies from hazardous pollutant exposure, saving lives, and reducing long-term healthcare costs. 

Despite the robust evidence established by this study, there are still many opportunities for future research. For example, analyses 
at spatial scales (such as city-level data) or within specific demographic groups (low-income communities or older people) can 
identify vulnerable populations and explain any health disparities associated with air pollution. In addition, investigating the 
effects of multiple pollutants (for example, examining PM2.5 alongside ozone or nitrogen dioxide) and assessing the influence of 
climate change on air quality will provide more information on long-term environmental health risks. Another important 
opportunity is to evaluate the outcomes of policy interventions or natural experiments, such as low-emission zones or periods of 
significant emission reduction, to establish causal evidence of the health benefits from pollution control measures. Pursuing these 
research directions will deepen scientific knowledge and help policymakers design more effective, targeted strategies to reduce 
pollution-related premature mortality. 

This research article has been licensed with Creative Commons Attribution - Non-Commercial 4.0 International 
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