
DOI: 10.38061/idunas.1613387  
  

 
 

 
A Comprehensive Study on Restricted and Extended Intersection 

Operations of Soft Sets 
 

Research Article 
 

Aslıhan Sezgin1* , Hakan Kökçü2 , Akın Osman Atagün3  
 

1Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye 
2Department of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye 

3Department of Mathematics, Faculty of Arts and Science, Kırşehir Ahi Evran University, Kırşehir, Türkiye 
 

Author E-mail: 
aslihan.sezgin@amasya.edu.tr 
A. Sezgin ORCID ID: 0000-0002-1519-7294 
H. Kökçü ORCID ID: 0009-0002-7229-5816 
A.O. Atagün ORCID ID: 0000-0002-2131-9980 

*Correspondence to: Aslıhan Sezgin, Department of Mathematics and Science Education, Faculty of Education, 
Amasya University, Amasya, Türkiye 

DOI: 10.38061/idunas.1613387 
 
Received: 04.01.2025; Accepted: 13.02.2025 
 
 
  
Soft set theory has gained prominence as a revolutionary approach for handling and modeling uncertainty 
since it was proposed by Molodtsov. The concept of soft set operations, which is the major notion for the 
theory, has served as the foundation for theoretical and practical advances in the theory, therefore deriving 
the algebraic properties of the soft set operations and studying the algebraic structure of soft sets associated 
with these operations have attracted the researchers’ interest continuously. In the theory of soft set, many 
soft intersection operations have been defined up to now among which there are some differences, and some 
of which are no longer preferred for use as they are essentially not useful and functional. While the restricted 
intersection definition is widely accepted and used in literature, it remains incomplete, as it ignores certain 
cases where the parameter sets of soft sets may be disjoint, thus not all conditions in the theorems are 
considered in the related proofs, leading to inaccuracies or deficiencies in the studies where this operation 
is used or its properties are investigated. There is a critical lack of comprehensive research in the existing 
literature on the correctly defined restricted intersection operation, along with the extended intersection, 
including their proper properties and distributions and the correct algebraic structures associated with these 
soft set operations. In this study, we primarily intend to fill this crucial gap by first correcting the 
deficiencies in the presentation of the definition of restricted intersection and revising it. Moreover, in many 
papers related to this operation, several theorems were presented without their proofs, or there were some 
incorrect parts in the proofs.  In this study, all the proofs based on the function-equality are regularly 
provided. Besides, the relationships between the concept of soft subset and restricted and extended 
intersection operations are presented for the first time with their detailed proofs. Furthermore, we obtain 
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many new properties of these operations as analogies and counterparts of the intersection operation in 
classical set theory. Moreover, the operations’ full properties and distributions over other soft set operations 
are thoroughly investigated to determine the correct algebraic structures the operations form individually 
and in combination with other soft set operations both in the set of soft sets over the universe and with a 
fixed parameter set. This study demonstrates that the restricted/extended intersection operations, when 
combined with other kinds of soft set operations, form several significant algebraic structures, such as 
monoid, bounded semi-lattice, semiring, hemiring, bounded distributive lattice, Bool algebra, De Morgan 
Algebra, Kleene Algebra, Stone algebra, and MV-algebra but with detailed explanations. Accordingly, this 
study offers the most comprehensive analysis of restricted and extended intersection operations to date. It 
corrects earlier theorems and proofs, thereby advancing the theory and addressing a significant gap in the 
literature. Furthermore, it serves as a guide for beginners and sheds light on future research directions in 
soft set theory. 
 
Keywords: Soft sets, Soft set operations, Restricted intersection operation, Extended intersection operation. 
 

 
 

It is difficult to explain and precisely describe many events in our daily lives, including uncertainty. 
Modeling situations involving uncertainty using classical mathematics or Aristotelian reasoning is 
extremely challenging. Set theory is considered a fundamental tool in mathematics, as it forms the basis for 
nearly all mathematical disciplines. To address and overcome uncertainty, many scientists from various 
fields have conducted research and proposed new theories. Among them, fuzzy set theory, introduced by 
Zadeh (1965), is one of the most widely used methods for dealing with uncertainty. In Aristotelian logic, 
the truth value of a proposition is either 0 or 1, whereas in fuzzy logic, it can be any real number within the 
range [0,1]. However, despite its popularity, fuzzy set theory faces certain limitations. The construction of 
the membership function is very subjective, which can lead to varying outcomes for the same problem. 
These challenges created a need for a new theory to address both uncertainty and cases of certainty. As an 
alternative, Molodtsov (1999) established "Soft Set (ՏՏ) Theory" as a mathematical technique to deal with 
uncertainty. ՏՏ theory’s lack of a membership function construction issue makes it more practical. This 
advantage has led to its rapid application in fields such as mathematics, engineering, medicine, social 
sciences, and daily life situations like information systems and decision-making problems. Additionally, 
Molodtsov (1999) effectively used ՏՏ theory in domains like game theory, operations research, continuous 
differentiable functions, probability, measurement theory, Riemann integration, and Perron integration. 

 
The fundamental notions of the ՏՏ were initially presented by Molodtsov (1999) in his pioneer 

study, and they were further expanded upon by a theoretical study of Maji et al. (2003) which introduces 
intersection and union operation with AND and OR operations, as well as the concepts of soft subset, soft 
equality, soft complement, NULL ՏՏs, and absolute ՏՏs. In contrast to Maji et al. (2003), Pei and Miao 
(2005) introduced a new intersection operation and proposed a new soft subset concept in their study on 
soft-based information systems. For the intersection operation, Feng et al. (2008) proposed an alternative 
concept known as “bi-intersection” (double intersection). To better understand the evolution and variations 
in soft set operations, it is essential to review key contributions in literature. For instance, introducing new 
definitions such as restricted union, intersection, difference, and extended intersection of ՏՏs, Ali et al. 
(2009) aimed to resolve certain limitations in earlier operations defined by Maji et al. (2003). These 
foundational modifications laid the groundwork for exploring algebraic properties. Building on this, the 
concept of “relative complement” was developed, and it was shown that De Morgan’s laws hold in soft set 
theory under these refined operations. Subsequently, Qin and Hong (2010) introduced a new form of “soft 
equality” and explored the algebraic structures of ՏՏs, applying absorption laws to investigate whether 

1. INTRODUCTION 
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these structures form lattices. In their extensive study, Ali et al. (2011) showed that some operations in the 
fixed-parameter ՏՏs form MV-algebras and BCK-algebras, and they also showed that the ՏՏ operations 
defined by Ali et al. (2009) form a variety of algebraic structures, including monoids, hemirings, and lattices 
in the collection of ՏՏs over the universe as well as in the fixed-parameter ՏՏs. Sezgin and Atagün (2011) 
introduced restricted symmetric difference for ՏՏs and investigated its characteristics. They also further 
explored the fundamental properties of restricted and extended intersection and union operation defined by 
Maji et al. (2003) and Ali et al. (2009).  Redefining the notion of an ՏՏ’s complement, Singh and Onyeozili 
(2012a, 2012b, 2012c, 2012d) published research on SS operations, the distributive and absorption laws of 
ՏՏ operations. Sen (2014) showed that restricted and extended intersection and union operations constitute 
a Boolean algebra in the set of the ՏՏs with a fixed parameter set. A new ՏՏ operation known as “extended 
difference” was added to the list of extended operations in ՏՏs by Sezgin et al. (2019) Additionally, Sezgin 
et al. (2019) investigated the characteristics of the operation and its connections to other ՏՏ operations. By 
proposing and examining the operation of extended symmetric difference, Stojanovic (2021) addressed a 
gap in the literature about the extended operation in ՏՏ theory. Some papers, such as Neog and Sut, 2011; 
Fu, 2011; Ge and Yang, 2011; Zhu and Wen, 2013; Onyeozili and Gwary, 2014; Husain and Shivani, 2018 
contain incorrect assertions that must be corrected. 

 
As we see, “restricted” and “extended” ՏՏ operations are two primary categories under which the 

advancements in ՏՏ operations may be divided after a study of the research done up to this point. In contrast 
to the restricted and extended operation forms, the “soft binary piecewise difference operation” was an 
innovative ՏՏ operation that Eren and Çalışıcı (2019) described and investigated the characteristics of. A 
thorough investigation of the properties of the soft binary piecewise difference operation was explored by 
Sezgin and Çalışıcı (2024).  Sezgin et al. (2023a) studied several novel binary set operations, motivated by 
Çağman (2021) work on conditional complements of sets. These binary set operations were transferred to 
ՏՏs by Aybek (2024), who also defined novel restricted and extended ՏՏ operations, investigated their 
characteristics, and explored how they related to other ՏՏ operations. Additionally, Akbulut (2024), 
Demirci (2024), and Sarıalioğlu (2024) investigated a new type of ՏՏ operations known as “complementary 
extended ՏՏ operations”. Yavuz (2024), Sezgin and Yavuz (2023a), and Sezgin and Yavuz (2024) defined 
and thoroughly examined a number of new soft binary piecewise operations, all of which were defined 
within the framework of the soft binary piecewise operation that was first presented in the study of Eren 
and Çalışıcı (2019). Besides, several authors (Sezgin et al., 2023b, Sezgin et al. 2023c; Sezgin and Dagtoros, 
2023; Sezgin and Demirci, 2023; Sezgin and Yavuz, 2023b; Sezgin and Sarıalioğlu; 2024a; Sezgin and 
Sarıalioğlu; 2024b; Sezgin and Çağman, 2024; Sezgin and Şenyiğit, 2025) 

 
An algebraic structure is made up of a set that has one or more binary operations defined on it along 

with those binary operations. Classifying algebraic structures and finding, showing, and deriving results 
from their common features are the goals of abstract algebra. It conducts this regardless of the sets and 
binary operations that make up these structures. This is the reason abstract algebra is the name given to this 
area of mathematics. Fundamentally, algebraic structures are involved in many branches of mathematics. 
Mathematicians have studied algebraic structures for millennia as they offer a universal and abstract 
approach to understanding and comprehending mathematical subjects. Understanding the properties of 
algebraic structures enables mathematicians to solve challenging problems, create new theories, and apply 
ideas to a variety of mathematical, scientific, and engineering domains. Furthermore, applications 
frequently provide special examples of algebraic structures, which help to clarify specific circumstances 
and make it easier to examine more general scenarios. When a particular set S is recognized as an illustration 
of a well-known algebraic structure, all of the well-known results regarding this algebraic structure also 
inherently hold for S. Abstraction is primarily motivated by this advantage. As a result, algebraic structures 
play a significant role in abstract algebra and mathematics. 
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One of the most well-known binary algebraic structures, which is a generalization of rings, is the 

notion of semirings which has been a subject of study and fascination for scholars from the past to the 
present. Vandiver (1934) introduced the concept of semirings. Several researchers have also studied 
semirings with additive inverses (Karvellas,1974; Goodearl, 1976; Petrich, 1973). While semirings are 
especially important in geometry, they are also important in pure mathematics and are critical for resolving 
problems in many practical mathematics and information science applications. Hemiring is a special class 
of semirings with commutative addition and a zero element. Additionally, there are several algebras related 
to logic. MV algebras are suited for multi-valued logic, while Boolean algebras are connected to traditional 
two-valued Aristotelean logic.  

 
Just as the basic operations such as addition, subtraction, multiplication, and division in the set of 

integers and intersection, union, difference, complement, and symmetric difference in the set of sets are 
fundamental for the related theories, operations on ՏՏs are equally vital in ՏՏ theory. ՏՏ operations serve 
as the theoretical basis for several soft computing and decision-making approaches. Furthermore, a 
thorough understanding of the algebraic structure of ՏՏs may be obtained by looking at the algebraic 
structures formed by ՏՏs and operations. This improves the comprehension of applications and makes it 
possible to see how ՏՏ algebra can be used in both classical and non-classical logic, which paves the way 
for a number of uses, such as the development of new ՏՏ-based cryptography techniques and decision-
making processes. We refer to the study by Alcantud et al. (2024), where a comprehensive survey of ՏՏ 
theory, encompassing its foundational concepts, developments, and applications are presented. As regards 
the studies on soft algebraic structures for all of which ՏՏ operations have been the basis, we refer to Aktaş 
and Çağman, 2007; Jun, 2008; Jun and Park, 2008; Park et al., 2008; Feng et al., 2008; Sun et al., 2008; 
Acar et al., 2010;  Zhan and Jun, 2010; Sezer et al., 2013, Sezer et al., 2014; Atagün and Sezgin, 2015; 
Sezer et al, 2015; Muştuoğlu et al., 2016; Mahmood et al., 2015; Sezer and Atagün, 2016; Tunçay and 
Sezgin, 2016; Sezer et al., 2017; Khan et al., 2017; Atagün and Sezgin, 2017;  Sezgin et al., 2017; Atagün 
and Sezer, 2018; Ullah et al., 2018; Iftikhar and Mahmood; 2018; Gulistan et al., 2018; Sezgin, 2018; 
Atagün et al., 2019; Jana et al., 2019; Karaaslan, 2019; Özlü and Sezgin, 2020; Karaaslan et al., 2021; 
Sezgin et al., 2022,  Atagün and Sezgin, 2022; Sezgin and Orbay, 2022, Riaz et al., 2023; Manikantan et 
al., 2023; Sezgin and İlgin, 2024; Sezgin and Onur, 2024; Sezgin et al., 2024). 

 
In the theory of ՏՏ, many soft intersection operations have been defined up to now. There are some 

differences among them, and some definitions are no longer preferred for use as they are essentially not 
very useful. The intersection of ՏՏs was first defined by Maji et al. (2003), however, it is problematic as it 
is obvious from the nature of the definition of ՏՏ that the condition put in the definition is not necessarily 
the case. This problematic nature of the definition was detailed by Ali et al. (2009) and Pei and Miao (2005). 
Pei and Miao (2005) defined a new intersection operation for ՏՏ, which they believed would be more 
functional, however in this definition it was not addressed what the result of the operation would be in the 
case where the parameter sets of the ՏՏs are disjoint. Feng et al. (2008) defined an alternative intersection 
operation for ՏՏ, called the “bi-intersection” of ՏՏs. This definition is problematic as well, as it is not 
addressed what the result of the operation would be in the case where the parameter sets of the ՏՏs are 
disjoint. Ali et al. (2009) defined a new intersection operation for ՏՏs called the “restricted intersection 
operation”. Unlike the definition by Feng et al. (2008), this definition starts with the condition that the 
parameter sets of the ՏՏs whose intersection is calculated should be disjoint. Moreover, it did not address 
what the result of the operation would be in the case where the parameter sets of the ՏՏs are disjoint as 
well. Ali et al. (2011) evaluated the case of the intersection of the parameter sets of two ՏՏs being empty, 
which was not considered in the restricted soft intersection operation defined by Ali et al. (2009), and 
updated the definition by adding the note that if the parameter sets of the ՏՏs whose restricted intersection 
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is calculated are disjoint, then the result of the operation is the empty ՏՏ. This is the first study to provide 
information on the result of the restricted intersection operation when the intersection of the parameter sets 
is empty set. Although the most current and useful definition for the restricted intersection operation is the 
one provided by Ali et al. (2011), in this definition, the condition that the parameter sets of the ՏՏs should 
not be disjoint to calculate their restricted intersection was included as a necessary condition; however this 
is not the case, because whether the intersection of the parameter sets of the two ՏՏs is an empty set or not, 
the restricted intersection of these two ՏՏs can be calculated in any case. The intersection of the parameter 
sets of these two ՏՏs being non-empty is never a necessary condition for their restricted intersection to be 
calculated. In this sense, from a chronological perspective, although the idea of the restricted intersection 
operation in ՏՏs was first proposed by Pei and Miao (2005), as in their definition, the case where the 
intersection of the parameter sets of the ՏՏs is empty was not considered, and this was addressed for the 
first time by Ali et al. (2011), the study by Ali et al. (2011) is of great importance. Besides,  inspired by the 
union definition of ՏՏs by Maji et al. (2013), a similar type operation defined as the “extended intersection 
operation” of ՏՏs was proposed by Ali et al. (2009), and its properties and distributive rules were studied 
by various authors (Ali et al. 2009; Ali et al. 2011; Qin and Hong 2010); Sezgin and Atagün, 2011; Singh 
and Onyeozili, 2012c). 

 
As restricted and extended intersection operations are anyway existing concepts in the literature, the 

properties of them were already studied in many studies, thus it may seem that some properties included in 
this paper were already presented in the previous studies (Ali et al., 2009; Ali et al., 2011; Feng et al. 2008; 
Maji et al., 2003; Pei and Miao, 2005; Qin and Hong, 2010; Sezgin and Atagün, 2011). However, we find 
it beneficial to note that the properties of the operations together with their distribution rules were not 
handled in the mentioned papers by considering the important point that the parameter sets of the ՏՏs may 
be disjoint. This is due to the incomplete definition of restricted intersection operation and thus, ignoring 
some of the cases in the theorems and proofs. From this perspective, there is a significant gap in the literature 
for providing a comprehensive study of restricted and extended intersection operations by taking into 
account these ignored cases. Moreover, as ՏՏ operations serve as both the theoretical and practical basis 
for the theory, and in many studies as regards the soft algebraic structures, these basic two ՏՏ operations 
are always used while exploring the properties of the soft structures, this critical gap needs to be filled 
immediately beginning with a precise exposition of the definition of restricted intersection. This study aims 
to encompass all the prior studies regarding these operations. Moreover, in the above-mentioned papers 
together with  (Neog and Sut, 2011; Fu, 2011; Ge and Yang S, 2011; Zhu and Wen, 2013; Onyeozili and 
Gwary, 2014; Husain and Shivani, 2018) several theorems and propositions were presented without their 
proofs, or there were some incorrect or missing parts in the proofs due to the incomplete definition of 
restricted intersection; however, in this study, the proofs based on the function equality are regularly 
provided, and thus all the incorrect parts are corrected. Additionally, as the definition of subset by Pei and 
Miao  (2005) is more functional and rational, and thus has a wide-spread usage than that of Maji et al. 
(2003), and since in the existing studies, (especially in the study of Sezgin and Atagün, 2011), the 
relationships between restricted and extended intersection operations and soft subset were handled with 
regard to the definition of subset proposed by Maji et al. (2003), in the literature there is a wide gap needs 
to be filled in this regard as well. In this study, the relationships in this regard which were not addressed in 
previous studies, are presented for the first time with detailed proofs and with their classical set counterparts 
as well. We do not only correct the problematics parts in the existing papers, but also we obtain many new 
properties of restricted and extended intersection operations together with their relationships with the ՏՏ 
operations defined by Aybek (2024) and Yavuz (2024). By looking at the distribution rules, the algebraic 
structures formed by these operations in the set of ՏՏs with a fixed parameter set and in the set of sets over 
the universe are examined and presented thoroughly with their detailed proofs. Furthermore, when a 
distribution rule does not hold, unlike the studies by Ali et al. (2011) and Qin and Hong (2010), where the 



 Natural & Applied Sciences Journal Vol. 8 (1) 2025 49 
 
 
distribution rules are investigated to obtain the algebraic structures of ՏՏs associated with the operations, 
we also explore and put forward the condition(s) under which the assertions hold. In this sense, we obtain 
many new algebraic structures related to ՏՏs and restricted and extended intersection operations. Thus, this 
study presents a detailed and complete examination of all the properties of restricted intersection and 
extended intersection operation, which are the basic ՏՏ operations. As the intersection operation exists in 
classical set theory, all of the properties of the operations together with their counterparts in classical sets 
have been thoroughly investigated without omission. Additionally, the properties that were previously 
handled with incorrect/lengthy proofs or without proof in earlier studies by Ali et al. (2009), Ali et al. 
(2011), Sezgin and Atagün, 2011, Singh and Onyeozili (2012c) are handled again by presenting them in 
their correct forms. In order to find out whether the collection of ՏՏs and restricted and extended 
intersection operations form lattice structures in the collection of ՏՏs over the universe and in the collection 
of ՏՏ with a fixed parameter set, the so-called absorption laws are examined with detailed their proofs.  
Although the absorption laws were presented in previous works by Ali et al. (2011), Qin and Hong (2010), 
Singh and Onyeozili (2012c) presented the results only with a table without proofs, and since the proofs in 
other studies are element-based and relatively long proofs, they are presented in this study with their more 
rational proofs. Furthermore, in this study, the absorption laws for the ՏՏs with a fixed parameter set are 
given in detail for the newly-defined operations by Yavuz (2024) and Aybek (2024) as well. Additionally, 
the distributive rules are presented collectively in a table. Finally, we systematically, in detail, and 
collectively present the unary and binary algebraic structures, and lattice structures formed by the restricted 
intersection and extended intersection together with other ՏՏ operations both in the collection of ՏՏ over 
the universe and in the collection of ՏՏs with a fixed parameter set together with their detailed explanations 
and with the corrected ones. 

 
The stream of the paper is as follows: In Section 2, we review the fundamental concepts regarding 

ՏՏs and certain algebraic structures which are obtained to be associated with the ՏՏs throughout the paper. 
In Section 3, first of all, we give the original definitions of intersection operations of ՏՏs proposed up now 
together with the historical improvements of these operations in chronological order to indicate what 
deficiencies these definitions have and to contribute to the comprehensibility of the study. Then, the revised 
and updated definition of restricted intersection and all the properties of the restricted and extended 
intersection operations are presented and examined in detail and demonstrated with their complete proofs. 
When investigating the properties and distributive rules, the case where the intersection of the parameter 
sets of the ՏՏs is empty is always considered in the assertions and the proofs. As intersection operation 
also exists in classical sets, special attention is given to show how the properties of intersection operation 
in classical sets reflect these operations to obtain their counterparts and analogies in ՏՏ theory. Thus, 
numerous new properties have also been added to those previously presented in this field. Besides, 
previously presented properties that were either unproven or had lengthy or erroneous proofs are presented 
with simplified proofs. Incorrect parts in previous studies, as regards these operations, are corrected with 
detailed explanations. Additionally, in order to see which algebraic structures these basic ՏՏ operations 
form, the distributions of restricted and extended intersection operations over other types of ՏՏ operations 
are examined in Section 3, and the absorption laws are investigated in detail in Section 4, and it is observed 
that these ՏՏ operations individually and together with other types of ՏՏs form a wide variety of algebraic 
structures in the set of ՏՏs over the universe and in the set of ՏՏs with a fixed parameter set, such as 
monoid, bounded semi-lattice, semiring, hemiring, bounded distributive lattice, Bool algebra, De Morgan 
Algebra, Kleene Algebra, Stone algebra and MV-algebra, which are given collectively and with their 
detailed explanations in Section 4. We also, by providing a methodical study, correct some algebraic 
structures associated with the restricted and extended intersection operations obtained by Ali et al. (2009) 
presenting the corrected new ones. In the conclusion section, we highlight the significance of the study's 
results and their possible impact on both the ՏՏ theory, classical algebra, and real-world scenario. Taking 
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all of these into account, this paper is the most comprehensive study in the existing literature of ՏՏs as 
regards the restricted and extended intersection operations which encompass all the previous studies on this 
subject  (Maji et al., 2003; Pei and Miao, 2005; Ali et al., 2009; Qin and Hong, 2010; Sezgin and Atagün, 
2011; Ali et al., 2011; Singh and Onyeozili, 2012c, Sen, 2014) and  (Neog and Sut, 2011; Fu, 2011; Ge and 
Yang, 2011; Zhu and Wen, 2013; Onyeozili and Gwary, 2014; Husain and Shivani, 2018) serving as a 
handbook for those who start to study ՏՏ theory and advancing the theory by closing the big gap in the 
literature in this regard, as such an inclusive study does currently not exist in the literature and it is quite 
necessary in terms of shedding light on the future studies and preventing possible errors in the theory. 

 
 

 
In this section, several algebraic structures and several fundamental concepts in ՏՏ theory are 

provided. Soft set first proposed by Molodtsov (1999); however its definition was revised by Maji et al. 
(2003). 

Definition 1. Let E be the parameter set, Ɲ⊆ E, U be the universal set, P(U) be the power set of U, A pair 
(₣,Ɲ) is called an ՏՏ over U, where ₣ is a function given by ₣ : Ɲ → P(U) (Maji et al., 2003). 

While the SS (₣,Ɲ) is denoted as FƝ in some papers, we prefer the commonly-held representation “(₣,Ɲ)” 
in this study. Besides, the definition of ՏՏ, proposed by Maji et al. (1999), has been reorganized by Çağman 
and Enginoğlu (2010) however, we use the definition of Maji et al. (2003) to be faithful to the original 
definition of ՏՏ throughout this paper. 

More than one ՏՏ can be defined with a subset Ɲ of the set of parameters E. In this case, these ՏՏs are 
denoted as (₣,Ɲ) (ℭ, Ɲ), (Ҥ, Ɲ), etc. Also, more than one ՏՏ can be defined with different subsets Ɲ,Y, ⅌ 
etc. of the set of parameters E. In this case, the ՏՏs are denoted as (₣,Ɲ), (₣,Y), (₣,⅌), etc. (Maji et al, 
2003). The collection of all ՏՏs over U is denoted by SE(U), and SƝ(U) indicates the collection of all ՏՏs 
over U with a fixed parameter set Ɲ, where Ɲ is a subset of E. 
The definitions of “NULL ՏՏ” and “absolute ՏՏ” were first introduced by Maji et al. (2003), where a 
NULL ՏՏ (₣,A) was represented by Φ, and an absolute ՏՏ (₣,A) by �̃�𝐴. However, it was extensively shown 
by Ali et al. (2009), Sezgin and Atagün (2011), and Yang (2008) that these definitions and notations, 
unfortunately, pose certain mathematical problems. Specifically, these definitions create many problematic 
situations in theorems and propositions, as the parameter set of the ՏՏ need not be a fixed set changing 
from ՏՏ to ՏՏ. 
To address these problematic situations, Ali et al. (2009) updated these definitions, introducing the 
definitions of “relative null ՏՏ with respect to parameter set Ɲ” and “relative whole ՏՏ with respect to 
parameter set Ɲ” which are all determined by the parameter set of the ՏՏ. Consequently, in several 
significant studies (Ali et al. (2009), Ali et al. (2011) Sezgin and Atagün (2011)), the mathematically correct 
versions of all problematic theorems and propositions related to NULL ՏՏ and absolute ՏՏ operations 
were provided. Throughout this paper, in order to avoid confusion, we use the definitions of Ali et al. (2011) 
for absolute ՏՏ, null ՏՏ, and whole ՏՏ. 
A function whose domain is the empty set is known as the empty function. Since the empty function is also 
a function, it is evident that by taking the domain as ∅, an ՏՏ can be defined as F: ∅ ⟶ P(U). This type of 
ՏՏ is referred to as an empty ՏՏ and is represented by ∅∅. As stated by Ali et al. (2011), the only ՏՏ with 
an empty parameter set is ∅∅. In this study, unless otherwise stated, all the ՏՏs over U are different from 
∅∅.  

2. PRELIMINARIES 



 Natural & Applied Sciences Journal Vol. 8 (1) 2025 51 
 
 
Definition 2. Let (₣,Ɲ)∈ SE(U). If ₣(չ)=∅ for all չ∈ Ɲ, then (₣,Ɲ) is referred to as a null ՏՏ with respect to 
Ɲ, signified by ∅Ɲ (Ali et al, 2009). An ՏՏ with an empty parameter set is denoted as ∅∅ and is called an 
empty ՏՏ (Ali et al., 2011). 

Definition 3. Let (₣,Ɲ)∈ SE(U). If ₣(չ)=U for all չ∈ Ɲ, then (₣,Ɲ) is referred to as a relative whole ՏՏ with 
respect to Ɲ, signified by UƝ. The relative whole ՏՏ  UE with respect to the universe set of parameters E is 
called the absolute ՏՏ over U (Ali et al., 2009). 
Soft subsets and soft equal relations, in the framework of ՏՏ theory, are core concepts as well. Maji et al. 
(2003) were the pioneers in using a very strict definition of soft subsets. The definition is as follows: 
 

Definition 4. Let (₣,Ɲ), (ℭ,Ɏ)∈ SE(U). If 

i. Ɲ⊆ Ɏ and 

ii. For all 𝑤𝑤 ∈ Ɲ, ₣(w)= ℭ(w) 

 then  (₣,Ɲ) is called a soft subset of (ℭ, Ɏ), denoted as (₣,Ɲ) ⊆�  (ℭ, Ɏ). 
 

If (ℭ, Ɏ) is a soft subset of (₣,Ɲ), then (₣,W) is a soft superset of (ℭ, Ɏ), denoted as (₣,Ɲ) ⊇�  (ℭ, Ɏ). If (₣,Ɲ) 
⊆�  (ℭ, Ɏ) and (ℭ, Ɏ) ⊆�  (₣,Ɲ), then (₣,Ɲ) and (ℭ, Ɏ) are said to be (soft) equal sets (Maji et al., 2003).  

In the study by Sezgin and Atagün (2011), the properties of restricted intersection and restricted union, and 
extended intersection and extended union operations were examined according to the soft subset definition 
by Maji et al. (2003). However, since the soft subset definition in the study by Pei and Miao (2005) is more 
related to classical sets, and thus is more useful and functional, the soft subset definition by Pei and Miao 
(2005) is used throughout this study.  

Definition 5. Let (₣,Ɲ), (ℭ, Ɏ)∈ SE(U). If Ɲ ⊆ Ɏ and ₣(չ) ⊆ ℭ(չ), for all չ∈ Ɲ, then (₣,Ɲ) is a soft subset of 
(ℭ,Ɏ), indicated by (₣,Ɲ)⊆�(ℭ,Ɏ). If (ℭ,Ɏ) is a soft subset of (₣,Ɲ), then (₣,Ɲ) is a soft superset of (ℭ,Ɏ), 
indicated by (₣,Ɲ)⊇�(ℭ, Ɏ). If (₣,Ɲ)⊆�(ℭ,Ɏ) and (ℭ,Ɏ)⊆�(₣,W), then (₣,Ɲ) and (ℭ,Ɏ) are called soft equal sets 
(Pei and Mio, 2005). 
In the literature, various and updated definitions of soft subset and soft equal set have been introduced. For 
these definitions and the relationships between them, we refer to the studies by Qin and Hong, 2010); Jun 
and Yang, 2011; Liu et al. 2012; Feng and Li, 2013; Abbas et al., 2014; Mujahid et al., 2017; Abbas et al., 
2017; Al-Shami, 2019; Al-Shasi and El-Shafei, 2020; and Ali et al., 2022. 

The concept of the complement of an ՏՏ was first introduced by Maji et al. (2003). In this definition, when 
the complement of an ՏՏ (₣,Ɲ) is calculated, the complement of Ɲ is also conducted, thus the parameter 
set of the ՏՏ changes. It was shown by Ali et al. (2009) that this causes problematic situations in important 
aspects such as De Morgan's laws. To overcome this confusion, Ali et al. (2009) introduced the concept of 
“relative complement” of an ՏՏ which is more rational. In this definition, when the complement of an ՏՏ 
is conducted, the parameter set remains unchanged, that is, it is preserved. This definition became preferred, 
as it is more functional than the complement defined by Maji et al. (2003). To avoid confusion, in the study 
by Ali et al. (2009), the complement defined by Maji et al. (2003) is called the “neg-complement”, and the 
updated complement concept for ՏՏs is called the “relative complement” (briefly soft complement). Below, 
the concept of (relative) complement introduced by Ali et al. (2011) is presented and it used throughout this 
study is provided. 

Definition 6. Let (₣,Ɲ)∈ SE(U).  The relative complement of (₣,Ɲ), indicated by (₣, Ɲ)r =(₣r,Ɲ), is defined 
as follows: ₣r(չ)=U-₣(չ), for all չ∈ Ɲ  (Ali et al, 2011). 
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From here,   (∅A)r=UA,  (UA)r=∅A, (∅E)r= UE,  (UE)r=∅E,  (∅∅)r=∅∅ (Since the parameter set remains 
unchanged and ∅∅ is the only ՏՏ that has an empty parameter set), and ((₣, Ɲ)r)𝑟𝑟=(₣, Ɲ).  
 
Moreover, it is clear that ∅𝐴𝐴 ⊆� (₣,A) ⊆�  UA  ⊆�  UE (Ali et al., 2011). Here we want to point out one issue: In 
Ali et al. (2011) it is stated that  ∅∅ ⊆� ∅A ⊆�(₣,A) ⊆� UA  ⊆�  UE; however it is unknown whether  ∅∅ is a subset 
of ∅A or not due to the definition of empty ՏՏ. 
 
Çağman (2021) introduced two new complements as the inclusive complement (Here, we denote by +) and 
the exclusive complement (Here, we denote by θ). For two sets Ɲ and ℑ, these binary operations are defined 
as Ɲ + ℑ = Ɲ’∪ℑ and Ɲ θℑ = Ɲ’∩ℑ’. Sezgin et al. (2023a) investigated the relationship between these two 
operations and also introduced new binary operations: For the sets Ɲ and ℑ, Ɲ *ℑ = Ɲ’∪ℑ’, Ɲ 𝛾𝛾ℑ = Ɲ’∩ℑ, 
Ɲ  λ ℑ = Ɲ ∪ℑ’. Let the set operations be denoted by "⧆" (that is, ⧆ can be ∩, ∪,\, ∆, +,θ, *, λ,γ), then the 
following definitions are applied to all forms of ՏՏ operations:    

Definition 7. Let (₣, Ɲ), (ℭ,Ɏ)∈ SE(U) such that Ɲ∩ Ɏ≠ ∅. The restricted ⧆ operation of (₣, Ɲ) and (ℭ,Ɏ) 
is the ՏՏ (Ҥ,⅌), denoted by (₣,Ɲ) ⧆R (ℭ, Ɏ)= (Ҥ,⅌), where ⅌ = Ɲ ∩Ɏ and for all չ∈⅌, Ҥ(չ) = ₣(չ)⧆ ℭ (չ). 
Here, if ⅌= Ɲ ∩ Ɏ = ∅, then (₣,Ɲ) ⧆R(ℭ, Ɏ)=  ∅∅ (Ali et al., 2011; Pei and Mia, 2005; Sezgin and Atagün, 
2011). 

Definition 8. Let (₣,Ɲ), (ℭ,Ɏ)∈ SE(U). The extended ⧆ operation (₣,Ɲ) and (ℭ,Ɏ) is the ՏՏ (Ҥ,⅌), denoted 
by (₣, Ɲ) ⧆ε(ℭ,Ɏ) = (Ҥ, ⅌), where  ⅌= Ɲ∪Ɏ, and for all չ∈⅌,   

Ҥ(չ) = �
₣(չ), չ ∈ Ɲ − Ɏ
ℭ(չ), չ ∈ Ɏ − Ɲ

₣(չ) ⧆ ℭ(չ), չ ∈ Ɲ ∩ Ɏ
 

 (Maji et al., 2003; Ali et al., 2009; Ali et al., 2011; Sezgin et al, 2019; Stojanavic, 2021; Aybek, 2024). 

Definition 9. Let (₣,Ɲ), (ℭ, Ɏ)∈ SE(U). The complementary extended ⧆ operation (₣,Ɲ) and (ℭ,Y) is the 
ՏՏ (Ҥ,⅌), denoted by (₣,Ɲ)＊ ⧆ε

(ℭ, Ɏ) = (Ҥ, ⅌), where ⅌ = Ɲ∪ Ɏ, and for all չ∈⅌, 

Ҥ(չ) = �
₣′(չ), չ ∈ Ɲ − Ɏ
ℭ′(չ), չ ∈ Ɏ − Ɲ

₣(չ) ⧆ ℭ(չ), չ ∈ Ɲ ∩ Ɏ
 

(Akbulut, 2024; Demirci, 2024; Sarıalioğlu, 2024; Sezgin and Sarıalioğlu, 2024b) 

Definition 10. Let (₣,Ɲ), (ℭ, Ɏ)∈ SE(U). The soft binary piecewise ⧆ operation of (₣,Ɲ) and (ℭ, Ɏ) is the 
ՏՏ (Ҥ, Ɲ), denoted by (₣, Ɲ)

~
⧆(ℭ, Ɏ) = (Ҥ, Ɲ), where for all չ∈ Ɲ,  

Ҥ(չ) = � ₣(չ), չ ∈ Ɲ − Ɏ
₣(չ) ⧆ ℭ(չ), չ ∈ Ɲ ∩ Ɏ 

(Eren and Çalışıcı, 2019; Sezgin and Yavuz, 2023a; Sezgin and Çalışıcı, 2024; Yavuz, 2024) 

Definition 11. Let (₣,Ɲ), (ℭ, Ɏ)∈ SE(U). The complementary soft binary piecewise ⧆ operation of (₣,Ɲ) 

and (ℭ, Ɏ) is the ՏՏ (Ҥ, Ɲ), denoted by (₣, Ɲ)
＊

~
⧆

(ℭ, Ɏ) = (Ҥ, Ɲ), where for all չ∈ Ɲ, 

Ҥ(չ) = � ₣′(չ), չ ∈ Ɲ − Ɏ
₣(չ) ⧆ ℭ(չ), չ ∈ Ɲ ∩ Ɏ 
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(Sezgin and Demirci, 2023; Sezgin et al. 2023a, 2023b; Sezgin and Yavuz, 2023b; Sezgin and Dagtoros, 
2023; Sezgin and Çağman, 2024; Sezgin and Sarıalioğlu, 2024a) 

Definition 12. An algebraic structure (Ś,⋆) is said to be idempotent if s2=s for all s∈ Ś, then. An idempotent 
semigroup is said to be a band, a commutative band is called a semi-lattice, and a semi-lattice with an 
identity is called a bounded semi-lattice (Clifford, 1954).  

Definition 13. Let Ś be a non-empty set and "+" and "⋆" be two binary operations defined on Ś. If the 
algebraic structure (Ś, +, ⋆)  satisfies the following properties, then it is called a semiring:  

i. (Ś, +) is a semigroup. 
ii. (Ś, ⋆) is a semigroup, 

iii. For all  ᵬ, ᵭ, z ∈ Ś, ᵬ⋆( ᵭ + z) = ᵬ⋆ ᵭ + ᵬ⋆z and (ᵬ + ᵭ) ⋆z = ᵬ⋆z + ᵭ⋆z 
 

If ᵬ + ᵭ = ᵭ + ᵬ for all ᵬ,ᵭ∈ Ś,  then Ś is called an additive commutative semiring. If ᵬ⋆ ᵭ =ᵭ⋆ ᵬ for all ᵬ,ᵭ∈ 
Ś, then Ś is called a multiplicative commutative semiring. If there exists an element 1∈ Ś such that ᵬ⋆1=1⋆ 
ᵬ = ᵬ for all ᵬ∈ Ś (multiplicative identity), then Ś is called semiring with unity. If there exists 0∈ Ś such that 
for all ᵬ ∈ Ś, 0⋆ ᵬ =ᵬ⋆0=0 and 0+ ᵬ = ᵬ +0= ᵬ, then 0 is called the zero of Ś. A semiring with commutative 
addition and a zero element, is called a hemiring (Vandiver, 1934). 

Definition 14. Let ζ be a non-empty set, and let "˅" and "˄" be two binary operations defined on ζ. If the 
algebraic structure. (ζ,˅,˄)  satisfies the following properties, then it is called a lattice: 

i. (ζ, ∨) is a semi-lattice 
ii. (ζ, ∧) is a semi-lattice 

iii. For all Ջ,Ց ∈ ζ ,  Ջ ˅(Ջ ˄ Ց) =Ջ ˄(Ջ ˅ Ց)  (absorption law) 

A lattice with an identity element according to both operations is called a bounded lattice. In a bounded 
lattice, the identity element of ζ with respect to the ∧ operation is usually denoted by 1, while the identity 
element with respect to the ˅ operation is denoted by 0. If the bounded lattice ζ has an element Ջ′ such that 
Ջ ˄ Ջ′ = 0 and Ջ˅ Ջ′=1 for all Ջ ∈ ζ, then ζ is called a complemented lattice. A lattice holding distribution 
law is called a distributive lattice. A lattice that is bounded, distributive, and at the same time complemented 
is called Boolean algebra. The lattice with De Morgan's law, i.e. (Ջ ∨ Ց)′ = Ջ ′∧ Ց ′ and (Ջ ∧ Ց)′ = Ջ ′ ∨ Ց ′ 
for all Ջ, Ց ∈ ζ is called De Morgan algebra. If De Morgan algebra satisfies the condition Ջ ∧ Ջ ′≤ Ց∨ Ց′ for 
all Ջ, Ց ∈ ζ, then it is called a Kleene algebra. For Ջ ∈ ζ, Ջ * is called the pseudo-complete of Ջ if Ջ ∧ Ջ*= 
0 and Ց ≤ Ջ* whenever Ջ ∧Ց =0. The equality Ջ*∨ Ջ**=1 is called the Stone’s identity. A pseudo-
complemented distributive lattice satisfying the Stone’s identity is called a Stone algebra (Ali et al., 2011) 

Definition 15. Let Ϩ be a non-empty set with binary operation "⊕" and a unary operation "*" defined on Ϩ. 
If 0 is a constant that fulfills the following axioms for each չ and y in Ϩ, then the structure (Ϩ,⊕,∗ ,0) is 
called an MV-algebra: 

i. (Ϩ, ⊕, 0) commutative monoid. 
ii. (չ∗ )∗= չ 

iii. 0∗⊕ չ =0∗ 
iv. (չ∗ ⊕ y)∗ ⊕ y=(y∗ ⊕ չ)∗ ⊕ չ 

 
The concept of MV-algebras was introduced by Chang (1959) with the aim of providing an algebraic proof 
for Lukasiewicz logic, a many-valued logic introduced by Lukasiewicz in the 1920s. We refer to Pant et al. 
(2024) regarding the possible applications of network analysis and graph applications on ՏՏs, and to Ali et 
al. (2015), Jan et al. (2020), Irfan Siddique et al. (2021), and Mahmood (2020) for bipolar soft sets, double 
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framed soft sets and lattice ordered soft sets. For more about soft AG-groupoids, soft KU-algebras, and 
picture soft sets, see Khan et al. (2015), Gulistan and Shahzad (2014), Memiş (2022), and Naeem and 
Memiş (2023), respectively. 

 
 

 
In the theory of ՏՏ, which was proposed in 1999, many soft intersection operations have been 

defined. There are some differences among them, and some definitions are no longer preferred for use 
because they are essentially not very useful. We find it beneficial to start this section by recalling these 
points. From this perspective, we first aim to present the soft intersection operations existing in the literature 
in chronological order, and to indicate what deficiencies these definitions have, as we believe this will 
contribute to the comprehensibility of the study. 

 
In 2003, the intersection of ՏՏs was first defined by Maji et al. (2003) as follows: Let (₣,A) and 

(ℭ,B) be two ՏՏs over U. The intersection operation of these ՏՏs, denoted by (₣,A)∩�(ℭ,B), is defined as 
(₣,A)∩�(ℭ,B)=(Ҥ, C), where  C=A∩B and Ҥ(⍺)=₣(⍺) or Ҥ(⍺)=ℭ(⍺), for all ⍺ ∊C (as both are the same sets) 
(Maji et al, 2003). Although it was claimed in this definition that ₣(⍺) = ℭ(⍺), for ⍺ ∈ C, it is clear from the 
definition and nature of the ՏՏ that such a situation is not necessarily the case. Therefore, the problematic 
nature of this definition has been detailed in the studies by Ali et al. (2009) and Pei and Miao (2005). 

 
Pei and Miao (2005) defined a new soft intersection operation, which they believed would be more 

functional, as follows: Let (₣, A) and (ℭ, B) be two ՏՏs over U. The restricted intersection of these ՏՏs, 
denoted by (₣,A)∩(ℭ,B), is defined as (₣,A)∩(ℭ,B)=(Ҥ,C), where C=A∩B and for all ⍺ ∊C, Ҥ(⍺) = 
₣(⍺)∩ℭ(⍺) (Pei and Mia, 2005). In this definition, however, it is not addressed what the result of the 
operation (₣,A)∩(ℭ,B) would be in the case where the parameter sets of the ՏՏs are disjoint, and the 
notation for the restricted soft intersection operation is chosen to be similar to the intersection operation in 
classical sets. 

 
Feng et al. (2008) defined an intersection operation, called the bi-intersection operation, as follows: 

Let (₣, A) and (ℭ, B) be two ՏՏs over U. The bi-intersection of these ՏՏs, where C=A∩B and for all չ ∈ C,  
H: C → P(U) is defined as Ҥ(չ)=₣(չ)∩ℭ(չ), and is denoted by (₣, A) ⊓� (ℭ, B) = (Ҥ, C). In this definition, 
as well, it is not addressed what the result of the operation (₣, A) ⊓� (ℭ, B) would be in the case where 
A∩B=∅. 

 
Ali et al. (2009) defined an ՏՏ operation called the restricted intersection operation as follows: Let 

(₣, A) and (ℭ, B) be two ՏՏs over U such that A∩B≠ ∅. The restricted intersection operation of (₣, A) and 
(ℭ, B) denoted by (₣,A)⋒(ℭ,B), is defined as (₣,A)⋒(ℭ,B)=(Ҥ,C), where C=A∩B, and for all ⍺ ∊C, Ҥ(⍺)= 
₣(⍺)∩ℭ(⍺). Unlike the definition by Feng et al. (2008), this definition starts with the condition "Let (₣,A) 
and (ℭ,B) be two ՏՏs such that A∩B ≠ ∅," treating this condition as a necessary condition. Moreover, it 
does not address what the result of the operation (₣,A)⋒(ℭ,B) would be in the case where A∩B = ∅. 

 
Ali et al. (2011) evaluated the case of the intersection of the parameter sets of two ՏՏs being empty, 

which was not considered in the restricted soft intersection operation defined by Ali et al. (2009), and 
updated the definition of the restricted intersection operation as follows: “Let (₣, A) and (ℭ, B) be two ՏՏs 
over U such that A∩B=∅. The restricted intersection operation (₣,A) and (ℭ,B) is denoted by (₣,A)∩R(ℭ,B), 
and is defined as (₣,A) ∩R(ℭ,B)=(Ҥ,C), where C = A∩B, and for all ⍺ ∈ C, Ҥ(⍺)= ₣(⍺)∩ℭ(⍺). If A∩B=∅, 
then (₣,A) ∩R(ℭ,B)= ∅∅. “This was the first study to provide information on the result of the restricted 
intersection operation when the intersection of the parameter sets is empty. Additionally, this study 

3. MORE ON RESTRICTED AND EXTENDED INTERSECTION OPERATIONS 
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preferred to use the symbol “∩R” which is the most useful notation for the restricted intersection operation. 
The letter "R" under the intersection symbol is in harmony with and meaningful because it stands for 
"restricted" in English. Indeed, in subsequent studies on ՏՏ operations, this notation form was preferred 
for restricted ՏՏ operations. The most current and useful definition of the restricted intersection definition 
is the one provided by Ali et al. (2011). However, in this definition, for two ՏՏs (₣,A) and (ℭ, B) over the 
same universe, the condition A∩B≠ ∅ is again included as a necessary condition for the restricted 
intersection of these two ՏՏs to be calculated by adding the expression “Let (₣,A) and (ℭ, B) be two ՏՏs 
over U such that A∩B≠ ∅.” However, even if A∩B= ∅, the restricted intersection operation of these ՏՏs 
is still defined, and in this case, (₣,A) ∩R(ℭ,B)= ∅∅. That is, whether the intersection of the parameter sets 
of the two ՏՏs to be intersected is an empty set or not, the restricted intersection of the two ՏՏs can be 
calculated in any case. The parameter sets of the two ՏՏs being not disjoint is never a necessary condition 
for their restricted intersection to be calculated. 

 
In this sense, from a chronological perspective, although the idea of the restricted intersection 

operation in ՏՏs was first proposed by Pei and Miao (2005), as in their definition, the case where the 
intersection of the parameter sets of the ՏՏs to be intersected is empty was not considered and it is addressed 
firstly in the study of Ali et al. (2011), the updated definition for the restricted intersection provided in this 
section as Definition 3.1.1 will be given and used. 

 
In this section, the algebraic properties of the restricted intersection and extended intersection 

operations of ՏՏs, updated considering the above-mentioned points, are examined in comparison with the 
properties of the intersection operation in classical sets. We investigate the distribution rules so as to obtain 
the algebraic structures formed by these operations in the collection of ՏՏs with a fixed parameter set, and 
in the collection of softs over the universe in the following section. 

 
Here, we find it beneficial to note the following: Although the restricted intersection operation exists 

in the literature as the restricted and extended intersection operations are pre-defined operations, many 
properties included in this section have been given in previous works (Ali et al. 2009; Ali et al., 2011; Feng 
et al. 2008; Pei and Mia, 2005; Maji et al, 2003; Qin and Hong, 2010; Sezgin and Atagün, 2011), but without 
considering the important points detailed in this section. Moreover, in most studies, many of these properties 
are provided without proofs, or with insufficiently detailed proofs. In this study, all proofs are systematically 
provided based on function equality. Additionally, the relationships between Pei and Miao's (2005) 
definition of soft subsets and restricted/extended intersection operations, which were not addressed in 
previous studies, are presented for the first time in this study with detailed proofs and their classical set 
counterparts. 

 
Moreover, since all properties of the fundamental ՏՏ operations, namely the restricted and extended 

intersection operations, are provided together with their proofs, and since this study takes care the case 
where the intersection of the parameter sets of the ՏՏs may be empty set for each property-previously 
overlooked in other studies-this work is comprehensive of all previous works. From this perspective, we 
consider this study to be of significant importance, and hope it serves as a handbook for beginners in ՏՏ 
theory. 
 
3.1. More on Restricted Intersection Operation 
 
In this subsection, the updated and revised presentation of the definition of restricted intersection defined 
by Ali et al. (2011), its example, and all its properties are provided with their detailed proofs.   
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Definition 16 Let (₣, Ԓ) and (ℭ, ⅌) be ՏՏs over U. The restricted intersection of (₣, Ԓ) and (ℭ, ⅌), denoted 
by (₣, Ԓ) ∩R (ℭ, ⅌),  is defined as (₣, Ԓ) ∩R (ℭ, ⅌) = (Ҥ, C), where C= Ԓ ∩⅌. Here, if C= Ԓ ∩⅌≠∅, then 
Ҥ(⍺)= ₣(⍺) ∩ℭ(⍺) for all ⍺∊C, and if C= Ԓ ∩⅌=∅, then (₣,Ԓ) ∩R (ℭ,⅌)=(Ҥ, C)= ∅∅. 
 

Since the only ՏՏ with an empty parameter set is ∅∅, it is clear from the definition that if 
C=Ԓ∩⅌=∅, then (₣,Ԓ) ∩R (ℭ,⅌)= ∅∅. Therefore, it can be seen that there is no requirement for Ԓ∩⅌≠ ∅ 
for the restricted intersection operation to be defined, where (₣,Ԓ) and (ℭ, ⅌) are two ՏՏs over U. 
The reason we have not cited Ali et al. (2009), Ali et al. (2011), Feng et al. (2008), and Pei and Miao (2005) 
in Definition 16 is due to the detailed explanations we provided in the introduction of Section 3, where we 
updated the definition by considering the case of the intersection of parameter sets being empty. In many 
studies (Ali et al., 2009; Ali et al., 2011; Sezgin and Atagün, 2011; Singh and Onyeozili, 2012c), properties 
related to the restricted intersection operation were stated overlooking this case, but throughout this study, 
it has been shown that this condition is not necessary. 
The symbol "∩R" used to denote the restricted intersection operation aligns well with the English word 
"restricted," forming a meaningful whole. This notation form has been preferred for restricted ՏՏ operations 
in other studies on ՏՏ operations as well. 

Example 1 Let E={e1,e2,e3,e4} be the parameter set  Ԓ ={e1, e3} and ⅌ ={e2, e3, e4} be the subsets of E 
and U={h1,h2,h3,h4,h5} be the initial universe set. Assume that (₣,Ԓ) and (ℭ,⅌) are the ՏՏs over U defined 
as follows: 

(₣,Ԓ)={( e1,{h2,h5}),(e3,{h1,h2,h5})}, (ℭ,⅌)={( e2,{h1,h4,h5}), (e3,{h2,h3,h4}),(e4, {h3,h5})}. 

Let (₣,Ԓ)∩R(ℭ,⅌)=(Ҥ,Ԓ∩⅌), where for all ⍺ ∊ Ԓ ∩ ⅌ = {e3}, 

Ҥ(e3)=₣(e3)∩ℭ(e3)={h1,h2,h5}∩{h2,h3,h4}={h2}. 

Thus, (₣,Ԓ) ∩R(ℭ,⅌)={(e3,{h2})}. 
 
Proposition 1 The set SE(U) is closed under the operation ∩R.  That is, when (₣,Ԓ) and (ℭ,⅌) are two ՏՏs 
over U, then so is (₣, Ԓ) ∩R (ℭ, ⅌).  
 
Proof: It is clear that ∩R is a binary operation in SE(U). That is, 
                                             ∩R : SE(U)x SE(U)→ SE(U) 
                                                    ((₣,Ԓ), (ℭ,⅌)) → (₣, Ԓ) ∩R (ℭ, ⅌)=(Ҥ,Ԓ∩⅌) 
Hence, the set SE(U) is closed under the operation  ∩R . Similarly,  
                                             ∩R: 𝑆𝑆Ԓ(U) x 𝑆𝑆Ԓ(U)→ 𝑆𝑆Ԓ(U) 
                                                    ((₣,Ԓ), (ℭ,Ԓ)) → (₣, Ԓ) ∩R (ℭ, Ԓ)=(K,Ԓ∩Ԓ)=(K,Ԓ) 
That is, ∩R is also closed in SԒ(U), where Ԓ is a fixed subset of E. 
 
Proposition 2 Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, [(₣,Ԓ) ∩R (ℭ,⅌)] ∩R (Ҥ,Ϩ) = (₣,Ԓ) ∩R 
[(ℭ,⅌) ∩R(Ҥ,Ϩ)] (Pei and Miao, 2005). 
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Proof: Pei and Miao (2005) presented this property without its proof; however, we provide it in detail with 
its rigorous proof. Let (₣,Ԓ)∩R(ℭ,⅌)=(S,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, S(⍺)=₣(⍺)∩ℭ(⍺). Let 
(S,Ԓ∩⅌)∩R (Ҥ, Ϩ) =(R,(Ԓ∩⅌)∩Ϩ)), where for  all ⍺∊(Ԓ∩⅌)∩Ϩ, R(⍺)=S(⍺)∩Ҥ(⍺). Thus,  

R(⍺)=[₣(⍺)∩ℭ(⍺)]∩Ҥ(⍺) 
Let (ℭ,⅌)∩R(Ҥ,Ϩ)=(K,⅌∩Ϩ), where for all ⍺∊⅌∩Ϩ, K(⍺)=ℭ(⍺)∩Ҥ(⍺). Let (₣,Ԓ)∩R (K, ⅌ ∩ Ϩ) 
=(L,Ԓ∩(⅌∩Ϩ)), where for all ⍺∊Ԓ∩(⅌∩Ϩ), L(⍺)=₣(⍺)∩K(⍺). Thus,    

L(⍺)=₣(⍺)∩[ℭ(⍺)∩Ҥ(⍺)] 
Here it is seen that (R,(Ԓ ∩ ⅌) ∩ Ϩ) =(L, Ԓ∩(⅌∩Ϩ)). That is,  ∩R is associative in the SE(U). 
 Here, it is obvious that if Ԓ∩⅌=∅ or ⅌∩Ϩ=∅ or Ԓ∩Ϩ=∅, then (R,(Ԓ ∩ ⅌) ∩ Ϩ) =(L, Ԓ∩(⅌∩Ϩ))= ∅∅, thus 
∩R is associative under these conditions as well. 
 
Proposition 3 Let (₣,Ԓ), (ℭ,Ԓ), and (Ҥ,Ԓ) be ՏՏs over U. Then, [(₣,Ԓ) ∩R(ℭ,Ԓ)] ∩R(Ҥ,Ԓ)=(₣,Ԓ) ∩R[(ℭ,Ԓ) 
∩R(Ҥ,Ԓ)].    
 
Proof: Let (₣,Ԓ)∩R(ℭ,Ԓ)=(K,Ԓ), where for all ⍺∊Ԓ∩Ԓ=Ԓ, K(⍺)=₣(⍺) ∩ℭ(⍺). Let (K,Ԓ)∩R (Ҥ, Ԓ) =(R,Ԓ), 
where for all ⍺∊Ԓ∩Ԓ=Ԓ, R(⍺)=K(⍺)∩Ҥ(⍺). Thus, 

R(⍺)=[₣(⍺)∩ℭ(⍺)]∩Ҥ(⍺) 
Let (ℭ,Ԓ)∩R(Ҥ,Ԓ)=(L,Ԓ), where for all ⍺∊Ԓ∩Ԓ, L(⍺)=ℭ(⍺)∩Ҥ(⍺). Let (₣,Ԓ) ∩R(L,Ԓ)= (Ǹ,Ԓ), where for 
all ⍺∊Ԓ∩Ԓ, Ǹ(⍺)= ₣(⍺)∩L(⍺). Thus, 

Ǹ(⍺)=₣(⍺) ∩ [ℭ(⍺)∩Ҥ(⍺)] 
It is seen that (R,Ԓ)=(Ǹ,Ԓ). That is, ∩R is associative in SԒ(U). 
Proposition 4 Let (₣,Ԓ), and (ℭ,⅌) be ՏՏs over U. Then, (₣,Ԓ) ∩R(ℭ,⅌)=(ℭ,⅌) ∩R(₣,Ԓ) (Qin and Hong, 
2010). 
 
Proof: Qin and Hong (2010) presented this property without proof in their study; however, we provide it 
in detail with its rigorous proof.  Let (₣,Ԓ) ∩R(ℭ,⅌)=(Ҥ,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, Ҥ(⍺)=₣(⍺)∩ℭ(⍺). 
Let (ℭ,⅌)∩R(₣,Ԓ)=(S,⅌∩Ԓ), where for all ⍺∊⅌∩Ԓ, S(⍺)=ℭ(⍺)∩₣(⍺). Thus,  

(₣,Ԓ)∩R(ℭ,⅌)=(ℭ,⅌) ∩R (₣, Ԓ). 
Hence, ∩R  is commutative in 𝑆𝑆𝐸𝐸(U). It is obvious that (₣,Ԓ)∩R(ℭ,Ԓ)=(ℭ,Ԓ)∩R(₣,Ԓ). That is, ∩R is 
commutative in SԒ(U) as well. Here, it is also obvious that if Ԓ∩⅌=∅, then (Ҥ, ∩ ⅌) =(S, ⅌∩ Ԓ)= ∅∅, 
thus ∩R is commutative under this condition as well. 
 
Proposition 5 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ) ∩R(₣,Ԓ)=(₣,Ԓ) (Pei and Miao, 2005). 

 
Proof: Pei and Miao (2005) presented this property without proof in their study; however, we provide it in 
detail with its rigorous proof.  Let (₣,Ԓ)∩R(₣,Ԓ)=(Ҥ,Ԓ∩Ԓ), where for all ⍺∊Ԓ, Ҥ(⍺)=₣(⍺)∩₣(⍺)=₣(⍺). 
Thus. (Ҥ,Ԓ)= (₣, Ԓ). That is, ∩R is idempotent in SE(U). 
 
Proposition 6 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ)∩R UԒ= UԒ ∩R(₣,Ԓ)=(₣,Ԓ) (Ali et al. 2011). 
 
Proof: Ali et al. (2011) presented this property with the relative whole ՏՏ with respect to Ԓ only on the 
right side, and without its proof; however, we provide the property with the relative whole ՏՏ with respect 
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to Ԓ on both the right and left sides, along with its detailed proof. Let  UԒ=(K,Ԓ), where for all ⍺∊Ԓ, 
K(⍺)=U. Let (₣,Ԓ) ∩R (K, Ԓ)=(Ҥ,Ԓ∩Ԓ), where for all ⍺∊ Ԓ, Ҥ(⍺)= ₣(⍺)∩ K(⍺)=₣(⍺)∩ U=₣(⍺). Thus, 
(Ҥ,Ԓ)= (₣,Ԓ) implying that (₣,Ԓ)∩R UT=(₣,Ԓ), and by Proposition 4, UԒ ∩R(₣,Ԓ)=(₣,Ԓ) as well. That is, 
UԒ is the identity element of ∩R in SԒ(U).  
Here, it is obvious that there is no inverse element for the operation ∩R other than UԒ in SԒ(U). Naturally, 
UԒ itself is the identity element for the operation ∩R in SԒ(U). 
    
Proposition 7 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ) ∩R ∅Ԓ=∅Ԓ ∩R(₣,Ԓ)=∅Ԓ (Ali et al. 2011). 
 
Proof: Ali et al. (2011) presented this property with the relative null ՏՏ with respect to Ԓ only on the right 
side, and without its proof; however, we provide the property with the relative null ՏՏ with respect to Ԓ on 
both the right and left sides, along with its detailed proof. Let ∅Ԓ=(S,Ԓ), where for all ⍺∊ Ԓ, S(⍺)= ∅. Let 
(₣,Ԓ) ∩R(S,Ԓ)=(Ҥ,Ԓ∩Ԓ), where for all ⍺∊Ԓ, Ҥ(⍺)=₣(⍺)∩S(⍺)=₣(⍺)∩ ∅=∅. Thus, (Ҥ,Ԓ)=∅Ԓ, implying that 
(₣,Ԓ) ∩R ∅Ԓ=∅Ԓ, and by Proposition 4, ∅Ԓ ∩R(₣,Ԓ)=∅Ԓ as well. That is, ∅Ԓ  is the absorbing element of 
∩R in SԒ(U). 
 
Theorem 1 (SԒ(U),∩R)  is a bounded semi-lattice, whose identity is UԒ and the absorbing element is ∅Ԓ. 
 
Proof: By Proposition 1, Proposition 3, Proposition 4, Proposition 5, Proposition 6, and Proposition 7 
(ST(U),∩R)  is a commutative, idempotent monoid whose identity is UԒ and absorbing element ∅Ԓ, that is, 
a bounded semi-lattice. 
 
Proposition 8 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ)∩R UE=UE ∩R(₣,Ԓ)=(₣,Ԓ). 
 
Proof: Let UE=(K,E), where for all ⍺∊E, K(⍺)=U. Let (₣, Ԓ) ∩R (K, E) = (Ҥ, Ԓ ∩ E), where for all 
⍺∊Ԓ∩E=Ԓ, Ҥ(⍺)=₣(⍺)∩K(⍺)=₣(⍺)∩ U=₣(⍺). Thus, (Ҥ,Ԓ)=(₣,Ԓ), implying that (₣,Ԓ)∩R UE=(₣,Ԓ), and by 
Proposition 4, UE ∩R(₣,Ԓ)=(₣,Ԓ) as well. That is, UE  is the identity element of ∩R in SE(U). 
 
From this, we can conclude that in SE(U), no element has an inverse element for the operation ∩R other 
than UE, which is the identity element. Naturally, the ՏՏ UE itself is the identity element of the operation 
∩R in SE(U). 
 
Proposition 9 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ)∩R ∅∅=∅∅ ∩R(₣,Ԓ)= ∅∅. 
 
Proof: Let ∅∅ =(S,∅). (₣,Ԓ)∩R (S,∅)=(Ҥ,Ԓ ∩ ∅)=(Ҥ, ∅), ∅∅ since the parameter set is the only ՏՏ that is 
the empty set, (Ҥ, ∅)=∅∅, implying that (₣,Ԓ)∩R ∅∅= ∅∅, and by Proposition 4, ∅∅ ∩R(₣,Ԓ)= ∅∅ as well. 
That is, ∅∅ is the absorbing element of ∩R in SE(U). 
 
Theorem 2 (SE(U),∩R)  is a bounded semi-lattice, whose identity is UE and the absorbing element is ∅∅. 
 
Proof: By Proposition 1, Proposition 2, Proposition 4, Proposition 5, Proposition 8, and Proposition 9, 
(SE(U),∩R)  is a commutative, idempotent monoid whose identity is UE, that is, a bounded semi-lattice. 
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Proposition 10 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ)∩R ∅E=∅E ∩R (₣,Ԓ)= ∅Ԓ. 
 
Proof: Let ∅E=(S,E), where for all ⍺∊E, S(⍺)=∅. Let (₣,Ԓ)∩R(S,E)=(Ҥ,Ԓ∩E), where for all ⍺∊Ԓ∩E=Ԓ, 
Ҥ(⍺)=₣(⍺)∩S(⍺)=₣(⍺)∩ ∅=∅. Thus, (Ҥ,Ԓ)= ∅T, implying that (₣,Ԓ)∩R ∅E=∅Ԓ, and by Proposition 4, 
∅E ∩R (₣,Ԓ)= ∅Ԓ  as well. 
 
Proposition 11 Let (₣,Ԓ) be an ՏՏ over U. Then,  (₣,Ԓ) ∩R(₣,Ԓ)r=(₣,Ԓ)r ∩R(₣,Ԓ)= ∅Ԓ (Sezgin and Atagün, 
2011; Ali et al., 2011). 
 
Proof:  In the studies by Sezgin and Atagün (2011) and Ali et al. (2011), this property was presented with 
the relative complement of the ՏՏ (₣,Ԓ) only on the right side, and without its proof. However, we provide 
the property with the relative complement of the ՏՏ (₣,Ԓ) on both the right and left sides, along with its 
detailed proof. Let (₣,Ԓ)r=(Ҥ,Ԓ), where for all ⍺∊ Ԓ, Ҥ(⍺)=₣’(⍺). Let (₣,Ԓ)∩R (Ҥ, Ԓ)=(L,Ԓ∩Ԓ), where for 
all ⍺∊Ԓ, L(⍺)=₣(⍺)∩Ҥ(⍺)=₣(⍺)∩₣’(⍺)=∅. Thus, (L,Ԓ)= ∅Ԓ, implying that (₣,Ԓ)∩R(₣,Ԓ)r=∅Ԓ, and by 
Proposition 4, (₣,Ԓ)r ∩R(₣,Ԓ)= ∅Ԓ as well. 
 
Proposition 12 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, [(₣,Ԓ) ∩R(ℭ,⅌)]r=(₣,Ԓ)r ∪R(ℭ,⅌)r (De Morgan 
Law) (Ali et al., 2009). 
 
Proof: In the study by Ali et al. (2009), the De Morgan property was presented with the condition Ԓ∩⅌≠∅ 
and the proof was relatively lengthy. In this study, we state that the condition Ԓ∩⅌≠∅ is not a necessary 
condition for the proposition and provide a simpler proof. Let (₣,Ԓ)∩R(ℭ,⅌)=(Ҥ,Ԓ∩⅌), where for all 
⍺∊Ԓ∩⅌, Ҥ(⍺)=₣(⍺)∩ℭ(⍺). Let (Ҥ,Ԓ∩⅌)r=(K,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, K(⍺)=H’(⍺)=₣’(⍺)∪G’(⍺). 
Thus, (K,Ԓ∩⅌)=(₣,Ԓ)r ∪R(ℭ,⅌)r. Here, if Ԓ∩⅌=∅, then the equality is again satisfied since the right and 
left sides will be  ∅∅. So, Ԓ∩⅌≠∅ is not a necessary condition for this proposition. 
 
Proposition 13 Let (₣,Ԓ) and (ℭ,Ԓ) be ՏՏs over U. Then, (₣,Ԓ) ∩R (ℭ, Ԓ)= UԒ ⇔ (₣, Ԓ) = UԒ  and 
(ℭ, Ԓ) = UԒ . 
 
Proof: Let  (₣, Ԓ) ∩R (ℭ, Ԓ) = (K,Ԓ∩Ԓ), where for all ⍺∊Ԓ, K(⍺)= ₣(⍺)∩ℭ(⍺). Since (K,Ԓ)= UT, K(⍺)=U, 
for all ⍺∊Ԓ. Thus, K(⍺)=₣(⍺)∩ℭ(⍺)=U, for all ⍺∊Ԓ ⇔₣(⍺)= U and ℭ(⍺)= U, for all ⍺ ∊ Ԓ ⇔ (₣, Ԓ) = UԒ  
and (ℭ,Ԓ)= UԒ. 
 
In the study by Sezgin and Atagün (2011), the properties related to restricted intersection and soft subsets 
were examined according to the definition of soft subsets given in the study by Maji et al. (2003). In this 
study, we examine the properties related to soft subsets according to the definition given in the study by Pei 
and Miao (2005), which is widely accepted. Therefore, the following properties related to soft subsets have 
not been included in previous studies. 
 
Proposition 14 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then,  ∅Ԓ∩⅌ ⊆�(₣,Ԓ) ∩R(ℭ,⅌). Moreover, (₣,Ԓ) 
∩R(ℭ,⅌) ⊆� UԒ, and (₣,Ԓ) ∩R(ℭ,⅌) ⊆� U⅌. 
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Proof: The proof is evident from the fact that the empty set is a subset of every set and the universal set 
includes every set. 
 
Proposition 15 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, (₣,Ԓ)∩R(ℭ,⅌) ⊆�  (₣,Ԓ) and (₣,Ԓ)∩R(ℭ,⅌) 
⊆�(ℭ,⅌), where Ԓ∩⅌≠∅. 
 
Proof: Let (₣,Ԓ)∩R(ℭ,⅌)=(Ҥ,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, Ҥ(⍺)=₣(⍺) ∩ℭ(⍺). Thus, Ҥ(⍺)=₣(⍺) ∩ ℭ(⍺) 
⊆₣(⍺), for all ⍺∊Ԓ∩⅌. Hence, (₣,Ԓ)∩R(ℭ,⅌)⊆�(₣,Ԓ). Furthermore, since ₣(⍺) ∩ ℭ(⍺) ⊆ℭ(⍺), 
(₣,Ԓ)∩R(ℭ,⅌) ⊆�  (ℭ,⅌) is obvious. 
 
Proposition 16 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, (₣,Ԓ)⊆� (ℭ, ⅌) if and only if (₣,Ԓ) 
∩R(ℭ,⅌)=(₣,Ԓ). 
 
Proof: Let (₣,Ԓ)⊆� (ℭ, ⅌) and (₣,Ԓ)∩R(ℭ,⅌)=(K,Ԓ∩⅌=Ԓ). Thus, Ԓ⊆⅌ and ₣(⍺)⊆ ℭ(⍺), for all ⍺∊Ԓ, and 
so   K(⍺)=₣(⍺)∩ℭ(⍺)=₣(⍺), for all ⍺∊Ԓ. Therefore, (K,Ԓ)= (₣,Ԓ) ∩R(ℭ,⅌) =(₣,Ԓ). Conversely, let 
(₣,Ԓ)∩R(ℭ,⅌) =(₣,Ԓ). Hence, Ԓ∩⅌=Ԓ, implying that Ԓ⊆⅌. Moreover, since ₣(⍺)∩ℭ(⍺)=₣(⍺), for all ⍺∊Ԓ, 
this implies that ₣(⍺)⊆ℭ(⍺). Thereby, (₣,Ԓ) ⊆� (ℭ, ⅌). 
 
Proposition 17 Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U such that Ԓ∩Ϩ≠∅. If (₣, Ԓ) ⊆� (ℭ, ⅌), then 
(₣, Ԓ) ∩R (Ҥ, Ϩ)  ⊆� (ℭ, ⅌)  ∩R (Ҥ, Ϩ). 
 
Proof: Let (₣,Ԓ)⊆� (ℭ, ⅌). Then, Ԓ⊆⅌, and ₣(⍺)⊆ ℭ(⍺), for all ⍺∊Ԓ. Let (₣,Ԓ)∩R(Ҥ,Ϩ)=(K,Ԓ∩Ϩ). Thus, 
K(⍺)=₣(⍺)∩Ҥ(⍺), for all ⍺∊Ԓ∩Ϩ.  Let (ℭ,⅌)∩R(Ҥ,Ϩ)=(L,⅌∩Ϩ). Hence, L(⍺)=ℭ(⍺)∩Ҥ(⍺), for all ⍺∊⅌∩Ϩ. 
Hence, Ԓ∩Ϩ ⊆ ⅌∩Ϩ, and K(⍺)=₣(⍺)∩Ҥ(⍺)⊆ℭ(⍺)∩Ҥ(⍺)=L(⍺), for all ⍺∊Ԓ∩Ϩ. Thereby, (₣,Ԓ)∩R(Ҥ,Ϩ) 
⊆�(ℭ,⅌) ∩R(Ҥ,Ϩ).  
 
Here, if ⅌∩Ϩ=∅, this would require Ԓ∩Ϩ=∅ (as Ԓ∩Ϩ⊆⅌∩Ϩ) making the proof evident once again.  
 
Proposition 18 Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U such that Ԓ∩Ϩ≠∅.  
If (₣, Ԓ) ∩R (Ҥ, Ϩ) ⊆�  (ℭ, ⅌) ∩R (Ҥ, Ϩ), thn (₣, Ԓ)  ⊆� (ℭ, ⅌) needs not be true. That is, the converse of 
Proposition 17 is not true. 
 
Proof: Let us give an example to show that the converse of Proposition 17 is not true. Let 
E={e1,e2,e3,e4,e5} be the parameter set  Ԓ={e1,e3}, ⅌={e1,e3,e5}, Ϩ={e1,e3,e5, e6} be the subsets of  E 
and U={h1,h2,h3,h4,h5} be the  universel set. Assume that (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) are the ՏՏs over U 
defined as follows: 

(₣,Ԓ)={(e1,{h2, h5}),(e3,{h1,h2,h5})}, 
(ℭ,⅌)={(e1,,{h2}),(e3,{h1,h2}),(e5,{h3})}, 
(Ҥ,Ϩ)={ e1,∅),(e3,∅),(e5, ∅),(e6,{h1, h5})}. 

 
Let (₣,Ԓ)∩R(Ҥ,Ϩ)=(L,Ԓ∩Ϩ), where for all ⍺∊Ԓ ∩ Ϩ = {e1, e3}, L(⍺)=₣(⍺) ∩Ҥ(⍺). Thus,  L(e1)=₣(e1) ∩
Ҥ(e1)=∅, L(e3)=₣(e3) ∩ Ҥ(e3)=∅. Hence,  
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(₣,Ԓ)∩R(Ҥ,Ϩ)={(e1,∅),(e3,∅)}. 
Now let (ℭ,⅌)∩R(Ҥ,Ϩ)=(K,⅌∩Ϩ), where for all ⍺∊⅌ ∩ Ϩ = {e1, e3, e5}, K(⍺)=ℭ(⍺) ∩Ҥ(⍺). Hence, 
K(e1)=ℭ(e1) ∩ Ҥ(e1)=∅,  K(e3)=ℭ(e3) ∩ Ҥ(e3)=∅, and K(e5)=ℭ(e5) ∩ Ҥ(e5)=∅. Thus, 

(ℭ,⅌) ∩R(Ҥ,Ϩ)={(e1,∅), (e3,∅),(e5,∅)}. 
Hence, (₣,Ԓ) ∩R(Ҥ,Ϩ) ⊆�(ℭ,⅌) ∩R(Ҥ,Ϩ), but (₣,Ԓ) isn’t a subset of ℭ,⅌). 
 
Proposition 19 Let (₣,Ԓ), (ℭ,⅌), (K,V) and (L,W) be ՏՏs over U such that Ԓ∩V≠∅. 
If (₣, Ԓ) ⊆� (ℭ, ⅌) and (K, V) ⊆� (L, W), then (₣, Ԓ)  ∩R (K, V)  ⊆� (ℭ, ⅌)  ∩R (L, W) 
 
Proof: Let (₣,Ԓ) ⊆� (ℭ, ⅌) and (K,V) ⊆� (L, W). Hence, for all ⍺∊Ԓ, ₣(⍺)⊆ ℭ(⍺) and for all ⍺∊V, K(⍺)⊆
L(⍺). Let (₣,Ԓ)∩R(K,V)=(M,Ԓ∩V). Thus, for all ⍺∊Ԓ∩V, M(⍺)=₣(⍺)∩K(⍺). Let 
(ℭ,⅌)∩R(L,W)=(Ǹ,⅌∩W). Thus, for all ⍺∊⅌∩W, Ǹ(⍺)=ℭ(⍺)∩L(⍺).  Hence, for all ⍺∊ Ԓ∩V, 
M(⍺)=₣(⍺)∩K(⍺)⊆ℭ(⍺)∩L(⍺)=Ǹ(⍺). Hence, (₣,Ԓ)∩R(K,V)⊆�(ℭ,⅌) ∩R(L,W). Here, if ⅌∩W=∅, this 
would require Ԓ∩V=∅ (since Ԓ∩V⊆⅌∩W) making the proof clear once again.  
 
Proposition 20 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. If (₣,Ԓ) ⊆�  (ℭ,⅌)r, then (₣, Ԓ) ∩R(ℭ,⅌) = ∅Ԓ. Moreover,   
(₣,Ԓ) ⊆� (ℭ,Ԓ)r if and only if (₣, Ԓ) ∩R(ℭ,Ԓ) = ∅Ԓ. 
 
Proof: Let (₣, Ԓ) ⊆� (ℭ, ⅌)r. Hence,  Ԓ ⊆  ⅌ and ₣(⍺) ⊆ ℭ’(⍺), for all ⍺∊Ԓ.  Let (₣, Ԓ) ∩R(ℭ,⅌) =(Ҥ, 
Ԓ∩⅌=Ԓ). Hence, Ҥ(⍺)= ₣(⍺)∩ℭ(⍺)=∅, for all ⍺∊Ԓ. Thus, (Ҥ,Ԓ) = ∅Ԓ. Similarly, it can be shown that (₣,Ԓ) 
⊆�(ℭ,Ԓ)r ⇔ (₣, Ԓ) ∩R(ℭ,Ԓ)= ∅Ԓ. In other words, for the converse of the theorem to be true, the parameter 
sets of the ՏՏs must be the same. It was given without proof in Ali et al. (2011) that if (₣,Ԓ) ∩R (ℭ,Ԓ)= ∅Ԓ 
, then (₣,Ԓ) ⊆�(ℭ,Ԓ)r . However, it is also evident that if (₣,Ԓ) ⊆�(ℭ,Ԓ)r, then (₣,Ԓ) ∩R (ℭ,Ԓ) = ∅Ԓ. 
 
3.1.1. The distributions of the restricted intersection operation over other ՏՏ operations: 
 
In this subsection, the distributions of restricted intersection operation over other ՏՏ operations such as 
restricted ՏՏ operations, extended ՏՏ operations,  and soft binary piecewise operations are examined in 
detail and many interesting results are obtained. 
 
3.1.1.1. The distributions of the restricted intersection operation over other restricted ՏՏ operations: 
 
Here, the distributions of the restricted intersection operation over other restricted operations have been 
examined. First, the left distributions, and then the right distributions were investigated. It is worth 
mentioning an important point here. Although Sezgin and Atagün (2011) showed that the restricted 
intersection operation distributes over the restricted union and restricted difference from both the right and 
the left, their proofs repeatedly emphasized that the intersections of the parameter sets of the ՏՏs involved 
in the restricted operations should be non-empty. However, even if the intersections of the parameter sets 
of the ՏՏs involved in the restricted operations are empty, these distributions still hold. Besides, in the 
study by Ali et al.  (2011), only the left distributions were presented in a table and without proofs. Therefore, 
in this subsection, considering all these conditions, detailed proof is provided for the distributions. 
 
a) LHS distributions of restricted intersection over other restricted ՏՏ operations: 
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Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 

 
i)  (₣,Ԓ)∩R[(ℭ,⅌)∪R(Ҥ,Ϩ)]=[(₣,Ԓ) ∩R(ℭ,⅌)] ∪R [(₣,Ԓ) ∩R(Ҥ,Ϩ)] (Sezgin and Atagün, 2011). 
 
Proof: In their study, Sezgin and Atagün (2011) provided the proof of this property under the condition that 
the intersection of the parameter sets of the ՏՏs involved in the restricted operations should be non-empty. 
However, this proof will specifically indicate that this property holds even if the intersection of the 
parameter sets of the ՏՏs involved in the restricted operations is empty. 
 
First, let’s consider the left-hand side (LHS), and let (ℭ,⅌)∪R(Ҥ,Ϩ)=(R,⅌∩Ϩ), where for all ⍺∊⅌∩Ϩ, 
R(⍺)=ℭ(⍺)∪Ҥ(⍺). Let (₣,Ԓ) ∩R(R,⅌∩Ϩ)=(Ǹ,Ԓ∩(⅌∩Ϩ)), where for all ⍺∊Ԓ∩(⅌∩Ϩ),  Ǹ(⍺)=₣(⍺)∩R(⍺). 
Hence, for all ⍺∊Ԓ∩⅌∩Ϩ,  

Ǹ(⍺)= ₣(⍺)∩[(ℭ(⍺)∪Ҥ(⍺)]. 
Now let’s handle the right hand side (RHS). Let (₣,Ԓ)∩R (ℭ,⅌)=(V,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, 
V(⍺)=₣(⍺)∩ℭ(⍺), and let (₣,Ԓ)∩R (Ҥ,Ϩ)=(W,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, W(⍺)=₣(⍺)∩Ҥ(⍺). Let (V,Ԓ∩⅌) 
∪R(W,Ԓ∩Ϩ)=(S,(Ԓ∩⅌)∩(Ԓ∩Ϩ)), where for all ⍺∊Ԓ∩⅌∩Ϩ, S(⍺)=V(⍺)∪W(⍺). Thereby, 

S(⍺)= [₣(⍺)∩ℭ(⍺)]∪[₣(⍺)∩Ҥ(⍺)] 
Thus, it is seen that (Ǹ,Ԓ∩⅌∩Ϩ)=(S,Ԓ∩⅌∩Ϩ). Here, if ⅌∩Ϩ=∅ or Ԓ∩⅌=∅ or Ԓ∩Ϩ=∅, then in every case, 
both the left side and the right side will be ∅∅. Thus, the equality holds in this case as well. Therefore, there 
is no need to impose the condition that these sets are non-empty. 
 
ii) (₣,Ԓ) ∩R[(ℭ,⅌)∩R(Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] ∩R [(₣,Ԓ) ∩R (Ҥ,Ϩ)].  
 
iii) (₣,Ԓ) ∩R [(ℭ,⅌)\R(Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] \R [(₣,Ԓ) ∩R (Ҥ,Ϩ)] (Sezgin and Atagün, 2011). 
 
iv) (₣,Ԓ) ∩R [(ℭ,⅌) γR (Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)]  γR [(₣,Ԓ) ∩R (Ҥ,Ϩ)].  
 
v) (₣,Ԓ) ∩R [(ℭ,⅌) ∆R(Ҥ,Ϩ)]=[(₣,Ԓ) ∩R(ℭ,⅌)]∆R[(₣,Ԓ) ∩R (Ҥ,Ϩ)] (Singh and Onyeozili, 2012c). 
Although Singh and Onyeozili (2012c) provided this property, their proof contains numerous mathematical 
errors. Therefore, we are presenting the proof again in a structured and corrected manner.  First, let’s 
consider the LHS, and let (ℭ,⅌)∆R(Ҥ,Ϩ)=(R,⅌∩Ϩ), where for all ⍺∊⅌∩Ϩ, R(⍺)=ℭ(⍺)∆Ҥ(⍺). Let 
(₣,Ԓ) ∩R(R,⅌∩Ϩ)=(Ǹ,Ԓ∩(⅌∩Ϩ)), for all ⍺∊Ԓ∩(⅌∩Ϩ),  Ǹ(⍺)= ₣(⍺)∩R(⍺). Hence, for all ⍺∊Ԓ∩⅌∩Ϩ,  

Ǹ(⍺)= ₣(⍺)∩[(ℭ(⍺)∆Ҥ(⍺)]. 
 

Now let’s handle the RHS. Let (₣,Ԓ)∩R (ℭ,⅌)=(V,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, V(⍺)=₣(⍺)∩ℭ(⍺). Now let 
(₣,Ԓ)∩R (Ҥ,Ϩ)=(W,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, W(⍺)=₣(⍺)∩Ҥ(⍺). Let (V,Ԓ∩⅌) 
∆R(W,Ԓ∩Ϩ)=(S,(Ԓ∩⅌)∩(Ԓ∩Ϩ)). Hence, for all ⍺∊Ԓ∩⅌∩Ϩ, S(⍺)=V(⍺)∆W(⍺),  

S(⍺)= [₣(⍺)∩ℭ(⍺)]∆[₣(⍺)∩Ҥ(⍺)] 
 

Thus, it is seen that (Ǹ,Ԓ∩⅌∩Ϩ)=(S,Ԓ∩⅌∩Ϩ). Here, if ⅌∩Ϩ=∅ or Ԓ∩⅌=∅ or Ԓ∩Ϩ=∅, then in every case, 
both the left side and the right side will be ∅∅. Thus, the equality holds in this case as well. Therefore, there 
is no need to impose the condition that these sets are non-empty. 
 
b) RHS distributions of restricted intersection over other restricted ՏՏ operations:  
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
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i) [(₣,Ԓ)∪R(ℭ,⅌)] ∩R(Ҥ,Ϩ)=[(₣,Ԓ) ∩R(Ҥ,Ϩ)] ∪R[(ℭ,⅌) ∩R (Ҥ,Ϩ)] (Sezgin and Atagün, 2011). 
 
Proof: Sezgin and Atagün (2011) presented this property without proof in their study; however, we provide 
it with its detailed proof. First, let’s handle the LHS. Let (₣,Ԓ) ∪R(ℭ,⅌)=(R,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, 
R(⍺)=₣(⍺)∪ℭ(⍺). Let (R,Ԓ∩⅌) ∩R(Ҥ,Ϩ)=(Ǹ,(Ԓ∩⅌)∩Ϩ)), where for all ⍺∊(Ԓ∩⅌)∩Ϩ,  Ǹ(⍺)=R(⍺)∩Ҥ(⍺). 
Hence,  

Ǹ(⍺)= [₣(⍺)∪ℭ(⍺)]∩Ҥ(⍺) 
Now let’s handle the RHS. Let (₣,Ԓ)∩R(Ҥ,Ϩ)=(S,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, S(⍺)=₣(⍺)∩Ҥ(⍺). Let 
(ℭ,⅌) ∩R(Ҥ,Ϩ)=(K,⅌∩Ϩ), where K(⍺)=ℭ(⍺)∩Ҥ(⍺), for all ⍺∊⅌∩Ϩ. Let 
(S,Ԓ∩Ϩ)∩R(K,⅌∩Ϩ)=(L,(Ԓ∩⅌∩Ϩ)), where for all ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ) , L(⍺)=S(⍺)∩K(⍺). Hence, 

L(⍺)= ([₣(⍺)∩Ҥ(⍺)] ∪[ℭ(⍺)∩Ҥ(⍺)] 
 

Thus, it is seen that (Ǹ,Ԓ∩⅌∩Ϩ)=(L,Ԓ∩⅌∩Ϩ). Here, if ⅌∩Ϩ=∅ or Ԓ∩⅌=∅ or Ԓ∩Ϩ=∅, =∅, then in every 
case, both the left side and the right side will be ∅∅. Thus, the equality holds in this case as well. Therefore, 
there is no need to impose the condition that these sets are non-empty. 
 
ii) [(₣,Ԓ) ∩R (ℭ,⅌)] ∩R (Ҥ,Ϩ)=[(₣,Ԓ) ∩R(Ҥ,Ϩ)] ∩R[(ℭ,⅌) ∩R(Ҥ,Ϩ)]. 
 
iii) [(₣,Ԓ) \R (ℭ,⅌)] ∩R (Ҥ,Ϩ)= [(₣,Ԓ)∩R(Ҥ,Ϩ)] \R [(ℭ,⅌)∩R(Ҥ,Ϩ)] (Sezgin and Atagün, 2011). 
 
iv) [(₣,Ԓ)γR(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R (Ҥ,Ϩ)] γR [(ℭ,⅌) ∩R  (Ҥ,Ϩ)]. 
 
v) [(₣,Ԓ) ∆R (ℭ,⅌)] ∩R (Ҥ,Ϩ)= [(₣,Ԓ)∩R(Ҥ,Ϩ)] ∆R [(ℭ,⅌)∩R(Ҥ,Ϩ)]. 
 
3.1.1.2. The distributions of the restricted intersection operation over extended ՏՏ operations: 
 
Here, the distributions of the restricted intersection operation over extended operations have been examined. 
First, left distributions were investigated, followed by right distributions. It is important to note a significant 
point here. In some studies, although it has been stated that the restricted intersection operation distributes 
over extended union, intersection, and difference operations from the left side, no attention has been given 
to the right distributions, and all right distributions have been provided without proofs in the study by Ali 
et al. (2011). In other studies where proofs are provided, emphasis has been placed on the requirement that 
the intersection of the parameter sets of the ՏՏs involved in the restricted operations must be non-empty. 
However, even if the intersection of the parameter sets of the ՏՏs involved in the restricted operations is 
the empty set, these distributions are still valid. Therefore, detailed proofs are provided taking into account 
these considerations, especially in the distributions under this subsection. 
 
a) LHS distributions of restricted intersection operation over extended ՏՏ operations: 
 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
  
i) (₣,Ԓ) ∩R[(ℭ,⅌) ∪ε (Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] ∪ε [(₣,Ԓ) ∩R (Ҥ,Ϩ)] (Pei and Miao, 2005) 
 
Proof: Pei and Miao (2005) presented this property without proof in their study; however, we provide it 
with its detailed proof here. We also state and prove that the property holds even when the intersection of 
the parameter sets of the ՏՏs involved in the restricted operations is empty. 
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First, let’s consider the LHS, and let (ℭ,⅌) ∪ε (Ҥ,Ϩ)=(R,⅌∪Ϩ), where for all ⍺∊⅌∪Ϩ, 
 
            ℭ(⍺)                 ⍺∊⅌\Ϩ 
R(⍺)=  Ҥ(⍺)                ⍺∊Ϩ\⅌ 
            ℭ(⍺)∪Ҥ(⍺)      ⍺∊⅌∩Ϩ 
 
Let (₣,Ԓ) ∩R (R,⅌∪Ϩ) =(Ǹ,(Ԓ∩(⅌∪Ϩ)), where for all ⍺∊Ԓ∩(⅌∪Ϩ), Ǹ(⍺)=₣(⍺)∩R(⍺). Thus, 
 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊Ԓ∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
Ǹ(⍺)=  ₣(⍺)∩Ҥ(⍺)                     ⍺∊Ԓ∩(Ϩ\⅌)=Ԓ∩⅌’∩Ϩ  
            ₣(⍺)∩[ℭ(⍺)∪Ҥ(⍺)]        ⍺∊Ԓ∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ          
        
Now let’s handle the RHS. Let (₣,Ԓ)∩R(ℭ,⅌)=(K,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, K(⍺)=₣(⍺)∩ℭ(⍺). Let 
(₣,Ԓ) ∩R(Ҥ,Ϩ)=(S,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, S(⍺)=₣(⍺)∩Ҥ(⍺). Let 
(K,Ԓ∩⅌) ∪ε(S,Ԓ∩Ϩ)=(L,(Ԓ∩⅌)∪(Ԓ∩Ϩ)), where for all ⍺∊(Ԓ∩⅌)∪(Ԓ∩Ϩ), 
 
            K(⍺)                ⍺∊(Ԓ∩⅌)\(Ԓ∩Ϩ)=Ԓ∩(⅌\Ϩ) 
L(⍺)=  S(⍺)                 ⍺∊(Ԓ∩Ϩ)\(Ԓ∩⅌)=Ԓ∩(Ϩ\⅌) 
           K(⍺)∪S(⍺)       ⍺∊(Ԓ∩⅌)∩(Ԓ∩Ϩ)=Ԓ∩(⅌∩Ϩ)  
   
Hence, 
 
            ₣(⍺)∩ℭ(⍺)                                  ⍺∊Ԓ∩⅌∩Ϩ’ 
L(⍺)=  ₣(⍺)∩Ҥ(⍺)                                  ⍺∊Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∩ℭ(⍺)] ∪[₣(⍺)∩Ҥ(⍺)]       ⍺∊Ԓ∩⅌∩Ϩ    
 
It is seen that (Ǹ,Ԓ∩(⅌∪Ϩ))=(L,(Ԓ∩⅌)∪(Ԓ∩Ϩ)). Here, if Ԓ∩⅌=∅, then Ǹ(⍺)=L(⍺)=₣(⍺)∩Ҥ(⍺), and if 
Ԓ∩Ϩ=∅, then Ǹ(⍺)=L(⍺)=₣(⍺)∩ℭ(⍺). That is, in these cases, the left-hand side and the right-hand side are 
still equal. Therefore, there is no need to impose the condition that these sets are non-empty. 
     
ii) (₣,Ԓ) ∩R[(ℭ,⅌) ∩ε(Ҥ,Ϩ)]=[(₣,Ԓ) ∩R(ℭ,⅌)] ∩ε[(₣,Ԓ) ∩R (Ҥ,Ϩ)] (Singh and Onyeozili, 2012c). 
 
iii) (₣,Ԓ) ∩R[(ℭ,⅌) \ε(Ҥ,Ϩ)]=[(₣,Ԓ) ∩R(ℭ,⅌)]\ε[(₣,Ԓ) ∩R (Ҥ,Ϩ)] (Sezgin et al., 2019). 
 
iv) (₣,Ԓ) ∩R[(ℭ,⅌) γε(Ҥ,Ϩ)]=[(₣,Ԓ) ∩R(ℭ,⅌)] γε[(₣,Ԓ) ∩R (Ҥ,Ϩ)]. 
 
v) (₣,Ԓ) ∩R[(ℭ,⅌) ∆ε(Ҥ,Ϩ)]=[(₣,Ԓ) ∩R(ℭ,⅌)] ∆ε[(₣,Ԓ) ∩R (Ҥ,Ϩ)]. 
 
vi) (₣,Ԓ) ∩R[(ℭ,⅌) +ε (Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] +ε[(₣,Ԓ) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
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vii) (₣,Ԓ) ∩R[(ℭ,⅌) λε (Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] λε[(₣,Ԓ) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
 
viii) (₣,Ԓ) ∩R[(ℭ,⅌) ＊ε (Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] ＊ε[(₣,Ԓ) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
 
ix) (₣,Ԓ) ∩R[(ℭ,⅌) θε (Ҥ,Ϩ)] = [(₣,Ԓ) ∩R(ℭ,⅌)] θε[(₣,Ԓ) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
 
b) RHS distributions of restricted intersection over extended ՏՏ operations: 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 
i)[(₣, Ԓ) ∪ε (ℭ, ⅌)] ∩R (Ҥ, Ϩ) =  [(₣, Ԓ) ∩R (Ҥ, Ϩ)] ∪ε  [(ℭ, ⅌)  ∩R  (Ҥ, Ϩ)]. 
 
Proof: First, let’s consider the LHS, and let  (₣,Ԓ) ∪ε(ℭ,⅌)=(R,Ԓ∪⅌), where for all ⍺∊ Ԓ∪⅌, 
 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
R(⍺)=  ℭ(⍺)                 ⍺∊⅌\Ԓ 
            ₣(⍺)∪ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (R,Ԓ∪⅌) ∩R(Ҥ,Ϩ) =(Ǹ,(Ԓ∪⅌)∩Ϩ), where for all ⍺∊(Ԓ∪⅌)∩Ϩ, Ǹ(⍺)=R(⍺)∩Ҥ(⍺). Thus, 
 
            ₣(⍺)∩Ҥ(⍺)                     ⍺∊(Ԓ\⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ 
Ǹ(⍺)=  ℭ(⍺)∩Ҥ(⍺)                    ⍺∊(⅌\Ԓ)∩Ϩ=Ԓ’∩⅌∩Ϩ 
            [₣(⍺)∪ℭ(⍺)]∩Ҥ(⍺)        ⍺∊(Ԓ∩⅌)∩Ϩ=Ԓ∩⅌∩Ϩ             
 
Now let’s handle the RHS. Let (₣,Ԓ)∩R(Ҥ,Ϩ)=(K,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, K(⍺)=₣(⍺)∩Ҥ(⍺). Let 
(ℭ,⅌) ∩R(Ҥ,Ϩ)=(S,⅌∩Ϩ), where for all ⍺∊⅌∩Ϩ, S(⍺)=ℭ(⍺)∩Ҥ(⍺). Then, let 
(K,Ԓ∩Ϩ) ∪ε(S,⅌∩Ϩ)=(L,(Ԓ∩Ϩ)∪(⅌∩Ϩ)), where for all ⍺∊(Ԓ∩Ϩ)∪(⅌∩Ϩ), 
 
            K(⍺)                ⍺∊(Ԓ∩Ϩ)\(⅌∩Ϩ)=(Ԓ\⅌)∩Ϩ 
L(⍺)=  S(⍺)                 ⍺∊(⅌∩Ϩ)\(Ԓ∩Ϩ)=(⅌\Ԓ)∩Ϩ 
            K(⍺)∪S(⍺)       ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ)=(Ԓ∩⅌)∩Ϩ    
 
Hence,  
 
            ₣(⍺)∩Ҥ(⍺)                                 ⍺∊Ԓ∩⅌’∩Ϩ 
L(⍺)=  ℭ(⍺)∩Ҥ(⍺)                                 ⍺∊Ԓ’∩⅌∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∪[ℭ(⍺)∩Ҥ(⍺)]       ⍺∊Ԓ∩⅌∩Ϩ     
                          
It is seen that (Ǹ,(Ԓ∪⅌)∩Ϩ)=(L,(Ԓ∩Ϩ)∪(⅌∩Ϩ)). Here, if Ԓ∩⅌=∅ and ⍺∊Ԓ∩⅌’∩Ϩ, then 
Ǹ(⍺)=L(⍺)=₣(⍺)∩Ҥ(⍺); if Ԓ∩Ϩ=∅ and ⍺∊Ԓ’∩⅌∩Ϩ, then Ǹ(⍺)=L(⍺)=ℭ(⍺)∩Ҥ(⍺). If ⅌∩Ϩ=∅, then 
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Ǹ(⍺)=L(⍺)=₣(⍺)∩Ҥ(⍺). Since the right and left sides are equal in these cases, it is not necessary to impose 
the condition that these sets must be non-empty. 
 
ii) [(₣,Ԓ) ∩ε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] ∩ε [(ℭ,⅌) ∩R (Ҥ,Ϩ)]. 
 
iii) [(₣,Ԓ) \ε(ℭ,⅌)] ∩R(Ҥ,Ϩ)=[(₣,Ԓ) ∩R(Ҥ,Ϩ)]\ε[(ℭ,⅌) ∩R (Ҥ,Ϩ)] (Sezgin et al, 2019). 
 
iv) [(₣,Ԓ) γε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] γε [(ℭ,⅌) ∩R (Ҥ,Ϩ)]. 
 
v) [(₣,Ԓ)∆ε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] ∆ε [(ℭ,⅌) ∩R (Ҥ,Ϩ)] (Sezgin and Çağman, 2025). 
 
vi) [(₣,Ԓ)+ε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] +ε [(ℭ,⅌) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅.   
 
vii) [(₣,Ԓ)𝜆𝜆ε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] 𝜆𝜆ε [(ℭ,⅌) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
 
viii) [(₣,Ԓ)θε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] θε [(ℭ,⅌) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
 
ix) [(₣,Ԓ)＊ε(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] ＊ε [(ℭ,⅌) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
 
3.1.1.3. The distributions of the restricted intersection operation over soft binary piecewise 
operations: 
 
In this subsection, the distributions of the restricted intersection operation to soft binary piecewise 
operations have been examined. First, left distributions were investigated, followed by right distributions. 
It is worth noting here that these distributions are satisfied even if the intersection of the parameter sets of 
the ՏՏs involved in the restricted operations is the empty set. 
 
a) LHS distributions of restricted intersection operation over soft binary piecewise operations: 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 

𝐢𝐢)(₣, Ԓ)  ∩R [(ℭ, ⅌) 
~
∪ (Ҥ, Ϩ)] = [(₣, Ԓ) ∩R (ℭ, ⅌)]

 ~
 ∪ [(₣, Ԓ) ∩R (Ҥ, Ϩ)]. 

 

Proof: First, let’s consider the LHS, and let (ℭ,⅌)
~
∪ (Ҥ,Ϩ)=(R,⅌), where for all ⍺∊⅌, 

 
            ℭ(⍺)                 ⍺∊⅌\Ϩ 
R(⍺)=  
            ℭ(⍺)∪Ҥ(⍺)      ⍺∊⅌∩Ϩ             
 
Let (₣,Ԓ) ∩R(R,⅌) =(Ǹ,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, Ǹ(⍺)=₣(⍺)∩R(⍺). Hence, 
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            ₣(⍺)∩ℭ(⍺)                   ⍺∊Ԓ∩(⅌\Ϩ) 
Ǹ(⍺)= 
            ₣(⍺)∩ [ℭ(⍺)∪Ҥ(⍺)]    ⍺∊Ԓ∩(⅌∩Ϩ)         
 
for all ⍺∊Ԓ∩⅌. Now let’s handle the RHS. Let (₣,Ԓ) ∩R (ℭ, ⅌)=(K,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, 
K(⍺)=₣(⍺)∩ℭ(⍺). Let (₣,Ԓ) ∩R(Ҥ,Ϩ)=(S,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, S(⍺)=₣(⍺)∩Ҥ(⍺). Assume that 
(K,Ԓ∩⅌)

~
∪ (S,Ԓ∩Ϩ)=(L,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, 

 
            K(⍺)                ⍺∊(Ԓ∩⅌)\(Ԓ∩Ϩ) 
L(⍺)= 
            K(⍺)∪S(⍺)       ⍺∊(Ԓ∩⅌)∩(Ԓ∩Ϩ) 
 
Hence, 
 
            ₣(⍺)∩ℭ(⍺)                              ⍺∊(Ԓ∩⅌)\(Ԓ∩Ϩ)= Ԓ∩(⅌\Ϩ) 
L(⍺)= 
            [₣(⍺)∩ℭ(⍺)]∪[₣(⍺)∩Ҥ(⍺)]    ⍺∊(Ԓ∩⅌)∩(Ԓ∩Ϩ)=Ԓ∩(⅌∩Ϩ)     
It is seen that (Ǹ,Ԓ∩⅌)=(L,Ԓ∩⅌). Here, if Ԓ∩⅌=∅, then (Ǹ,Ԓ∩⅌)=(L,Ԓ∩⅌)=∅∅, and if Ԓ∩Ϩ=∅, then 
Ǹ(⍺)=L(⍺)=₣(⍺)∩ℭ(⍺). Since the right and left sides are equal in these cases, it is not necessary to impose 
the condition that these sets must be non-empty. 
 

ii) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
∩ (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
∩ [(₣,Ԓ)∩R(Ҥ,Ϩ)]. 

 

iii) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
\  (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
\  [(₣,Ԓ)∩R(Ҥ,Ϩ)]. 

 

iv) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
γ  (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
γ  [(₣,Ԓ)∩R(Ҥ,Ϩ)]. 

 

v) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
∆ (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
∆ [(₣,Ԓ)∩R(Ҥ,Ϩ)]. 

 

vi) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
+ (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
+ [(₣,Ԓ)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 

 

vii) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
λ (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
λ  [(₣,Ԓ) ∩R (Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 

 

viii) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
θ  (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
θ [(₣,Ԓ)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 

 

ix) (₣,Ԓ) ∩R[(ℭ,⅌) 
~
＊ (Ҥ,Ϩ)]=[(₣,Ԓ)∩R(ℭ,⅌)] 

~
＊ [(₣,Ԓ)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ=∅. 
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b) RHS distributions of restricted intersection operation over soft binary piecewise operations: 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 

i) [(₣,Ԓ) 
~
∪(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] 

~
∪ [(ℭ,⅌) ∩R (Ҥ,Ϩ)]. 

 

Proof: First, let’s consider the LHS, and let (₣,Ԓ) 
~
∪ (ℭ,⅌)=(R,Ԓ), where for all ⍺∊Ԓ, 

 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
R(⍺)= 
            ₣(⍺)∪ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (R,Ԓ) ∩R(Ҥ,Ϩ) =(Ǹ,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, Ǹ(⍺)=R(⍺)∩Ҥ(⍺). Thus, 
 
            ₣(⍺)∩Ҥ(⍺)                     ⍺∊(Ԓ\⅌)∩Ϩ 
Ǹ(⍺)=   
            [₣(⍺)∪ℭ(⍺)]∩Ҥ(⍺)        ⍺∊(Ԓ∩⅌)∩Ϩ        
  
Now let’s handle the RHS. Let (₣,Ԓ)∩R(Ҥ,Ϩ)=(K,Ԓ∩Ϩ), where for all ⍺∊Ԓ∩Ϩ, K(⍺)=₣(⍺)∩Ҥ(⍺). Let 
(ℭ,⅌) ∩R (Ҥ,Ϩ)=(S,⅌∩Ϩ), where for all ⍺∊⅌∩Ϩ, S(⍺)= ℭ(⍺)∩Ҥ(⍺). Let (K,Ԓ∩Ϩ) 

~
∪(S,⅌∩Ϩ)=(L,Ԓ∩Ϩ), 

where for all ⍺∊Ԓ∩Ϩ, 
 
           K(⍺)                  ⍺∊(Ԓ∩Ϩ)\(⅌∩Ϩ) 
L(⍺)=  
            K(⍺)∪S(⍺)       ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ) 
 
Thus, 
 
            ₣(⍺)∩Ҥ(⍺)                                   ⍺∊(Ԓ∩Ϩ)\(⅌∩Ϩ)=(Ԓ\⅌)∩Ϩ 
L(⍺)= 
            [₣(⍺)∩Ҥ(⍺)]∪[ℭ(⍺)∩Ҥ(⍺)]        ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ)=(Ԓ∩⅌)∩Ϩ     
 
It is seen that (Ǹ,Ԓ∩Ϩ)=(L,Ԓ∩Ϩ). Here, if Ԓ∩Ϩ=∅, then (Ǹ,Ԓ∩Ϩ)=(L,Ԓ∩Ϩ)=∅∅, and if ⅌∩Ϩ=∅, then 
Ǹ(⍺)=L(⍺)=₣(⍺)∩Ҥ(⍺). Since the right and left sides are equal in these cases, it is not necessary to impose 
the condition that these sets must be non-empty. 
 

ii) [(₣,Ԓ) 
~
∩(ℭ,⅌)]∩R(Ҥ,Ϩ)= [(₣,Ԓ)∩R(Ҥ,Ϩ)] 

~
∩ [(ℭ,⅌)∩R(Ҥ,Ϩ)]. 

 

iii) [(₣,Ԓ) 
~
\ (ℭ,⅌)]∩R(Ҥ,Ϩ)= [(₣,Ԓ)∩R(Ҥ,Ϩ)] 

~
\ [(ℭ,⅌)∩R(Ҥ,Ϩ)]. 
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iv) [(₣,Ԓ) 
~
γ(ℭ,⅌)]∩R(Ҥ,Ϩ)= [(₣,Ԓ)∩R(Ҥ,Ϩ)] 

~
γ  [(ℭ,⅌)∩R(Ҥ,Ϩ)]. 

 

v) [(₣,Ԓ)
~
∆(ℭ,⅌)]∩R(Ҥ,Ϩ)= [(₣,Ԓ)∩R(Ҥ,Ϩ)] 

~
∆ [(ℭ,⅌)∩R(Ҥ,Ϩ)]. 

 

vi) [(₣,Ԓ) 
~
+(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] 

~
+ [(ℭ,⅌)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ= ∅. 

 

vii) [(₣,Ԓ) 
~
λ (ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] 

~
λ  [(ℭ,⅌)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ= ∅. 

 

viii) [(₣,Ԓ) 
~
θ(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] 

~
θ [(ℭ,⅌)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ= ∅. 

 

ix) [(₣,Ԓ) 
~
＊(ℭ,⅌)] ∩R(Ҥ,Ϩ)= [(₣,Ԓ) ∩R(Ҥ,Ϩ)] 

~
＊ [(ℭ,⅌)∩R(Ҥ,Ϩ)], where Ԓ∩⅌∩Ϩ= ∅. 

 
3.2. More on Extended Intersection Operation 
 
To further clarify the conceptual expansion, this subsection is inspired by the extended union definition for 
ՏՏs by Maji et al. (2003), a similar operation defined as the extended intersection operation of ՏՏs by Ali 
et al. (2009) is examined in detail.  Its properties similar to the intersection operation in classical sets, 
distributive rules, and relationships with other operations are thoroughly investigated. Since the extended 
intersection operation for ՏՏs is not a new definition, some of its properties and its distributive rules have 
already been studied by various authors (Ali et al. (2009), Ali et al. (2011), Qin and Hong  (2010), Sezgin 
and Atagün (2011)) However, in most studies, these properties have been presented without their proofs. 
From this perspective, we want to emphasize the importance of this study, as it includes all the properties 
of the extended intersection operation with their proofs, and provides detailed proofs of many new 
properties, especially those relating to their counterparts in classical set theory as regards intersection 
operation.  
 
Definition 17 Let (₣, Ԓ) and (ℭ, ⅌) be ՏՏs over U. The extended intersection (₣, Ԓ) and (ℭ, ⅌) is the ՏՏ 
(Ҥ,C) denoted by (₣, Ԓ) ∩ε (ℭ, ⅌) = (Ҥ, C), where C=Ԓ∪⅌ and for all ⍺∊C, 
 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
Ҥ(⍺)=  ℭ(⍺)                ⍺∊⅌\Ԓ 

            ₣(⍺)∩ℭ(⍺)       ⍺∊Ԓ∩⅌        
  (Ali et al., 2009).  

 

Here note that the letter "ε" written below the symbol " ∩” which represents the extended intersection 
operation, forms a meaningful and consistent whole with its English meaning "extended”. In other studies 
on ՏՏ operations, extended ՏՏ operations are also represented in this form. From the definition, it is 
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obvious that if Ԓ=∅, then (₣,Ԓ)∩ε(ℭ,⅌)=(ℭ,⅌); if ⅌=∅, then (₣,Ԓ)∩ε(ℭ,⅌)=(₣,Ԓ), and if Ԓ=⅌=∅, then 
(₣,Ԓ)∩ε(ℭ,⅌)= ∅∅. 

 
Example 2 Let E={e1,e2,e3,e4} be the parameter set  Ԓ ={e1, e3} and ⅌ ={e2, e3, e4} be the subsets of E 
and U={h1,h2,h3,h4,h5} be the initial universe set. Assume that (₣,Ԓ) and (ℭ,⅌) are the ՏՏs over U defined 
as follows: (₣,Ԓ)={( e1,{h2,h5}), (e3,{h1,h2,h5})}, (ℭ,⅌)={( e2,{h1,h4,h5}), 
(e3,{h2,h3,h4}),(e4, {h3,h5})}. Let (₣,Ԓ) ∩ε(ℭ,⅌)=(Ҥ,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌,   
 
             ₣(⍺)                 ⍺∊Ԓ\⅌ 
Ҥ(⍺)=  ℭ(⍺)                ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)       ⍺∊Ԓ∩⅌        
     
Since Ԓ∪⅌={e1,e2,e3,e4}, Ԓ\⅌={e1}, ⅌\Ԓ={e2, e4}, and Ԓ∩⅌={e3}, Ҥ(e1)=₣(e1)={h2,h5}, 
Ҥ(e2)=ℭ(e2)={h1,h4,h5}, Ҥ(e4)=ℭ(e4)={h3,h5}, Ҥ(e3)=₣(e3)∩ℭ(e3)={h1, h2,h5}∩ {h2, h3, h4}= {h2}. 
Thus,  

(₣,Ԓ)∩ε(ℭ,⅌)={(e1,{h2,h5}), (e2,{h1,h4,h5}), (e3, {h2}), (e4,{ h3,h5})}. 
 
Note 1 The restricted intersection and extended intersection operations in SȺ(U) are coincident, where Ⱥ is 
a fixed subset of E. That is, (₣,Ⱥ)∩ε(ℭ,Ⱥ)=(₣,Ⱥ)∩R(ℭ,Ⱥ).  
 
Proposition 21 The set SE(U) is closed under the operation ∩ε.  That is, when (₣,Ԓ) and (ℭ,⅌) are two ՏՏs 
over U, then so is (₣, Ԓ) ∩ε (ℭ, ⅌). 
 
Proof: It is clear that ∩ε is a binary operation in SE(U). That is, 
                                             ∩ε : SE(U) x SE(U)→ SE(U) 
                                                     ((₣,Ԓ), (ℭ,⅌)) → (₣, Ԓ) ∩ε (ℭ, ⅌)=(Ҥ, Ԓ∪⅌) 
Hence, the set SE(U) is closed under ∩ε . Similarly,  
                                             ∩ε: SԒ(U) x SԒ(U)→ SԒ(U) 
                                                   ((₣,Ԓ), (ℭ,Ԓ)) → (₣, Ԓ) ∩ε (ℭ, Ԓ)=(K,Ԓ∪Ԓ)=(K,Ԓ) 
Let (₣,Ԓ) and (ℭ,Ԓ) be elements of the set ST(U), where Ԓ is a fixed subset of the set E. Then, (₣,Ԓ) ∩ε 
(ℭ,Ԓ) is an element of the set SԒ(U). That is, the operation ∩ε is also closed in ST(U). 
 
Proposition 22 Let (₣,Ԓ), (ℭ,⅌) and (Ҥ,Ϩ) be ՏՏs over U. Then, [(₣,Ԓ)∩ε (ℭ,⅌)] ∩ε (Ҥ,Ϩ) = (₣,Ԓ) ∩ε 
[(ℭ,⅌) ∩ε (Ҥ,Ϩ)] (Qin and Hong, 2010). 
 
Proof: Qin and Hong (2010) presented this property without proof in their study; however, we provide it 
with its detailed proof. First, let’s consider the LHS, and let (₣,Ԓ)∩ε(ℭ,⅌)=(S,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
S(⍺)=   ℭ(⍺)                ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)      ⍺∊Ԓ∩⅌        
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Let (S,Ԓ∪⅌) ∩ε (Ҥ, Ϩ) =(Ǹ,(Ԓ∪⅌)∪Ϩ)), where for all ⍺∊(Ԓ∪⅌)∪Ϩ, 
 
            S(⍺)                 ⍺∊(Ԓ∪⅌)\Ϩ 
Ǹ(⍺)=  Ҥ(⍺)                ⍺∊Ϩ\(Ԓ∪⅌) 
            S(⍺)∩Ҥ(⍺)      ⍺∊(Ԓ∪⅌)∩Ϩ      
       
Thus,   
 
            ₣(⍺)                                ⍺∊(Ԓ\⅌)\Ϩ=Ԓ∩⅌’∩Ϩ’        
            ℭ(⍺)                                ⍺∊(⅌\Ԓ)\Ϩ=Ԓ’∩⅌∩Ϩ’ 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊(Ԓ∩⅌)\Ϩ=Ԓ∩⅌∩Ϩ’ 
Ǹ(⍺)=  Ҥ(⍺)                               ⍺∊Ϩ\(Ԓ∪⅌)=Ԓ’∩⅌’∩Ϩ 
            ₣(⍺)∩H (⍺)                     ⍺∊(Ԓ\⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∩H (⍺)                    ⍺∊(⅌\Ԓ)∩Ϩ=Ԓ’∩⅌∩Ϩ 
            [₣(⍺)∩ℭ(⍺)]∩H (⍺)        ⍺∊(Ԓ∩⅌)∩Ϩ=Ԓ∩⅌∩Ϩ      
  
Now let’s handle the RHS, and let (ℭ,⅌)∩ε(Ҥ,Ϩ)=(R,⅌∪Ϩ), where for all ⍺∊⅌∪Ϩ, 
 
            ℭ(⍺)                    ⍺∊⅌\Ϩ 
R(⍺)=  Ҥ(⍺)                   ⍺∊Ϩ\⅌ 
            ℭ(⍺)∩H (⍺)        ⍺∊⅌∩Ϩ 
 
Let (₣,Ԓ)∩ε(R,⅌∪Ϩ) =(L,Ԓ∪(⅌∪Ϩ)), where for all ⍺∊Ԓ∪⅌∪Ϩ, 
 
            ₣(⍺)                 ⍺∊Ԓ\(⅌∪Ϩ) 
L(⍺)=  R(⍺)                 ⍺∊(⅌∪Ϩ)\Ԓ 
            ₣(⍺)∩R(⍺)       ⍺∊Ԓ∩(⅌∪Ϩ) 
 
 Thus, 
            ₣(⍺)                                ⍺∊Ԓ\(⅌∪Ϩ)=Ԓ∩⅌’∩Ϩ’     
            ℭ(⍺)                                ⍺∊(⅌\Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ’ 
            Ҥ(⍺)                               ⍺∊(Ϩ\⅌)\Ԓ=Ԓ’∩⅌’∩Ϩ 
L(⍺)=  ℭ(⍺)∩Ҥ(⍺)                     ⍺∊(⅌∩Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊Ԓ∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
            ₣(⍺)∩H (⍺)                     ⍺∊Ԓ∩(Ϩ\⅌)=Ԓ∩⅌’∩Ϩ 
            ₣(⍺)∩ [ℭ(⍺)∩Ҥ(⍺)]        ⍺∊Ԓ∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ     
     
It is seen that (Ǹ,(Ԓ∪⅌)∪Ϩ)=(L,Ԓ∪(⅌∪Ϩ)). That is, ∩ε is associative in 𝑆𝑆𝐸𝐸(U). 
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Proposition 23 Let (₣,Ԓ), (ℭ,Ԓ) and (Ҥ,Ԓ) be ՏՏs over U. Then, [(₣,Ԓ) ∩ε(ℭ,Ԓ)] ∩ε (Ҥ,Ԓ) = (₣,Ԓ) ∩ε 
[(ℭ,Ԓ) ∩ε(Ҥ,Ԓ)]. 
Proof: The proof follows from Note 1 and Proposition 3. That is,  ∩ε is associative in SԒ(U), where Ԓ is a 
fixed subset of E. 
 
Proposition 24 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, (₣,Ԓ) ∩ε(ℭ,⅌)=(ℭ,⅌) ∩ε (₣,Ԓ) (Qin and Hong, 
2010) 
 
Proof: Qin and Hong (2010) presented this property without proof in their study; however, we provide it 
with its detailed proof. Let (₣,Ԓ) ∩ε (ℭ,⅌)=(Ҥ,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
Ҥ(⍺)=  ℭ(⍺)                ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)      ⍺∊Ԓ∩⅌        
 
Let (ℭ,⅌)∩ε(₣,Ԓ)=(S,⅌∪Ԓ), where for all ⍺∊⅌∪Ԓ, 
 
            ℭ(⍺)                 ⍺∊⅌\Ԓ 
S(⍺)=  ₣(⍺)                  ⍺∊Ԓ\⅌ 
            ℭ(⍺)∩₣(⍺)       ⍺∊⅌∩Ԓ 
 
Thus, (₣,Ԓ) ∩ε(ℭ,⅌)=(ℭ,⅌) ∩ε(₣,Ԓ). Moreover, it is evident that (₣,Ԓ) ∩ε(ℭ,Ԓ)=(ℭ,Ԓ)∩ε(₣,Ԓ). That is, ∩ε 
is commutative in both  SE(U) and ST(U). 
 
Proposition 25 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ) ∩ε(₣,Ԓ)=(₣,Ԓ) (Qin and Hong, 2010) 
 
Proof: Qin and Hong (2010) presented this property without proof in their study; however, we provide it 
with its detailed proof. The proof is obtained from Note 1 and Proposition 5. That is, ∩ε is idempotent in 
SE(U). 
 
Proposition 26 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ) ∩ε UԒ=UԒ ∩ε(₣,Ԓ)=(₣,Ԓ). 
 
Proof: The proof is obtained from Note 1 and Proposition 6. That is, UԒ  is the identity element of ∩ε in 
SԒ(U). 
 
Theorem 3 (SԒ(U), ∩ε)  is a bounded semi-lattice, whose identity is UԒ. 
 
Proof: By Proposition 21, Proposition 23, Proposition 24, Proposition 25, and Proposition 26, (SԒ(U),∩ε) 
is a commutative, idempotent monoid whose identity is UԒ, that is, a bounded semi-lattice. 
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Proposition 27 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ)∩ε ∅∅=(₣,Ԓ) (Ali et al., 2011). 
 
Proof: Ali et al. (2011) presented this property without proof in their study; however, we provide it with its 
detailed proof. Let ∅∅=(S,∅) and (₣,Ԓ) ∩ε(S, ∅)=(Ҥ,Ԓ∪∅), where for all ⍺∊Ԓ∪∅=Ԓ, 
 
            ₣(⍺)                 ⍺∊Ԓ\∅=Ԓ 
Ҥ(⍺)=  S(⍺)                ⍺∊∅ \Ԓ=∅ 
            ₣(⍺)∩S(⍺)       ⍺∊Ԓ∩∅=∅ 
 
Thus, Ҥ(⍺)=₣(⍺), for all ⍺∊Ԓ, and (Ҥ,Ԓ)=(₣,Ԓ).  
 
Proposition 28 Let (₣,Ԓ) be an ՏՏ over U. Then, ∅∅ ∩ε(₣,Ԓ)=(₣,Ԓ) (Ali et al., 2011). 
 
Proof: Ali et al. (2011) presented this property without proof in their study; however, we provide it with its 
detailed proof. Let ∅∅ =(S,∅) and (S,∅) ∩ε(₣,Ԓ)=(Ҥ, ∅∪Ԓ), where for all ⍺∊∅∪Ԓ= Ԓ, 
 
            S(⍺)                 ⍺∊∅\Ԓ=∅ 
Ҥ(⍺)=  ₣(⍺)                ⍺∊Ԓ\∅=Ԓ 
            S(⍺)∩₣(⍺)       ⍺∊∅∩Ԓ=∅  
 
Thus, Ҥ(⍺)=₣(⍺), for all ⍺∊Ԓ, and (Ҥ,Ԓ)=(₣,Ԓ). 
 
By Proposition 27 and Proposition 28, the identity element of ∩ε is the ՏՏ ∅∅ in SE(U).  
 
In classical set theory, it is well-known that A∪B=∅ if and only if   A=∅ and B=∅. By this fact, there does 
not exist (ℭ, K) ∈ SE(U) such that (₣,Ԓ)∩ε (ℭ, K)= (ℭ,K) ∩ε (₣,Ԓ)= ∅∅, as this requires Ԓ ∪K=∅, and so 
Ԓ =∅ and K=∅. Since ∅∅ is the only ՏՏ with an empty parameter in SE(U), there is not any element in 
SE(U), except the identity element ∅∅, which has an inverse with respect to ∩ε. Of course, the inverse of  
∅∅, which is the identity element, is itself, as usual. 
 
Proposition 29 Let (₣,Ԓ) be an ՏՏ over U. Then, ∅E ∩ε(₣,Ԓ)= (₣,Ԓ) ∩ε ∅E =∅E. 
 
Proof: Let ∅E =(S,E) ve (S,E) ∩ε(₣,Ԓ)=(Ҥ, E∪Ԓ=E), where for all ⍺∊E∪Ԓ=E, 
 
            S(⍺),                ⍺∊E\Ԓ=Ԓ’ 
Ҥ(⍺)=  ₣(⍺),               ⍺∊Ԓ\E=∅ 
            S(⍺)∩₣(⍺),      ⍺∊E∩Ԓ=Ԓ  
 
Hence, for all ⍺∊E∪Ԓ=E, 
            ∅,          ⍺∊E\Ԓ=Ԓ’ 
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Ҥ(⍺)=  ₣(⍺)      ⍺∊Ԓ\E=∅ 
            ∅,          ⍺∊E∩Ԓ=Ԓ 
Thus, Ҥ(⍺)=∅, for all ⍺∊ E, and (Ҥ,Ԓ)= ∅E. That is, ∅E  is the absorbing element of ∩ε in SE(U). 
 
Theorem 4 (SE(U), ∩ε)  is a bounded semi-lattice, whose identity is ∅∅ and the absorbing element is  ∅E . 
 
Proof: By Proposition 21, Proposition 22, Proposition 24, Proposition 25, Proposition 27, Proposition 28, 
and Proposition 29, (SE(U),∩ε) is a commutative, idempotent monoid whose identity is ∅∅, that is, a 
bounded semi-lattice with the absorbing element is  ∅E . 
 
Proposition 30 Let (₣,Ԓ) be an ՏՏ over U. Then, (₣,Ԓ) ∩ε(₣,Ԓ)r= (₣,Ԓ)r∩ε (₣,Ԓ)= ∅Ԓ (Sezgin and Atagün, 
2011). 
 
Proof: Sezgin and Atagün (2011) presented this property without proof; however, we give it here with 
proof. The proof is obtained from Note 1 and Proposition 11. 
Ali et al. (2009) used the negative complement defined by Maji et al. (2003) for De Morgan's laws for 
extended intersection and extended union. On the other hand, Qin and Hong (2010) adopted the more 
commonly used relative complement defined by Ali et al. (2009) for the complement operation and 
provided De Morgan's laws accordingly. Their proofs were element-based in Qin and Hong (2010), while 
we present a simpler proof using function equality as follows: 
 
Proposition 31 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, [(₣,Ԓ) ∩ε(ℭ,⅌)]r=(₣,Ԓ)r ∪ε(ℭ,⅌)r (De Morgan 
Law) (Qin and Hong, 2010) 
 
Proof:  Let (₣,Ԓ)∩ε(ℭ,⅌)=(Ҥ,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
             ₣(⍺)                 ⍺∊Ԓ\⅌ 
Ҥ(⍺)=  ℭ(⍺)                ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)       ⍺∊Ԓ∩⅌  
 
Let (Ҥ,Ԓ∪⅌)r =(K,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣’(⍺)                   ⍺∊Ԓ\⅌ 
K(⍺)=  G’(⍺)                  ⍺∊⅌\Ԓ 
            ₣’(⍺)∪G’(⍺)       ⍺∊Ԓ∩⅌  
 
Hence, (K,Ԓ∪⅌)=(₣,Ԓ)r ∪ε(ℭ,⅌)r.    
 
Proposition 32 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, (₣,Ԓ) ∩ε (ℭ, ⅌)= UԒ∪⅌ if and only if (₣,Ԓ)=
UԒ and  (ℭ, ⅌) = U⅌. 
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Proof: Let (₣, Ԓ) ∩𝜀𝜀 (ℭ, ⅌) =(Ҥ,Ԓ∪⅌),   
 
            ₣(⍺),                   ⍺∊Ԓ\⅌ 
Ҥ(⍺)= ℭ(⍺),                   ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺),        ⍺∊Ԓ∩⅌  
 
Since (Ҥ, Ԓ ∪ ⅌)= UԒ∪⅌ ,  Ҥ(⍺)= U, for all ⍺∊Ԓ∪⅌. Hence, if ⍺∊Ԓ\⅌, then ₣(⍺)=U, if ⍺∊ ⅌\Ԓ, then 
ℭ(⍺)=U, and if ⍺∊Ԓ∩⅌, then ₣(⍺)∩ℭ(⍺)=U, implying that ₣(⍺)=ℭ(⍺)=U. Thus, ₣(⍺)=U, for all ⍺∊Ԓ, and 
ℭ(⍺)=U, for all ⍺∊⅌. Hence, (₣, Ԓ) = UԒ   and  (ℭ, ⅌) = U⅌. 
 
Conversely let (₣,Ԓ)= UԒ and  (ℭ, ⅌) = U⅌. Then, ₣(⍺)=U, for all ⍺∊Ԓ, and ℭ(⍺)=U, for all ⍺∊⅌. Then, 
 
            U,                   ⍺∊Ԓ\⅌ 
Ҥ(⍺)= U,                    ⍺∊⅌\Ԓ 
            U∩U,            ⍺∊Ԓ∩⅌  
 
for all ⍺∊Ԓ∪⅌. Therefore, (H, Ԓ∪⅌)=(₣,Ԓ) ∩ε (ℭ, ⅌)= UԒ∪⅌. 
 
Proposition 33 Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, ∅Ԓ ⊆�(₣,Ԓ)∩ε(ℭ,⅌), ∅⅌ ⊆�(₣,Ԓ) ∩ε (ℭ,⅌). Also, 
(₣,Ԓ)∩ε (ℭ,⅌) ⊆�  UԒ∪⅌. 
 
Proof: The proof is obvious since the empty set is a subset of every set and the universal set includes every 
set. 
 
Proposition 34 Let (₣,Ԓ) and (ℭ,Ԓ) be ՏՏs over U. Then, (₣, Ԓ) ∩ε (ℭ, Ԓ) ⊆� (₣,Ԓ) and 
(₣, Ԓ) ∩ε (ℭ, Ԓ) ⊆� (ℭ,Ԓ). 
 
Proof: The proof is obtained from Note 1 and Proposition 15. 
 
Proposition 35 Let (₣,Ԓ) and (ℭ, Ԓ) be ՏՏs over U. (₣,Ԓ) ⊆� (ℭ, Ԓ) if and only if (₣,Ԓ) ∩ε (ℭ, Ԓ) =(₣, Ԓ). 
 
Proof: The proof is obtained from Note 1 and Proposition 16. 

 

Proposition 36 Let (₣,Ԓ), (ℭ,Ԓ), and (K,V) be ՏՏs over U. If (₣,Ԓ) ⊆� (ℭ, Ԓ), then (₣,Ԓ)∩ε(K,V) 
⊆�(ℭ,Ԓ)∩ε(K,V). However, the converse is not true. 
 
Proof: Let (₣,Ԓ) ⊆� (ℭ, Ԓ). Hence, ₣(⍺)⊆ℭ(⍺), for all ⍺∊Ԓ. Let (₣,Ԓ)∩ε(K,V)=(Ҥ,Ԓ∪V),  where for all 
⍺∊ԒUV, 
 
            ₣(⍺)                 ⍺∊Ԓ\V 
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Ҥ(⍺)=  K(⍺)                ⍺∊V\Ԓ 
            ₣(⍺)∩K(⍺)      ⍺∊Ԓ∩V  
 
Let (ℭ,Ԓ)∩ε(K,V)=(S, Ԓ UV), where for all ⍺∊ԒUV, 
 
            ℭ(⍺)                 ⍺∊Ԓ\V 
S(⍺)=   K(⍺)                ⍺∊V\Ԓ 
            ℭ(⍺)∩K(⍺)     ⍺∊Ԓ∩V  
 
If ⍺∊Ԓ\V, then H(⍺)=₣(⍺)⊆₣(⍺)=S(⍺), if ⍺∊V\Ԓ, then H(⍺)=K(⍺)⊆K(⍺)=S(⍺), if ⍺∈Ԓ∩V, then 
H(⍺)=₣(⍺) ∩K(⍺) ⊆ ℭ(⍺)∩K(⍺)= S(⍺). Thus, Ҥ(⍺)⊆S(⍺), for all ⍺∊ԒUV, implying that (₣,Ԓ)∩ε(K,V) 
⊆�(ℭ,Ԓ) ∩ε (K,V). 
 
Let’s give an example to show that the converse is not true. Let E={e1,e2,e3,e4, e5} be the parameter set, 
Ԓ={e1,e3}, V={e1,e3,e5} be the subsets of E and, U={h1,h2, h3,h4, h5} be the universel set. Assume that 
(₣,Ԓ), (ℭ,Ԓ) and (K,V) are the ՏՏs over U defined as follows: 
(₣,Ԓ)={(e1, ,{h2, h5}),(e3,{h1,h2,h5})},(ℭ,Ԓ)={(e1,,{h2}),(e3,{h1,h2})},(K,V)={ e1,∅),(e3,∅),(e5,{
h1, h5})}.  
It is obvious that (₣,Ԓ)∩εK,V)={(e1,∅),(e3,∅),(e5,{h1, h5})} and (ℭ,Ԓ)∩ε(K,V)={(e1,∅),(e3,∅),( 
e5,{h1, h5})}. Hence, (₣,Ԓ)∩ε(K,V)⊆�(ℭ,Ԓ)∩ε(K,V); however, (₣,Ԓ) is not soft subset of (ℭ, Ԓ). 
 
Proposition 37 Let (₣,Ԓ), (ℭ,Ԓ), (K,V), and (L,V) be ՏՏs over U. If (₣, Ԓ) ⊆� (ℭ, Ԓ) and (K, V) ⊆� (L, V), 
then (₣, Ԓ) ∩ε (K, V)  ⊆� (ℭ, Ԓ) ∩ε (L, V). 
 
Proof: Let (₣,Ԓ) ⊆� (ℭ, Ԓ) and (K,V) ⊆� (L, V). Hence, ₣(⍺)⊆ℭ(⍺), for all ⍺∊Ԓ and K(⍺)⊆L(⍺), and for all 
⍺∊V. Let (₣,Ԓ)∩ε(K,V)=(Ҥ, Ԓ UV), where for all ⍺∊ԒUV, 
 
            ₣(⍺)                    ⍺∊Ԓ\V 
Ҥ(⍺)=  K(⍺)                  ⍺∊V\Ԓ 
            ₣(⍺)∩K(⍺)        ⍺∊Ԓ∩V  
 
Let (ℭ,Ԓ)∩ε(L,V)=(S, Ԓ UV), where for all ⍺∊ԒUV,      
 
            ℭ(⍺)                    ⍺∊Ԓ\V 
S(⍺)=   L(⍺)                   ⍺∊V\Ԓ 
            ℭ(⍺)∩L(⍺)         ⍺∊Ԓ∩V  
 
If ⍺∊Ԓ\V, then H(⍺)=₣(⍺) ⊆ℭ(⍺)=S(⍺), if ⍺∊V\Ԓ, then H(⍺)=K(⍺)⊆L(⍺)=S(⍺), and if ⍺∊∈Ԓ∩V, 
H(⍺)=₣(⍺) ∩K(⍺) ⊆ ℭ(⍺)∩L(⍺)= S(⍺). Thus, H(⍺)⊆ S(⍺), for all ⍺∊ԒUV, implying that (₣,Ԓ) ∩ε (K,V) 
⊆�(ℭ,Ԓ) ∩ε (L,V). 
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Proposition 38 Let (₣,Ԓ) and (ℭ,Ԓ) be ՏՏs over U. Then, (₣, Ԓ) ⊆� (ℭ, Ԓ)r if and only if 
  (₣, Ԓ) ∩ε (ℭ, Ԓ) =  ∅Ԓ. 
Proof: The proof is obtained from Note 1 and Proposition 20. 
 
3.2.1. The distributions of the extended intersection operation over other ՏՏ operations: 
 
In this subsection, the distributions of the extended intersection operation over restricted ՏՏ operations, 
extended operations, and soft binary partition operations have been examined. 
 
3.2.1.1. The distributions of the extended intersection operation over restricted ՏՏ operations: 
 
Here, the distributions of the extended intersection operation to restricted operations have been examined. 
First, distributions from the left, followed by distributions from the right, have been investigated. It is worth 
noting an important point here. In the study by Ali et al. (2011), the distributions of the extended intersection 
operation over the restricted union from the left were examined without proof, and demonstrated with an 
example that the extended intersection operation does not satisfy the property of distributions over the 
restricted intersection from the left. Singh and Onyeozili (2012c) showed that the extended intersection 
operation does not satisfy the property of distributions over the restricted difference from the left. Sezgin 
and Atagün (2011), although showed that the extended intersection operation distributes to the restricted 
union from both the right and the left, they overlooked some points in their proof. In this study, the 
distributive properties are presented with detailed proofs, considering the cases where the intersection of 
the parameter sets of the ՏՏs involved in restricted operations is empty as well. Additionally, for those that 
do not satisfy the distributive property, the conditions under which they do satisfy the distributive property 
are also provided with detailed proofs. 
 
a) LHS distributions of extended intersection over restricted ՏՏ operations: 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 
i) (₣,Ԓ) ∩ε[(ℭ, ⅌) ∪R (Ҥ,Ϩ)]=[(₣,Ԓ) ∩ε (ℭ, ⅌)]∪R[(₣,Ԓ) ∩ε(Ҥ,Ϩ)] (Sezgin and Atagün, 2011). 
 
Proof: In the proof by Sezgin and Atagün (2011), a case in the parameter partitioning on the right-hand 
side was overlooked. Moreover, the proof emphasized that the intersection of the parameter sets of the ՏՏs 
involved in restricted operations must be non-empty. However, even if the intersection of the parameter 
sets of the ՏՏs involved in restricted operations is empty, this distributive property still holds. Therefore, 
in our proof, these cases are specifically considered and addressed by taking these situations into 
consideration. 
 
First, let’s consider the LHS, and let (ℭ, ⅌) ∪R(Ҥ,Ϩ)=(S,⅌∩Ϩ). Hence, for all ⍺∊⅌∩Ϩ, S(⍺)=ℭ(⍺)∪Ҥ(⍺). 
Let (₣,Ԓ)∩ε(S,⅌∩Ϩ)=(Ǹ,Ԓ∪(⅌∩Ϩ)), where for all ⍺∊Ԓ∪(⅌∩Ϩ),      
                    
            ₣(⍺)                  ⍺∊Ԓ\(⅌∩Ϩ)  
Ǹ(⍺)=  S(⍺)                 ⍺∊(⅌∩Ϩ)\Ԓ 
            ₣(⍺)∩S(⍺)       ⍺∊Ԓ∩(⅌∩Ϩ) 
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Hence, 
            ₣(⍺)                                ⍺∊Ԓ\(⅌∩Ϩ) 
Ǹ(⍺)=  ℭ(⍺)∪Ҥ(⍺)                    ⍺∊(⅌∩Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ 
            ₣(⍺)∩[ℭ(⍺)∪Ҥ(⍺)]       ⍺∊Ԓ∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ   
 
Now let’s handle the RHS, and let (₣,Ԓ)∩ε (ℭ, ⅌)=(W,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                    ⍺∊Ԓ\⅌ 
W(⍺)= ℭ(⍺)                    ⍺∊⅌\Ԓ 
            ₣(⍺)∩ ℭ(⍺)         ⍺∊Ԓ∩⅌ 
 
Let (₣,Ԓ) ∩ε (Ҥ,Ϩ)=(K,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
            ₣(⍺)                 ⍺∊Ԓ\Ϩ 
K(⍺)=  Ҥ(⍺)                ⍺∊Ϩ\Ԓ 
            ₣(⍺)∩Ҥ(⍺)      ⍺∊Ԓ∩Ϩ 
 
Let (W,Ԓ∪⅌)∪R(K,Ԓ∪Ϩ)=(Y,(Ԓ∪⅌)∩(Ԓ∪Ϩ)), where for all ⍺∊(Ԓ∪⅌)∩(Ԓ∪Ϩ), Y(⍺)=W(⍺)∪K(⍺). 
Thereby, 
 
            ₣(⍺)∪₣(⍺)                                   ⍺∊(Ԓ\⅌)∩(Ԓ\Ϩ)=Ԓ∩⅌’∩Ϩ’ 
            ₣(⍺)∪Ҥ(⍺)                                 ⍺∊(Ԓ\⅌)∩(Ϩ\Ԓ)=∅ 
            ₣(⍺)∪[₣(⍺)∩Ҥ(⍺)]                     ⍺∊(Ԓ\⅌)∩(Ԓ∩Ϩ)= Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∪₣(⍺)                                  ⍺∊(⅌\Ԓ)∩(Ԓ\Ϩ)= ∅  
Y(⍺)=  ℭ(⍺)∪Ҥ(⍺)                                ⍺∊(⅌\Ԓ)∩(Ϩ\Ԓ) =Ԓ’∩⅌∩Ϩ 
            ℭ(⍺)∪[₣(⍺)∩Ҥ(⍺)]                    ⍺∊(⅌\Ԓ)∩(Ԓ∩Ϩ)= ∅ 
            [₣(⍺)∩ℭ(⍺)]∪₣(⍺)                     ⍺∊(Ԓ∩⅌)∩(Ԓ\Ϩ)= Ԓ∩⅌∩Ϩ’                
            [₣(⍺)∩ℭ(⍺)]∪Ҥ(⍺)                    ⍺∊(Ԓ∩⅌)∩(Ϩ\Ԓ)= ∅ 
            [₣(⍺)∩ℭ(⍺)]∪[₣(⍺)∩Ҥ(⍺)]        ⍺∊(Ԓ∩⅌)∩(Ԓ∩Ϩ)= Ԓ∩⅌∩Ϩ    
          
Thus, 
 
            ₣(⍺)                                ⍺∊Ԓ∩⅌’∩Ϩ’ 
            ₣(⍺)                                ⍺∊Ԓ∩⅌’∩Ϩ 
Y(⍺)= ℭ(⍺)∪Ҥ(⍺)                     ⍺∊Ԓ’∩⅌∩Ϩ 
            ₣(⍺)                                ⍺∊Ԓ∩⅌∩Ϩ’                
            ₣(⍺)∩[ℭ(⍺)∪Ҥ(⍺)]       ⍺∊Ԓ∩⅌∩Ϩ     
 



 Natural & Applied Sciences Journal Vol. 8 (1) 2025 79 
 
 
Here, let’s consider Ԓ\(⅌∩Ϩ) in the function N. Since Ԓ\(⅌∩Ϩ)=Ԓ∩(⅌∩Ϩ)' and if an element is in the 
complement of (⅌∩Ϩ), it is either in ⅌\Ϩ, in Ϩ\⅌ or in the complement of ⅌∪Ϩ, thus if ⍺∈Ԓ\(⅌∩Ϩ), then 
⍺∈Ԓ∩⅌∩Ϩ' or ⍺∈Ԓ∩⅌'∩Ϩ or ⍺∈Ԓ∩⅌'∩Ϩ'. Therefore,  Ǹ=Y. 
 
Here, if ⅌∩Ϩ=∅, then Ǹ(⍺)=W(⍺)=₣(⍺), and thus equality is satisfied again. Similarly, when 
(Ԓ∪⅌)∩(Ԓ∪Ϩ)=Ԓ∪(⅌∩Ϩ)=∅, i.e. Ԓ=∅ and ⅌∩Ϩ=∅, then (Ǹ,Ԓ∪(⅌∩Ϩ))=(Y,(Ԓ∪⅌)∩(Ԓ∪Ϩ))=∅∅. 
Therefore, there is no need to require these sets to be different from the empty set. 
 
ii) (₣,Ԓ)∩ε [(ℭ, ⅌) ∩R(Ҥ,Ϩ)]≠[(₣,Ԓ)∩ε (ℭ, ⅌)]∩R[(₣,Ԓ) ∩ε(Ҥ,Ϩ)] (Ali et al., 2011), however 
(₣,Ԓ) ∩ε[(ℭ, ⅌) ∩R (Ҥ,Ϩ)]=[(₣,Ԓ) ∩ε (ℭ, ⅌)]∩R[(₣,Ԓ) ∩ε(Ҥ,Ϩ)], where Ԓ∩(⅌∆ Ϩ)=∅. 
 
Proof: Since the proof of the left distributive property of the extended intersection over the restricted 
intersection is very similar to (i),  it is not repeated here. However, it is worth mentioning the following 
point. In classical sets, the intersection operation is left-distributive over the union operation. However, for 
extended intersection and restricted union operations, this situation does not hold, as shown by Ali et al. 
(2011) with a counter-example. In this study, we show that the distributivity can be achieved under the 
condition Ԓ∩(⅌∆ Ϩ)=∅. 
 
In classical sets, the intersection operation is left-distributive over both the difference and the symmetric 
difference operations. However, for extended intersection and restricted difference and restricted symmetric 
difference operations, this situation does not hold, as shown below: 
 
iii) (₣,Ԓ)∩ε[(ℭ, ⅌)\R(Ҥ,Ϩ)]≠[(₣,Ԓ)∩ε (ℭ, ⅌)]\R[(₣,Ԓ)∩ε(Ҥ,Ϩ)] (Singh and Onyeozili, 2012c). 
 
iv) (₣,Ԓ)∩ε[(ℭ, ⅌)∆R(Ҥ,Ϩ)]≠[(₣,Ԓ)∩ε (ℭ, ⅌)]∆R[(₣,Ԓ)∩ε(Ҥ,Ϩ)].  
 
b) RHS distributions of extended intersection over restricted ՏՏ operations: 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 
i) [(₣,Ԓ) ∪R(ℭ,⅌)]∩ε(Ҥ,Ϩ)= [(₣,Ԓ)∩ε(Ҥ,Ϩ)] ∪R [(ℭ,⅌) ∩ε (Ҥ,Ϩ)] (Sezgin and Atagün, 2011). 
 
Proof: Sezgin and Atagün (2011) presented this property without proof in their study; however, we provide 
it with its detailed proof. First, let’s consider the LHS and let (₣,Ԓ) ∪R(ℭ,⅌)=(R,Ԓ∩⅌), where for all 
⍺∊Ԓ∩⅌, R(⍺)=₣(⍺)∪ℭ(⍺). Let (R,Ԓ∩⅌) ∩ε(Ҥ,Ϩ)=(L,(Ԓ∩⅌)∪Ϩ), where for all ⍺∊(Ԓ∩⅌)∪Ϩ,   
 
            R(⍺)                 ⍺∊(Ԓ∩⅌)\Ϩ 
L(⍺)=  Ҥ(⍺)                 ⍺∊Ϩ\(Ԓ∩⅌) 
            R(⍺)∩Ҥ(⍺)      ⍺∊(Ԓ∩⅌)∩Ϩ 
 
Hence, 
 
            ₣(⍺)∪ℭ(⍺)                       ⍺∊(Ԓ∩⅌)\Ϩ=Ԓ∩⅌∩Ϩ’ 
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L(⍺)=  Ҥ(⍺)                                ⍺∊Ϩ\(Ԓ∩⅌) 
            [₣(⍺)∪ℭ(⍺)]∩Ҥ(⍺)         ⍺∊(Ԓ∩⅌)∩Ϩ=Ԓ∩⅌∩Ϩ    
        
Now let’s handle the RHS, and let (₣,Ԓ)∩ε (Ҥ, Ϩ)=(S,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
            ₣(⍺)                 ⍺∊Ԓ\Ϩ 
S(⍺)=  Ҥ(⍺)                ⍺∊Ϩ\Ԓ 
            ₣(⍺)∩Ҥ(⍺)      ⍺∊Ԓ∩Ϩ 
 
Let (ℭ,⅌) ∩ε (Ҥ,Ϩ)=(K,⅌∪Ϩ), where for all ⍺∊⅌∪Ϩ, 
 
            ℭ(⍺)                 ⍺∊⅌\Ϩ 
K(⍺)=  Ҥ(⍺)                ⍺∊Ϩ\⅌ 
            ℭ(⍺)∩Ҥ(⍺)      ⍺∊⅌∩Ϩ 
 
Let (S,Ԓ∪Ϩ) ∪R(K,⅌∪Ϩ)=(W,(Ԓ∪Ϩ)∩(⅌∪Ϩ)), where for all ⍺∊(Ԓ∪Ϩ)∩(⅌∪Ϩ), W(⍺)=S(⍺)∪K(⍺). Thus,  
 
            ₣(⍺)∪ℭ(⍺)                                     ⍺∊(Ԓ\Ϩ)∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
            ₣(⍺)∪Ҥ(⍺)                                    ⍺∊(Ԓ\Ϩ)∩(Ϩ\⅌)=∅ 
            ₣(⍺)∪[ℭ(⍺)∩Ҥ(⍺)]                      ⍺∊(Ԓ\Ϩ)∩(⅌∩Ϩ)=∅ 
            Ҥ(⍺)∪ℭ(⍺)                                   ⍺∊(Ϩ\Ԓ)∩(⅌\Ϩ)= ∅ 
W(⍺)= Ҥ(⍺)∪Ҥ(⍺)                                   ⍺∊(Ϩ\Ԓ)∩(Ϩ\⅌)=Ԓ’∩⅌’∩Ϩ 
            Ҥ(⍺)∪[ℭ(⍺)∩Ҥ(⍺)]                     ⍺∊(Ϩ\Ԓ)∩(⅌∩Ϩ)=Ԓ’∩⅌∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∪ℭ(⍺)                       ⍺∊(Ԓ∩Ϩ)∩(⅌\Ϩ)=∅ 
            [₣(⍺)∩Ҥ(⍺)]∪Ҥ(⍺)                       ⍺∊(Ԓ∩Ϩ)∩(Ϩ\⅌)=Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∪[ℭ(⍺)∩Ҥ(⍺)]          ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ  
 
Thus, 
 
            ₣(⍺)∪ℭ(⍺)                                  ⍺∊Ԓ∩⅌∩Ϩ’ 
            Ҥ(⍺)                                           ⍺∊Ԓ’∩⅌’∩Ϩ 
W(⍺)= Ҥ(⍺)                                           ⍺∊Ԓ’∩⅌∩Ϩ 
            Ҥ(⍺)                                           ⍺∊Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∪[ℭ(⍺)∩Ҥ(⍺)]       ⍺∊Ԓ∩⅌∩Ϩ          
     
Here, let’s consider Ϩ\(Ԓ∩⅌) in L. Since Ϩ\(Ԓ∩⅌)=Ϩ∩(Ԓ∩⅌)', if an element is in the complement of 
(Ԓ∩⅌), it is either in Ԓ\⅌ , either in ⅌\Ԓ or in the complement of Ԓ∪ Z. Thus, if ⍺∈Ϩ\(Ԓ∩⅌), then 
⍺∈Ϩ∩Ԓ∩⅌' or ⍺∈ Ϩ∩⅌∩Ԓ' or ⍺∈ Ϩ∩Ԓ'∩⅌'. Hence, L=W. 
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Here, if Ԓ∩⅌=∅, then the equality will still be satisfied, since L(⍺)=W(⍺)=Ҥ(⍺). Similarly, if 
(Ԓ∪Ϩ)∩(⅌∪Ϩ)=(Ԓ∩⅌)∪Ϩ=∅, that is, Ԓ∩⅌=∅ and Ϩ=∅,  then (L,(Ԓ∩⅌)∪Ϩ)=(W,(Ԓ∪Ϩ)∩(⅌∪Ϩ))= ∅∅. That 
is, in the theorem, there is no need to require these sets to be different from the empty. 
 
ii) [(₣,Ԓ) ∩R(ℭ,⅌)]∩ε(Ҥ,Ϩ)=[(₣,Ԓ)∩ε(Ҥ,Ϩ)]∩R [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where (Ԓ∆⅌)∩Ϩ=∅. 
 
Proof: Since the proof of the right distributive property of the extended intersection over the restricted 
intersection is very similar to (i), it is not repeated here. However, it is worth mentioning the following 
point. In classical sets, the intersection operation is right-distributive over the intersection operation. 
However, for extended and restricted operations, this situation does not hold, but we state that the 
distributivity can be satisfied under the condition of (Ԓ∆⅌)∩Ϩ=∅. 
 
Similarly, in classical sets, the intersection operation is right-distributive over both the difference and the 
symmetric difference operations. However, for extended intersection and restricted difference and restricted 
symmetric difference operations, this situation does not hold, as given below: 
 
iii) [(₣,Ԓ) \R(ℭ,⅌)]∩ε(Ҥ, Ϩ) ≠[(₣,Ԓ)∩ε(Ҥ,Ϩ)]\R [(ℭ,⅌) ∩ε (Ҥ,Ϩ)]. 
 
iv) [(₣,Ԓ) ∆R(ℭ,⅌)]∩ε(Ҥ, Ϩ) ≠[(₣,Ԓ)∩ε(Ҥ,Ϩ)]∆R [(ℭ,⅌) ∩ε (Ҥ,Ϩ)]. 
 
3.2.1.2. The distributions of the extended intersection operation over other extended ՏՏ operations: 
 
Here, the distributive properties of the extended intersection operation over other extended operations are 
examined. First, left distributivity is considered, followed by right distributivity. It is important to note the 
following: In the study by Ali et al. (2011), the left distributive property of the extended intersection over 
the extended intersection was considered without proof, and it was shown with an example that the extended 
intersection does not satisfy the right distributive property over the extended union. In this study, these 
distributive properties are presented with detailed proofs. For those that do not satisfy the distributive 
property unconditionally, the conditions under which they do satisfy the distributive property are also 
proven. 
 
a) LHS distributions of extended intersection over other extended ՏՏ operations: 
 
Let (₣,Ԓ), (ℭ,⅌), and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 
i) (₣,Ԓ) ∩ε[(ℭ,⅌) ∩ε(Ҥ,Ϩ)]=[(₣,Ԓ) ∩ε(ℭ,⅌)]∩ε[(₣,Ԓ)∩ε (Ҥ,Ϩ)] (Ali et al., 2011). 
 
Proof: Ali et al. (2011) presented this property without proof in their study; however, we provide it with its 
detailed proof. First, let’s consider the LHS, and let (ℭ,⅌) ∩ε(Ҥ,Ϩ)=(R,⅌∪Ϩ), where for all ⍺∊⅌∪Ϩ, 
 
            ℭ(⍺)                   ⍺∊⅌\Ϩ 
R(⍺)=  Ҥ(⍺)                   ⍺∊Ϩ\⅌ 
            ℭ(⍺)∩Ҥ(⍺)        ⍺∊⅌∩Ϩ 
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Let (₣,Ԓ) ∩ε(R,⅌∪Ϩ) =(Ǹ,(Ԓ∪(⅌∪Ϩ)), where for all ⍺∊Ԓ∪(⅌∪Ϩ), 
 
            ₣(⍺)                  ⍺∊Ԓ\(⅌∪Ϩ) 
Ǹ(⍺)=  R(⍺)                 ⍺∊(⅌∪Ϩ)\Ԓ 
            ₣(⍺)∩R(⍺)       ⍺∊Ԓ∩(⅌∪Ϩ) 
 
Hence, 
 
            ₣(⍺)                                ⍺∊Ԓ\(⅌∪Ϩ)=Ԓ∩⅌’∩Ϩ’ 
            ℭ(⍺)                                ⍺∊(⅌\Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ’ 
            Ҥ(⍺)                               ⍺∊(Ϩ\⅌)\Ԓ=Ԓ’∩⅌’∩Ϩ 
Ǹ(⍺)=  ℭ(⍺)∩Ҥ(⍺)                    ⍺∊(⅌∩Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊Ԓ∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
            ₣(⍺)∩Ҥ(⍺)                     ⍺∊Ԓ∩(Ϩ\⅌)=Ԓ∩⅌’∩Ϩ     
            ₣(⍺)∩[ℭ(⍺)∩Ҥ(⍺)]       ⍺∊Ԓ∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ      
 
Now let’s handle the RHS and let (₣,Ԓ) ∩ε (ℭ,⅌)=(K,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                  ⍺∊Ԓ\⅌ 
K(⍺)=  ℭ(⍺)                 ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (₣,Ԓ) ∩ε(Ҥ,Ϩ)=(S,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
            ₣(⍺)                 ⍺∊Ԓ\Ϩ 
S(⍺)=   Ҥ(⍺)               ⍺∊Ϩ\Ԓ 
            ₣(⍺)∩Ҥ(⍺)      ⍺∊Ԓ∩Ϩ 
 
Let (K,Ԓ∪⅌) ∩ε(S,Ԓ∪Ϩ)=(L,(Ԓ∪⅌)∪(Ԓ∪Ϩ)), where for all ⍺∊(Ԓ∪⅌)∪(Ԓ∪Ϩ), 
 
            K(⍺)                 ⍺∊(Ԓ∪⅌)\(Ԓ∪Ϩ) 
L(⍺)=  S(⍺)                  ⍺∊(Ԓ∪Ϩ)\(Ԓ∪⅌) 
            K(⍺)∩S(⍺)       ⍺∊(Ԓ∪⅌)∩(Ԓ∪Ϩ)     
   
Hence, 
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            ₣(⍺)                                               ⍺∊(Ԓ\⅌)\(Ԓ∪Ϩ)=∅ 
            ℭ(⍺)                                               ⍺∊(⅌\Ԓ)\(Ԓ∪Ϩ)=Ԓ’∩⅌∩Ϩ’ 
            ₣(⍺)∩ℭ(⍺)                                     ⍺∊(Ԓ∩⅌)\(Ԓ∪Ϩ)=∅ 
            ₣(⍺)                                               ⍺∊(Ԓ\Ϩ)\(Ԓ∪⅌)=∅ 
            Ҥ(⍺)                                              ⍺∊(Ϩ\Ԓ)\(Ԓ∪⅌)=Ԓ’∩⅌’∩Ϩ 
            ₣(⍺)∩Ҥ(⍺)                                    ⍺∊(Ԓ∩Ϩ)\(Ԓ∪⅌)=∅ 
            ₣(⍺)∩₣(⍺)                                      ⍺∊(Ԓ\⅌)∩(Ԓ\Ϩ)=Ԓ∩⅌’∩Ϩ’ 
L(⍺)=  ₣(⍺)∩Ҥ(⍺)                                     ⍺∊(Ԓ\⅌)∩(Ϩ\Ԓ)=∅ 
            ₣(⍺)∩ [₣(⍺)∩Ҥ(⍺)]                       ⍺∊(Ԓ\⅌)∩(Ԓ∩Ϩ)=Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∩₣(⍺)                                     ⍺∊(⅌\Ԓ)∩(Ԓ\Ϩ)=∅ 
            ℭ(⍺)∩Ҥ(⍺)                                   ⍺∊(⅌\Ԓ)∩(Ϩ\Ԓ)= Ԓ’∩⅌∩Ϩ 
            ℭ(⍺)∩ [₣(⍺)∩Ҥ(⍺)]                      ⍺∊(⅌\Ԓ)∩(Ԓ∩Ϩ)=∅ 
            [₣(⍺)∩ℭ(⍺)]∩₣(⍺)                        ⍺∊(Ԓ∩⅌)∩(Ԓ\Ϩ)=Ԓ∩⅌∩Ϩ’ 
            [₣(⍺)∩ℭ(⍺)]∩Ҥ(⍺)                       ⍺∊(Ԓ∩⅌)∩(Ϩ\Ԓ)=∅ 
            [₣(⍺)∩ℭ(⍺)] ∩ [₣(⍺)∩Ҥ(⍺)]         ⍺∊(Ԓ∩⅌) ∩(Ԓ∩Ϩ)=Ԓ∩⅌∩Ϩ      
 
Hence,     
 
            ℭ(⍺)                                ⍺∊Ԓ’∩⅌∩Ϩ’ 
            Ҥ(⍺)                               ⍺∊Ԓ’∩⅌’∩Ϩ   
            ₣(⍺)                                ⍺∊Ԓ∩⅌’∩Ϩ’ 
L(⍺)=  ₣(⍺)∩Ҥ(⍺)                     ⍺∊Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∩Ҥ(⍺)                     ⍺∊Ԓ’∩⅌∩Ϩ 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊Ԓ∩⅌∩Ϩ’ 
            ₣(⍺)∩ [ℭ(⍺) ∩ 𝐻𝐻 (⍺)]     ⍺∊Ԓ∩⅌∩Ϩ      
 
It is seen that Ǹ=L. 
 
ii) (₣,Ԓ) ∩ε[(ℭ,⅌) ∪ε(Ҥ,Ϩ)]≠[(₣,Ԓ) ∩ε(ℭ,⅌)] ∪ε[(₣,Ԓ) ∩ε (Ҥ,Ϩ)] (Ali et al., 2011), and (₣,Ԓ) ∩ε[(ℭ,⅌) ∪ε 
(Ҥ,Ϩ)] = [(₣,Ԓ) ∩ε(ℭ,⅌)] ∪ε[(₣,Ԓ) ∩ε (Ҥ,Ϩ)], where Ԓ∩(⅌∆ Ϩ)=∅. 
 
Proof: Since the proof of the left distributive property of the extended intersection over the extended union 
is very similar to (i), it is not repeated here. However, it is worth mentioning the following point. In classical 
sets, the intersection operation is left-distributive over the union operation. However, for extended 
intersection and extended union operations, this situation does not hold, as shown by Ali et al. (2011) with 
an example. In this study, we show that distributivity can be satisfied under the condition Ԓ∩(Z∆M)=∅. 
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iii) If Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅, then (₣,Ԓ)∩ε[(ℭ,⅌) \ε(Ҥ,Ϩ)]=[(₣,Ԓ)∩ε(ℭ,⅌)] \ε[(₣,Ԓ) ∩ε (Ҥ,Ϩ)]. 
 
Proof: Since the proof of the left distributive property of the extended intersection over the extended 
difference is very similar to (i), it is not repeated here. However, it is worth mentioning the following point. 
In classical sets, the intersection operation is left-distributive over the difference operation. However, for 
extended intersection and extended difference operations, this situation does not hold. We state that 
distributivity can be satisfied under the condition Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅. 
 
iv) If Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅, then (₣,Ԓ)∩ε[(ℭ,⅌) ∆ε(Ҥ,Ϩ)]=[(₣,Ԓ)∩ε(ℭ,⅌)] ∆ε[(₣,Ԓ) ∩ε (Ҥ,Ϩ)]. 
 
Proof: Since the proof of the left distributive property of the extended intersection over the extended 
symmetric difference is very similar to (i), it is not repeated here. However, it is worth mentioning the 
following point. In classical sets, the intersection operation is left-distributive over the symmetric difference 
operation. However, for extended intersection and extended symmetric difference operations, this situation 
does not hold. We state that distributivity can be satisfied under the condition Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅. 
 
v) If Ԓ∩⅌’∩Ϩ’=Ԓ∩(Z∆M)=∅,  then (₣,Ԓ)∩ε[(ℭ,⅌) γε(Ҥ,Ϩ)]=[(₣,Ԓ)∩ε(ℭ,⅌)] γε[(₣,Ԓ) ∩ε (Ҥ,Ϩ)]. 
 
b) RHS distributions of extended intersection operation over other extended ՏՏ operations: 
Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, we have the following distributions: 
 
i)[(₣,Ԓ) ∩ε (ℭ,⅌)] ∩ε(Ҥ,Ϩ)= [(₣,Ԓ) ∩ε(Ҥ,Ϩ)] ∩ε[(ℭ,⅌) ∩ε (Ҥ,Ϩ)].  
 
Proof: First, let’s consider the LHS, and let (₣,Ԓ) ∩ε (ℭ,⅌)=(R,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                  ⍺∊Ԓ\⅌ 
R(⍺)=  ℭ(⍺)                 ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (R,Ԓ∪⅌)∩ε(Ҥ,Ϩ) =(Ǹ,(Ԓ∪⅌)∪Ϩ), where for all ⍺∊(Ԓ∪⅌)∪Ϩ, 
 
            R(⍺)                  ⍺∊(Ԓ∪⅌)\Ϩ 
Ǹ(⍺)=  Ҥ(⍺)                 ⍺∊Ϩ\(Ԓ∪⅌) 
            R(⍺)∩Ҥ(⍺)       ⍺∊(Ԓ∪⅌)∩Ϩ     
 
Hence, 
 
            ₣(⍺)                                ⍺∊(Ԓ\⅌)\Ϩ=Ԓ∩⅌’∩Ϩ’ 
            ℭ(⍺)                               ⍺∊(⅌\Ԓ)\Ϩ=Ԓ’∩⅌∩Ϩ’ 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊(Ԓ∩⅌)\Ϩ=Ԓ∩⅌∩Ϩ’ 
Ǹ(⍺)=  Ҥ(⍺)                               ⍺∊Ϩ\(Ԓ∪⅌)=Ԓ’∩⅌’∩Ϩ 
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            ₣(⍺)∩Ҥ(⍺)                     ⍺∊(Ԓ\⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∩Ҥ(⍺)                     ⍺∊(⅌\Ԓ)∩Ϩ =Ԓ’∩⅌∩Ϩ     
            [₣(⍺)∩ℭ(⍺)]∩Ҥ(⍺)        ⍺∊(Ԓ∩⅌)∩Ϩ=Ԓ∩⅌∩Ϩ     
 
Now let’s handle the RHS, and let  (₣,Ԓ) ∩ε(Ҥ,Ϩ)=(K,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
            ₣(⍺)                 ⍺∊Ԓ\Ϩ 
K(⍺)=  Ҥ(⍺)                 ⍺∊Ϩ\Ԓ 
            ₣(⍺)∩Ҥ(⍺)      ⍺∊Ԓ∩Ϩ 
 
Let (ℭ,⅌) ∩ε(Ҥ,Ϩ)=(S,⅌∪Ϩ), where for all ⍺∊⅌∪Ϩ, 
 
            ℭ(⍺)                 ⍺∊⅌\Ϩ 
S(⍺)=   Ҥ(⍺)               ⍺∊Ϩ\⅌ 
            ℭ(⍺)∩Ҥ(⍺)      ⍺∊⅌∩Ϩ 
 
Let (K,Ԓ∪Ϩ)∩ε(S,⅌∪Ϩ)=(L,(Ԓ∪Ϩ)∪(⅌∪Ϩ)), where for all ⍺∊(Ԓ∪Ϩ)∪(⅌∪Ϩ), 
 
            K(⍺)                 ⍺∊(Ԓ∪Ϩ)\(⅌∪Ϩ) 
L(⍺)=  S(⍺)                  ⍺∊(⅌∪Ϩ)\(Ԓ∪Ϩ) 
            K(⍺)∩S(⍺)       ⍺∊(Ԓ∪Ϩ)∩(⅌∪Ϩ)    
 
Hence, 
 
            ₣(⍺)                                               ⍺∊(Ԓ\Ϩ)\(⅌∪Ϩ)=Ԓ∩⅌’∩Ϩ’ 
            Ҥ(⍺)                                              ⍺∊(Ϩ\Ԓ)\(⅌∪Ϩ)=∅ 
            ₣(⍺)∩Ҥ(⍺)                                    ⍺∊(Ԓ∩Ϩ)\(⅌∪Ϩ)=∅ 
            ℭ(⍺)                                              ⍺∊(⅌\Ϩ)\(Ԓ∪Ϩ)=Ԓ’∩⅌∩Ϩ’ 
            Ҥ(⍺)                                              ⍺∊(Ϩ\⅌)\(Ԓ∪Ϩ)=∅ 
            ℭ(⍺)∩Ҥ(⍺)                                   ⍺∊(⅌∩Ϩ)\(Ԓ∪Ϩ)=∅ 
            ₣(⍺)∩ℭ(⍺)                                     ⍺∊(Ԓ\Ϩ)∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
L(⍺)=  ₣(⍺)∩Ҥ(⍺)                                    ⍺∊(Ԓ\Ϩ)∩(Ϩ\⅌)=∅ 
            ₣(⍺)∩[ℭ(⍺)∩Ҥ(⍺)]                      ⍺∊(Ԓ\Ϩ)∩(⅌∩Ϩ)=∅ 
            Ҥ(⍺)∩ℭ(⍺)                                   ⍺∊(Ϩ\Ԓ)∩(⅌\Ϩ)=∅ 
            Ҥ(⍺)∩Ҥ(⍺)                                   ⍺∊(Ϩ\Ԓ)∩(Ϩ\⅌)= Ԓ’∩⅌’∩Ϩ 
            Ҥ(⍺)∩[ℭ(⍺)∩Ҥ(⍺)]                     ⍺∊(Ϩ\Ԓ)∩(⅌∩Ϩ)=Ԓ’∩⅌∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∩ℭ(⍺)                       ⍺∊(Ԓ∩Ϩ)∩(⅌\Ϩ)=∅ 
            [₣(⍺)∩Ҥ(⍺)]∩Ҥ(⍺)                      ⍺∊(Ԓ∩Ϩ)∩(Ϩ\⅌)=Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∩[ℭ(⍺)∩H(⍺)]          ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ      
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Thus, 
 
 
            ₣(⍺)                                               ⍺∊Ԓ∩⅌’∩Ϩ’ 
            ℭ(⍺)                                              ⍺∊Ԓ’∩⅌∩Ϩ’  
            ₣(⍺)∩ℭ(⍺)                                    ⍺∊Ԓ∩⅌∩Ϩ’ 
L(⍺)=  Ҥ(⍺)                                              ⍺∊Ԓ’∩⅌’∩Ϩ 
            Ҥ(⍺)∩ℭ(⍺)                                   ⍺∊Ԓ’∩⅌∩Ϩ 
            ₣(⍺)∩Ҥ(⍺)                                    ⍺∊Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∩[ℭ(⍺)∩Ҥ(⍺)]          ⍺∊Ԓ∩⅌∩Ϩ      
It is seen that Ǹ=L. 
 
ii) [(₣,Ԓ) ∪ε (ℭ,⅌)] ∩ε(Ҥ,Ϩ)= [(₣,Ԓ) ∩ε(Ҥ,Ϩ)] ∪ε [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where (Ԓ△⅌)∩Ϩ=∅. 
 
Proof: Since the proof of the right distributive property of the extended intersection over the extended union 
is very similar to (i), it is not repeated here. However, it is worth mentioning the following point. In classical 
sets, the intersection operation is right-distributive over the union operation. However, for extended 
intersection and extended union operations, this situation does not hold. We state that distributivity can be 
satisfied under the condition (Ԓ△⅌)∩Ϩ=∅. 
 
iii) [(₣,Ԓ) \ε(ℭ,⅌)] ∩ε(Ҥ,Ϩ)=[(₣,Ԓ) ∩ε(Ҥ,Ϩ)]\ε [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where (Ԓ△⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ’=∅. 
 
Proof: Since the proof of the right distributive property of the extended intersection over the extended 
difference is very similar to (i), it is not repeated here. However, it is worth mentioning the following point. 
In classical sets, the intersection operation is right-distributive over the difference operation. However, for 
extended intersection and extended difference operations, this situation does not hold. We state that 
distributivity can be satisfied under the condition (Ԓ△⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ’=∅. 
 
iv) [(₣,Ԓ) ∆ε(ℭ,⅌)] ∩ε(Ҥ,Ϩ)=[(₣,Ԓ) ∩ε(Ҥ,Ϩ)]∆ε [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where (Ԓ△⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ’=∅. 
 
Proof: Since the proof of the right distributive property of the extended intersection over the extended 
symmetric difference is very similar to (i), it is not repeated here. However, it is worth mentioning the 
following point. In classical sets, the intersection operation is right-distributive over the symmetric 
difference operation. However, for extended intersection and extended symmetric difference operations, 
this situation does not hold. We state that distributivity can be satisfied under the condition 
(Ԓ△⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ’=∅. 
 
v) [(₣,Ԓ) γε(ℭ,⅌)] ∩ε(Ҥ,Ϩ)=[(₣,Ԓ) ∩ε(Ҥ,Ϩ)]γε [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where (Ԓ△⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ’=∅. 
 
3.2.1.3. The distributions of the extended intersection operation over soft binary piecewise operations: 
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Here, the distributions of the extended intersection operation to soft binary operations are investigated. First, 
distributions from the left side, followed by distributions from the right side are examined. 
 
a)LHS distributions of extended intersection operation over soft binary piecewise operations: 
 
Let (₣,Ԓ), (ℭ,⅌) and (Ҥ,Ϩ) be ՏՏs over U. Then, we have the following distributions: 
 

𝐢𝐢) (₣,Ԓ) ∩ε[(ℭ,⅌) 
~
∪ (Ҥ,Ϩ)] = [(₣,Ԓ)∩ε(ℭ,⅌)] 

~
∪[(₣,Ԓ) ∩ε (Ҥ,Ϩ),  where Ԓ∩⅌∩Ϩ’=∅. 

 

Proof: First, let’s consider the LHS, and let (ℭ,⅌) 
~
∪ (Ҥ,Ϩ)=(R,⅌), where for all ⍺∊⅌,     

 
            ℭ(⍺)                 ⍺∊⅌\Ϩ 
R(⍺)= 
            ℭ(⍺)∪Ҥ(⍺)      ⍺∊⅌∩Ϩ 
 
 Let (₣,Ԓ) ∩ε (R,⅌) =(Ǹ,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
Ǹ(⍺)=  R(⍺)                ⍺∊⅌\Ԓ 
            ₣(⍺)∩R(⍺)       ⍺∊Ԓ∩⅌ 
 
Hence, 
 
            ₣(⍺)                                ⍺∊Ԓ\⅌ 
            ℭ(⍺)                                ⍺∊(⅌\Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ’ 
Ǹ(⍺)=  ℭ(⍺)∪Ҥ(⍺)                    ⍺∊(⅌∩Ϩ)\Ԓ=Ԓ’∩⅌∩Ϩ 
            ₣(⍺)∩ℭ(⍺)                      ⍺∊Ԓ∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
            ₣(⍺)∩[ℭ(⍺)∪Ҥ(⍺)]       ⍺∊Ԓ∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ     
 
Now let’s handle the RHS, and let (₣,Ԓ) ∩ε(ℭ,⅌)=(K,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌, 
 
            ₣(⍺)                  ⍺∊Ԓ\⅌ 
 K(⍺)= ℭ(⍺)                 ⍺∊⅌\Ԓ 
            ₣(⍺)∩ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (₣,Ԓ) ∩ε (Ҥ,Ϩ)=(S,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
            ₣(⍺)                 ⍺∊Ԓ\Ϩ 
S(⍺)=   Ҥ(⍺)                ⍺∊Ϩ\Ԓ 
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            ₣(⍺)∩Ҥ(⍺)       ⍺∊Ԓ∩Ϩ 
 

Let (K,Ԓ∪⅌) 
~
∪(S,Ԓ∪Ϩ)=(L,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌ 

 
            K(⍺)                 ⍺∊(Ԓ∪⅌)\(Ԓ∪Ϩ) 
L(⍺)= 
            K(⍺)∪S(⍺)       ⍺∊(Ԓ∪⅌)∩(Ԓ∪Ϩ)   
     
Hence, 
 
            ₣(⍺)                                              ⍺∊(Ԓ\⅌)\(Ԓ∪Ϩ)=∅ 
            ℭ(⍺)                                              ⍺∊(⅌\Ԓ)\(Ԓ∪Ϩ)=Ԓ’∩⅌∩Ϩ’ 
            ₣(⍺)∩ℭ(⍺)                                    ⍺∊(Ԓ∩⅌)\(Ԓ∪Ϩ)=∅ 
            ₣(⍺)∪₣(⍺)                                     ⍺∊(Ԓ\⅌)∩(Ԓ\Ϩ)=Ԓ∩⅌’∩Ϩ’ 
L(⍺)=  ₣(⍺)∪Ҥ(⍺)                                    ⍺∊(Ԓ\⅌)∩(Ϩ\Ԓ)=∅ 
            ₣(⍺)∪ [₣(⍺)∩Ҥ(⍺)]                      ⍺∊(Ԓ\⅌)∩(Ԓ∩Ϩ)=Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∪₣(⍺)                                    ⍺∊(⅌\Ԓ)∩(Ԓ\Ϩ)=∅ 
            ℭ(⍺)∪Ҥ(⍺)                                   ⍺∊(⅌\Ԓ)∩(Ϩ\Ԓ)= Ԓ’∩⅌∩Ϩ 
            ℭ(⍺)∪[₣(⍺)∩Ҥ(⍺)]                       ⍺∊(⅌\Ԓ)∩(Ԓ∩Ϩ)=∅ 
            [₣(⍺)∩ℭ(⍺)]∪₣(⍺)                         ⍺∊(Ԓ∩⅌)∩(Ԓ\Ϩ)=Ԓ∩⅌∩Ϩ’ 
            [₣(⍺)∩ℭ(⍺)]∪Ҥ(⍺)                       ⍺∊(Ԓ∩⅌)∩(Ϩ\Ԓ)=∅ 
            [₣(⍺)∩ℭ(⍺)]∪[₣(⍺)∩Ҥ(⍺)]           ⍺∊(Ԓ∩⅌) ∩(Ԓ∩Ϩ)=Ԓ∩⅌∩Ϩ 
Hence, 
 
            ℭ(⍺)                                ⍺∊Ԓ’∩⅌∩Ϩ’ 
            ₣(⍺)                                ⍺∊Ԓ∩⅌’∩Ϩ’ 
L(⍺)=  ₣(⍺)                                 ⍺∊Ԓ∩⅌’∩Ϩ 
            ℭ(⍺)∪Ҥ(⍺)                     ⍺∊Ԓ’∩⅌∩Ϩ 
            ₣(⍺)                                 ⍺∊Ԓ∩⅌∩Ϩ’ 
            ₣(⍺)∩[ℭ(⍺)∪Ҥ(⍺]          ⍺∊Ԓ∩⅌∩Ϩ 
 
Here, if we consider Ԓ\⅌ in the function N, since Ԓ\⅌=Ԓ∩⅌',  if an element is in the complement of Z, it 
is either in Ϩ\⅌ or in the complement of Ϩ∪⅌. Hence, if ⍺∈Ԓ\⅌, then ⍺∈Ԓ∩Ϩ∩⅌' or ⍺∈Ԓ∩Ϩ'∩⅌'. Thus, 
Ǹ=L is satisfied with the condition Ԓ∩⅌∩Ϩ'=∅. 
 

 ii)(₣, Ԓ) ∩ε [(ℭ, ⅌) 
~
∩ (H, Ϩ)] =  [(₣, Ԓ) ∩ε (ℭ, ⅌)] 

~
∩ [(₣, Ԓ) ∩ε (H, Ϩ)], where Ԓ ∩ ⅌’ ∩ Ϩ = ∅. 

 

iii) (₣,Ԓ) ∩ε[(ℭ,⅌) 
~
\ (Ҥ,Ϩ)]=[(₣,Ԓ)∩ε(ℭ,⅌)] 

~
\ [(₣,Ԓ) ∩ε (Ҥ,Ϩ)], where Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅. 
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iv) (₣,Ԓ) ∩ε[(ℭ,⅌) 

~
γ  (Ҥ,Ϩ)] = [(₣,Ԓ)∩ε(ℭ,⅌)] 

~
γ [(₣,Ԓ) ∩ε (Ҥ,Ϩ)], where Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅. 

 

v) (₣,Ԓ) ∩ε[(ℭ,⅌) 
~
∆ (Ҥ,Ϩ)] = [(₣,Ԓ)∩ε(ℭ,⅌)] 

~
∆[(₣,Ԓ) ∩ε (Ҥ,Ϩ)], where Ԓ∩⅌’∩Ϩ’=Ԓ∩(⅌∆ Ϩ)=∅. 

 
b) RHS distributions of extended intersection operation over soft binary piecewise operations: 
Let (₣,Ԓ), (ℭ,⅌) and (Ҥ,Ϩ)  be ՏՏs over U. Then, we have the following distributions: 
 

𝐢𝐢) [(₣,Ԓ) 
~
∪ (ℭ,⅌)]  ∩ε (Ҥ,Ϩ)=[(₣,Ԓ)∩ε(Ҥ,Ϩ)] 

~
∪ [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where Ԓ∩⅌’∩Ϩ=∅. 

 

Proof: First, let’s consider the LHS, and let (₣,Ԓ) 
~
∪ (ℭ,⅌)=(R,Ԓ), where for all ⍺∊Ԓ, 

 
            ₣(⍺)                 ⍺∊Ԓ\⅌ 
R(⍺)= 
            ₣(⍺)∪ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (R,Ԓ) ∩ε (Ҥ,Ϩ) =(Ǹ,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
             R(⍺)                 ⍺∊Ԓ\Ϩ 
Ǹ(⍺)=  Ҥ(⍺)                 ⍺∊Ϩ\Ԓ 
            R(⍺)∩Ҥ(⍺)       ⍺∊Ԓ∩Ϩ 
 
Hence, 
 
            ₣(⍺)                                ⍺∊(Ԓ\⅌)\Ϩ=Ԓ∩⅌’∩Ϩ’ 
            ₣(⍺)∪ℭ(⍺)                      ⍺∊(Ԓ∩⅌)\Ϩ=Ԓ∩⅌∩Ϩ’ 
Ǹ(⍺)=  Ҥ(⍺)                               ⍺∊Ϩ\Ԓ 
            ₣(⍺)∩Ҥ(⍺)                     ⍺∊(Ԓ\⅌)∩Ϩ=Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∪ℭ(⍺)]∩H (⍺)        ⍺∊(Ԓ∩⅌)∩Ϩ=Ԓ∩⅌∩Ϩ     
 
Now let’s handle the RHS, and let (₣,Ԓ) ∩ε (Ҥ,Ϩ)=(K,Ԓ∪Ϩ), where for all ⍺∊Ԓ∪Ϩ, 
 
            ₣(⍺)                  ⍺∊Ԓ\Ϩ 
K(⍺)=  Ҥ(⍺)                 ⍺∊Ϩ\Ԓ 
            ₣(⍺)∩Ҥ(⍺)       ⍺∊Ԓ∩Ϩ 
 
Let (ℭ,⅌) ∩ε (Ҥ,Ϩ)=(S, ⅌∪Ϩ), where for all ⍺∊⅌∪Ϩ, 
 
            ℭ(⍺)                 ⍺∊⅌\Ϩ 
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S(⍺)=   Ҥ(⍺)                ⍺∊Ϩ\⅌ 
            ℭ(⍺)∩Ҥ(⍺)      ⍺∊⅌∩Ϩ 
Let (K,Ԓ∪Ϩ) 

~
∪ (S,⅌∪Ϩ)=(L,(Ԓ∪Ϩ), where for all ⍺∊(Ԓ∪Ϩ),  

 
 
            K(⍺)                 ⍺∊(Ԓ∪Ϩ)\(⅌∪Ϩ) 
L(⍺)=      
            K(⍺)∪S(⍺)       ⍺∊(Ԓ∪Ϩ)∩(⅌∪Ϩ)    
 
Hence, 
 
            ₣(⍺)                                               ⍺∊(Ԓ\Ϩ)\(⅌∪Ϩ)=Ԓ∩⅌’∩Ϩ’ 
            Ҥ(⍺)                                              ⍺∊(Ϩ\Ԓ)\(⅌∪Ϩ)=∅ 
            ₣(⍺)∩Ҥ(⍺)                                    ⍺∊(Ԓ∩Ϩ)\(⅌∪Ϩ)=∅  
            ₣(⍺)∪ℭ(⍺)                                     ⍺∊(Ԓ\Ϩ)∩(⅌\Ϩ)=Ԓ∩⅌∩Ϩ’ 
L(⍺)=  ₣(⍺)∪Ҥ(⍺)                                    ⍺∊(Ԓ\Ϩ)∩(Ϩ\⅌)=∅ 
            ₣(⍺)∪[ℭ(⍺)∩Ҥ(⍺)]                       ⍺∊(Ԓ\Ϩ)∩(⅌∩Ϩ)=∅ 
            Ҥ(⍺)∪ℭ(⍺)                                    ⍺∊(Ϩ\Ԓ)∩(⅌\Ϩ)=∅ 
            Ҥ(⍺)∪Ҥ(⍺)                                   ⍺∊(Ϩ\Ԓ)∩(Ϩ\⅌)= Ԓ’∩⅌’∩Ϩ 
            Ҥ(⍺)∪[ℭ(⍺)∩Ҥ(⍺)]                      ⍺∊(Ϩ\Ԓ)∩(⅌∩Ϩ)=Ԓ’∩⅌∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∪ℭ(⍺)                        ⍺∊(Ԓ∩Ϩ)∩(⅌\Ϩ)=∅ 
            [₣(⍺)∩Ҥ(⍺)]∪Ҥ(⍺)                       ⍺∊(Ԓ∩Ϩ)∩(Ϩ\⅌)=Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∩Ҥ(⍺)]∪[ℭ(⍺)∩Ҥ(⍺)]          ⍺∊(Ԓ∩Ϩ)∩(⅌∩Ϩ)=Ԓ∩⅌∩Ϩ 
 
Hence, 
 
            ₣(⍺)                                ⍺∊Ԓ∩⅌’∩Ϩ’ 
            ₣(⍺)∪ℭ(⍺)                      ⍺∊Ԓ∩⅌∩Ϩ’ 
 L(⍺)= Ҥ(⍺)                               ⍺∊Ԓ’∩⅌’∩Ϩ 
            Ҥ(⍺)                               ⍺∊Ԓ’∩⅌∩Ϩ 
            Ҥ(⍺)                               ⍺∊Ԓ∩⅌’∩Ϩ 
            [₣(⍺)∪ℭ(⍺)]∩Ҥ(⍺)        ⍺∊Ԓ∩⅌∩Ϩ 
 
Here, if we consider Ϩ\Ԓ in the function N, since Ϩ\Ԓ=Ϩ∩Ԓ’,  if an element is in the complement of Ԓ, it is 
either in ⅌\Ԓ or in the complement of ⅌∪Ԓ. Hence, if ⍺∈Ϩ\Ԓ, then  ⍺∈ Ϩ∩⅌∩Ԓ’ or ⍺∈Ϩ∩⅌’∩Ԓ’. Thus,  
Ǹ=L is satisfied with the condition Ԓ∩⅌’∩Ϩ=∅. 
 
ii)[(₣, Ԓ)

~
∩ (ℭ, ⅌)] ∩ε  (H, Ϩ) = [(F, Ԓ) ∩ε (H, Ϩ)]~

∩ [( , ⅌) ∩ε  (H, Ϩ )], where Ԓ’ ∩ ⅌ ∩ Ϩ = ∅. 
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iii) [(₣,Ԓ)

~
\  (ℭ,⅌)]  ∩ε (Ҥ,Ϩ)=[(₣,Ԓ)∩ε(Ҥ,Ϩ)] 

~
\  [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where Ԓ’∩⅌’∩Ϩ=(Ԓ∆⅌)∩Ϩ=∅. 

 

iv) [(₣,Ԓ)
~
γ (ℭ,⅌)]  ∩ε (Ҥ,Ϩ)=[(₣,Ԓ)∩ε(Ҥ,Ϩ)] 

~
γ  [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where Ԓ’∩⅌’∩Ϩ=(Ԓ∆⅌)∩Ϩ=∅. 

 

v) [(₣,Ԓ)
~
∆ (ℭ,⅌)]  ∩ε (Ҥ,Ϩ)=[(₣,Ԓ)∩ε(Ҥ,Ϩ)] 

~
∆ [(ℭ,⅌) ∩ε (Ҥ,Ϩ)], where Ԓ’∩⅌’∩Ϩ=(Ԓ∆⅌)∩Ϩ=∅. 

 
 

 
In this section, in order to find out whether the collection of ՏՏs and restricted and extended intersection 
operation form lattice structures in SE(U) and SԒ(U), firstly the so-called absorption laws are examined with 
detailed proofs.  Although the laws of absorption in SE(U) have been presented in previous works (Ali et 
al., 2009; Ali et al., 2011; Qin and Hong, 2010; Singh and Onyeozili, 2012c) presented the results only with 
a table without proofs, and since the proofs in other studies are element-based and relatively long proofs, 
they are presented here with simpler proofs. In addition, in this study, the absorption laws in SA(U) for the 
newly-defined operations by Aybek (2024) and Yavuz (2024) are given in detail as well.  Additionally, the 
distributive rules obtained from Section 3.1.1 and Section 3.2.1 in SE(U) and SԒ(U) are presented 
collectively in a table. Finally, we systematically, in detail, and collectively present the unary and binary 
algebraic structures formed by the restricted intersection and extended intersection together with other types 
of ՏՏ operations in SE(U) and SԒ(U). We believe that this comprehensive study will fill a gap in the 
literature, as such an inclusive study is currently absent. 
 
4.1. Absorption laws for ՏՏs 
 

4.1.1. Absorption laws in SE(U): 

Let (₣,Ԓ) and (ℭ,⅌) be ՏՏs over U. Then, 

i) (₣,Ԓ)∩R [(₣, Ԓ) ∪ε (ℭ, ⅌)]= (₣,Ԓ) and (₣, Ԓ) ∪ε [(₣, Ԓ) ∩R (ℭ, ⅌)] = (₣, Ԓ) (Qin and Hong, 2010; 
Singh and Onyeozili, 2012c). 
 
Proof: Here, these absorption laws are proved with a simpler proof than the proofs given in Qin and Hong 
(2010) and Singh and Onyeozili (2012c) First, let’s handle the LHS, and let (₣, Ԓ) ∪ε(ℭ, ⅌)=(Q,Ԓ∪⅌), 
where for all ⍺∊ Ԓ∪⅌, 
 
            ₣(⍺)                 ⍺∊Ԓ\⅌   
Q(⍺)=  ℭ(⍺)                 ⍺∊⅌\Ԓ    
            ₣(⍺)∪ℭ(⍺)       ⍺∊Ԓ∩⅌ 
 
Let (₣,Ԓ) ∩R(Q,Ԓ∪⅌)=(M,Ԓ∩(Ԓ ∪ ⅌))=(M,Ԓ), where for all ⍺∊Ԓ, M(⍺)=₣(⍺)∩Q(⍺). Hence,  
 
            ₣(⍺)∩₣(⍺)                   ⍺∊Ԓ∩(Ԓ\⅌) =Ԓ\⅌ 
M(⍺)= ₣(⍺)∩ℭ(⍺)                   ⍺∊Ԓ∩(⅌\Ԓ)=∅  

4. ABSORPTION LAWS FOR ՏOFT SETS AND ALGEBRAIC STRUCTURES OF ՏOFT SETS 
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            ₣(⍺)∩[₣(⍺)∪ℭ(⍺)]       ⍺∊Ԓ∩(Ԓ∩⅌)=Ԓ∩⅌ 
 
Thus, 
 
            ₣(⍺)        ⍺∊Ԓ\⅌   
M(⍺)=       
            ₣(⍺)        ⍺∊Ԓ∩⅌  
 
Hence, (₣,Ԓ)∩R[(₣, Ԓ) ∪ε (ℭ, ⅌)] = (₣,Ԓ).  
 
Now, show that (₣, Ԓ) ∪ε [(₣, Ԓ) ∩R (ℭ, ⅌)]) = (₣, Ԓ). Let (₣, Ԓ) ∩R (ℭ, ⅌)=(L,Ԓ∩⅌), where for all 
⍺∊Ԓ∩⅌, L(⍺)=₣(⍺) ∩ℭ(⍺). Let (₣, Ԓ) ∪ε(L,Ԓ∩⅌)=(W, Ԓ ∪(Ԓ∩⅌))=(W,Ԓ), where for all ⍺∊ Ԓ,  
 
            ₣(⍺)              ⍺∊Ԓ\( Ԓ∩⅌)=Ԓ\⅌   
W(⍺)= L(⍺)              ⍺∊(Ԓ∩⅌)\Ԓ=∅    
            ₣(⍺)∪L(⍺)    ⍺∊ Ԓ ∩(Ԓ∩⅌)=Ԓ∩⅌ 
 
Thus, for all ⍺∊ Ԓ,  
 
            ₣(⍺)                                 ⍺∊Ԓ\⅌   
W(⍺)=  
            [₣(⍺)∪[₣(⍺)∩ℭ(⍺)]       ⍺∊Ԓ∩⅌ 
 
Hence, for all ⍺∊Ԓ 
 
            ₣(⍺)         ⍺∊Ԓ\⅌   
W(⍺)=      
            ₣(⍺)         ⍺∊Ԓ∩⅌  
 
That is, (₣, Ԓ) ∪ε [(₣, Ԓ) ∩R (ℭ, ⅌)]  = (₣, Ԓ). Thus, the absorption law is valid for the operations ∪ε and 
∩R in SE(U) as well. Here, even if Ԓ∩⅌=∅, the equality still holds in every case because W(⍺)=₣(⍺) for all 
⍺∊Ԓ. 
 
ii) (₣, Ԓ) ∪R [(₣, Ԓ) ∩ε (ℭ, ⅌)] = (₣, Ԓ) and (₣,Ԓ)∩ε [(₣, Ԓ) ∪R (ℭ, ⅌)]= (₣,Ԓ) (Qin and Hong, 2010; 
Singh and Onyeozili, 2012c). 
 
Remark 1 Absorption laws do not hold for the following cases. Here note that these cases and their proofs 
were given in Singh and Onyeozili (2012c); however, we present here once again, since there are some 
mathematical typos in the proofs of Singh and Onyeozili (2012c). 
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i) (₣,Ԓ)∩R [(₣, Ԓ) ∪R (ℭ, ⅌)] ⊆� (₣, Ԓ) and (₣, Ԓ) ∪R [(₣, Ԓ) ∩R (ℭ, ⅌)] ⊆� (₣, Ԓ) (Singh and Onyeozili, 
2012c). 
 
Proof: First, let’s consider the LHS, and let (₣, Ԓ) ∪R(ℭ,⅌)=(Q,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, 
Q(⍺)=₣(⍺)∪ℭ(⍺). Let (₣,Ԓ) ∩R(Q,Ԓ∩⅌)=(M,Ԓ∩ (Ԓ ∩ ⅌))=(M,Ԓ∩⅌), where for all ⍺∊Ԓ∩⅌, 
M(⍺)=₣(⍺)∩Q(⍺). Hence, for all ⍺∊Ԓ∩⅌,  M(⍺)=₣(⍺)∩[₣(⍺)∪ℭ(⍺)]=₣(⍺). Thus, (M,Ԓ∩⅌) ⊆�  (₣,Ԓ).That 
is, (₣,Ԓ)∩R [(₣, Ԓ) ∪R (ℭ, ⅌) ⊆�   (₣,Ԓ). Here, note that (₣,Ԓ)∩R [(₣, Ԓ) ∪R (ℭ, ⅌) can not be soft equal to 
(₣,Ԓ), as they have different parameter sets. Similarly, one can show that  
(₣, Ԓ) ∪R [(₣, Ԓ) ∩R (ℭ, ⅌)]) ⊆� (₣, Ԓ). 
 
Hence, the absorption law does not hold for the ՏՏ operations ∪R and ∩R in SE(U). 
 
ii) (₣,Ԓ)⊆� (₣, Ԓ) ∩ε [(₣, Ԓ) ∪ε (ℭ, ⅌)] and (₣, Ԓ) ⊆� (₣, Ԓ) ∪ε [(₣, Ԓ) ∩ε (ℭ, ⅌)] (Singh and Onyeozili, 
2012c). 

Proof: Let us show that (₣,Ԓ)⊆� (₣, Ԓ) ∩ε [(₣, Ԓ) ∪ε (ℭ, ⅌)]. Let (₣, Ԓ) ∪ε(ℭ,⅌)=(Q,Ԓ∪⅌), where for all 
⍺∊ Ԓ∪⅌, 
 

            ₣(⍺),                 ⍺∊Ԓ\⅌   

Q(⍺)=  ℭ(⍺),                ⍺∊⅌\Ԓ    

            ₣(⍺)∪ℭ(⍺),       ⍺∊Ԓ∩⅌ 

  

Let (₣,Ԓ) ∩ε(Q,Ԓ∪⅌)=(M,Ԓ∪(Ԓ ∪ ⅌))=(M,Ԓ∪⅌), where for all ⍺∊Ԓ∪⅌,   

 

            ₣(⍺),                 ⍺∊Ԓ\(Ԓ ∪ ⅌)= ∅ 

M(⍺)= Q(⍺),                ⍺∊(Ԓ∪⅌)\Ԓ = ⅌ 

            ₣(⍺)∩Q(⍺),       ⍺∊Ԓ∩(Ԓ∪⅌)= Ԓ 

 

Thus,  

             ₣(⍺),                           ⍺∊(Ԓ\⅌)\Ԓ=∅ 

M(⍺)=  ℭ(⍺),                           ⍺∊(⅌\Ԓ)\Ԓ= ⅌\Ԓ    

            ₣(⍺)∪ℭ(⍺),                  ⍺∊(Ԓ∩⅌)\Ԓ=∅  

            ₣(⍺)∩₣(⍺),                  ⍺∊Ԓ∩(Ԓ\⅌)=Ԓ\⅌    

            ₣(⍺)∩ℭ(⍺),                  ⍺∊Ԓ∩(⅌\Ԓ)= ∅ 

            ₣(⍺)∩[₣(⍺)∪ℭ(⍺)],     ⍺∊Ԓ∩(Ԓ∩⅌)= Ԓ∩⅌ 
 

Thereby, for all ⍺∊Ԓ∪⅌, 
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            ℭ(⍺),        ⍺∊⅌\Ԓ   

M(⍺)=  ₣(⍺),        ⍺∊Ԓ\⅌    

            ₣(⍺),         ⍺∊Ԓ∩⅌ 

 

Thus, (₣,Ԓ)∩ε [(₣, Ԓ) ∪ε (ℭ, ⅌)] ≠ (₣, Ԓ). Since ₣(⍺)⊆M(⍺), for all ⍺∊Ԓ, it is evident that (₣,Ԓ)⊆� 
(₣,Ԓ)∩ε [(₣, Ԓ) ∪ε (ℭ, ⅌)]. Similarly, one can show that (₣,Ԓ)⊆� (₣, Ԓ) ∪ε [(₣, Ԓ) ∩ε (ℭ, ⅌)]. Thereby, the 
absorption law does not hold for the ՏՏ operations ∪ε and ∩ε in SE(U). 

 
When the absorption laws in Subsection 4.1.1 are considered, the following absorption laws exist in SE(U). 
In the table below, 1 indicates that the absorption law is satisfied, while 0 indicates that it is not. 
 

 ∩R ∪R ∩𝜀𝜀 ∪𝜀𝜀 
∩R 0 0 0 1 
∪R 0 0 1 0 
∩𝜀𝜀 0 1 0 0 
∪𝜀𝜀 1 0 0 0 

                                  
Table 1 Absorption Laws in SE(U) (Ali et al., 2011) 

 
In the study by Ali et al. (2011), this table was provided without proving any of the absorption laws. In our 
study, before presenting the table, we have detailed the properties with thorough proofs. 
 
4.1.2. Absorption laws in 𝐒𝐒Ԓ(U): 

Let  (₣, Ԓ), (ℭ, Ԓ) be soft sets over U. Then, 
i)The following absorption laws are valid for ∩R in SԒ(U): 
 

• (₣,Ԓ)∩R [(₣, Ԓ) ∪R (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∪R [(₣, Ԓ) ∩R (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∩R [(₣, Ԓ) ∪𝜀𝜀 (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∪𝜀𝜀 [(₣, Ԓ) ∩R (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∩R [(₣, Ԓ)＊ ∪𝜀𝜀
(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)＊ ∪𝜀𝜀

[(₣, Ԓ) ∩R (ℭ, Ԓ)] = (₣, Ԓ).  

• (₣,Ԓ)∩R [(₣, Ԓ)~
∪(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)~

∪[(₣, Ԓ) ∩R (ℭ, Ԓ)] = (₣, Ԓ).  

 
Proof: Since the operations of restricted union, extended union, complementary extended union, soft binary 
piecewise union are coincident, and these operations are commutative in SԒ(U), the proof follows the 
Subsection of 4.1.1. 
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ii) The following absorption laws are valid for ∩ε in SԒ(U): 
 

• (₣,Ԓ)∩ε [(₣, Ԓ) ∪R (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∪R [(₣, Ԓ) ∩ε (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∩ε [(₣, Ԓ) ∪ε (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∪ε [(₣, Ԓ) ∩ε (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∩ε [Ԓ＊ ∪𝜀𝜀
(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)＊ ∪𝜀𝜀

[(₣, Ԓ) ∩ε (ℭ, Ԓ)] = (₣, Ԓ).  

• (₣,Ԓ)∩ε [(₣, Ԓ)~
∪(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)~

∪[(₣, Ԓ) ∩ε (ℭ, Ԓ)] = (₣, Ԓ).  

 
iii) The following absorption laws are valid for ∪R in SԒ(U):  
 

• (₣,Ԓ)∪R [(₣, Ԓ) ∩R (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∩R [(₣, Ԓ) ∪R (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∪R [(₣, Ԓ) ∩ε (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∩ε [(₣, Ԓ) ∪R (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∪R [(₣, Ԓ)＊ ∩𝜀𝜀
(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)＊ ∩𝜀𝜀

[(₣, Ԓ) ∪R (ℭ, Ԓ)] = (₣, Ԓ).  

• (₣,Ԓ)∪R [(₣, Ԓ)~
∩(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)~

∩[(₣, Ԓ) ∪R (ℭ, Ԓ)] = (₣, Ԓ). 

 
iv) The following absorption laws are valid for ∪ε in SԒ(U): 
 

• (₣,Ԓ)∪ε [(₣, Ԓ) ∩R (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∩R [(₣, Ԓ) ∪ε (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∪ε [(₣, Ԓ) ∩ε (ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ) ∩ε [(₣, Ԓ) ∪ε (ℭ, Ԓ)] = (₣, Ԓ) . 

• (₣,Ԓ)∪ε [(₣, Ԓ)＊ ∩𝜀𝜀
(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)＊ ∩𝜀𝜀

[(₣, Ԓ) ∪ε (ℭ, Ԓ)] = (₣, Ԓ).  

• (₣,Ԓ)∪ε [(₣, Ԓ)~
∩(ℭ, Ԓ)]= (₣,Ԓ) and (₣, Ԓ)~

∩[(₣, Ԓ) ∪ε (ℭ, Ԓ)] = (₣, Ԓ).  

 
When the absorption laws in Subsection 4.1.2. are considered, the following absorption laws exist in SԒ(U). 
In the table below, 1 indicates that the absorption law is satisfied, while 0 indicates that it is not. 
 

 ∩R ∪R ∩𝜀𝜀 ∪𝜀𝜀 ~
∩ 

~
∪ ＊

 ∩𝜀𝜀
 ＊

 ∪𝜀𝜀
 

∩R 0 1 0 1 0  1    0   1 
∪R 1 0 1 0 1  0   1   0 
∩𝜀𝜀 1 0 0 1 0  1   0   1 
∪𝜀𝜀 1 0 1 0 1  0   1   0 
~
∩ 0 1 0 1 0  1    0   1 



 Natural & Applied Sciences Journal Vol. 8 (1) 2025 96 
 
 

~
∪ 1 0 1 0 1  0   1   0 

＊
 ∩𝜀𝜀

 0 1 0 1 0  1    0   1 

＊
 ∪𝜀𝜀

 1 0 1 0 1  0    1   0 

        Table 2 Absorption Laws in SԒ(U) 
In addition, this table includes the latest ՏՏ operations introduced in the literature in 2023 and 2024, such 
as complementary extended ՏՏ operations and soft binary piecewise operations, 
 
4.2. Algebraic Structures of ՏՏs Formed by Restricted and Extended Intersection ՏՏ Operations 
 
In this subsection, it is examined in detail which algebraic structures are formed by the restricted and 
extended intersection ՏՏ operations together with other ՏՏ operations in SE(U) and SԒ(U), respectively. 
First of all, algebraic structures with one binary operation (restricted intersection and extended intersection), 
and then algebraic structures with two binary operations (respectively, one of them is restricted intersection 
ՏՏ operation and the other is other ՏՏ operations, then one of them is extended intersection ՏՏ operation 
and the other is other ՏՏ operations) are explored. In line with this aim, by considering all distributions in 
Section 3.1 and 3.2, the tables for the distributive laws in SE(U) and SԒ(U) are provided. 
For the algebraic structures with one binary operation, all the properties such as the identity element, if any, 
the inverse element, the absorbing element, idempotent, and the commutative property of the algebraic 
structures are presented in detail. For the algebraic structures with two binary operations, the properties of 
the algebraic structures, such as the identity element (if any), commutative and idempotent properties for 
the first and second operations, and the zero element (if any), are also presented in detail without omission. 
Additionally, for the structures that form a lattice, it is specified whether the lattice is bounded or not. If it 
is bounded, the lower and upper bounds are given, as well as whether it is distributive, and if it satisfies the 
De Morgan properties or not. In this regard, we emphasize the importance of our study, as it is 
comprehensive, covering the works of Ali et al. (2011), Qin and Hong (2010), and Sen (2014), and serves 
as a handbook for those newly interested in ՏՏs. 
Now, first by considering all distributions in Section 3.1 and 3.2, we present the table for distributive laws 
in SE(U) and SԒ(U), respectively. In these tables, '1' indicates that the distributive law holds; '0' indicates 
that it does not. It is important to note the following: places marked with '1' indicate full distributivity, 
meaning both right and left distributivity are satisfied; places marked with '1*' indicate only right 
distributivity is satisfied; places marked with '0' indicate that neither right nor left distributivity is satisfied.  
 

 ∩R ∪R \R ∆R γR ∩𝜀𝜀 ∪𝜀𝜀 \𝜀𝜀 ∆𝜀𝜀 γ𝜀𝜀 ~
∩ ~

∪ 
~
\  

~
∆ 

~
γ  

∩R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

∩𝜀𝜀 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

Table 3 Distributive laws in SE(U) for restricted and extended intersection operations 

(*: Just right distributions) 
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Here note that in the study by Ali et al. (2011), they provided this table without proving any of the 
distributive laws, demonstrating only those that do not hold with examples. In our study, before presenting 
the table, we provided detailed proofs in Section 3.1 and Section 3.2. Additionally, we have included the 
soft binary piecewise operations, which are newly introduced in the literature in 2023 and 2024, in the first 
row of this table. 

 ∩R ∪R \R ∆R γR ∩𝜀𝜀 ∪𝜀𝜀 \𝜀𝜀 ∆𝜀𝜀 γ𝜀𝜀 ~
∩ ~

∪ 
~
\  

~
∆ 

~
γ  

∩R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

∩𝜀𝜀 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 3  Distributive laws in SԒ(U) for restricted and extended intersection operations 

(*: Just right distributions) 
 
4.2.1. Algebraic structures with one binary operation in set SE(U) and 𝐒𝐒Ⱥ(U) formed by for restricted 
and extended intersection operations 
 
In this subsection, algebraic structures with one binary operation, specifically the binary operation is 
restricted intersection operation and extended intersection ՏՏ operation, respectively are examined in SE(U) 
and SȺ(U), respectively. 
 
4.2.1.1. Algebraic structures with one binary operation in SE(U) formed by restricted and extended 
intersection operations 
 
1) (SE(U),∩R) is a commutative idempotent monoid with the identity UE, namely, a bounded semi-lattice 
with the absorbing element ∅∅. 
 
2)  (SE(U), ∩𝜀𝜀) is a commutative idempotent monoid with the identity ∅∅, namely, a bounded semi-lattice 
with the absorbing element ∅E. 
 
4.2.1.2. Algebraic structures with one binary operation in 𝐒𝐒Ⱥ(U) formed by restricted and extended 
intersection operations 
 
1) (SȺ(U), ∩R) and (SȺ(U), ∩𝜀𝜀) are commutative idempotent monoids with the identity element UȺ, namely, 
a bounded semi-lattice with the absorbing element  ∅Ⱥ.   
 
4.2.2. Algebraic structures with two binary operations in SE(U) and 𝐒𝐒Ⱥ(U) formed by restricted and 
extended intersection operations 
 

In this subsection, algebraic structures with two binary operations, the second binary operation of which is 
restricted intersection operation and extended intersection operation, respectively are examined in SE(U) 
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and SȺ(U), respectively. Additionally, four mathematically incorrect algebraic structures in the study by Ali 
et al. [9] are corrected.  
 
4.2.2.1. Algebraic structures with two binary operations in SE(U) formed by restricted and extended 
intersection operations 
 
i) Algebraic structures in SE(U) with two binary operations, the second binary operation of which is the 
restricted intersection operation: 
 
Let (₣,Ⱥ), (ℭ,⅌) and (Ҥ,Ϩ) be ՏՏs over U. Then, 
 
1) (SE(U),∩R,∩R) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UE and without zero. 
 
2)  (SE(U),∪R,∩R) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UE and without zero. 
 
Here, we also want to correct an error made in a previous study by Ali et al. (2011). It was stated that 
(SE(U),∪R,∩R) is a hemiring with the identity UE. However, since (₣,Ⱥ)∪𝑅𝑅 ∅E=∅E ∪R(₣,Ⱥ)=(₣,Ⱥ) and 
(₣,Ⱥ)∩R ∅E = ∅E ∩R(₣,Ⱥ)≠ ∅E (since (₣,Ⱥ)∩R ∅E = ∅E ∩R(₣,Ⱥ)= ∅Ⱥ), (SE(U),∪R,∩R) cannot be a 
hemiring. 
 
3) (SE(U),∆R,∩R) is an additively and multiplicatively commutative, multiplicatively idempotent semiring 
with the identity element UE and without zero. 
 
4) (SE(U),∩𝜀𝜀 ,∩R) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UE. 
 
Moreover, since (₣,Ⱥ)∩𝜀𝜀 ∅∅=∅∅ ∩𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, ∅∅ is the zero of 
(SE(U),∩𝜀𝜀 ,∩R), and thus (SE(U),∩𝜀𝜀 ,∩R) is a hemiring. 
 
5) (SE(U),∪𝜀𝜀 ,∩R)is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UE. 
 
Moreover, since (₣,Ⱥ) ∪𝜀𝜀 ∅∅=∅∅ ∪𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, ∅∅ is the zero of 
(SE(U),∪𝜀𝜀 ,∩R) , and thus (SE(U),∪𝜀𝜀 ,∩R) is a hemiring.  (Ali et al., 2011) 
 
6) (SE(U),∆𝜀𝜀 ,∩R) is an additively and multiplicatively commutative and multiplicatively idempotent 
semiring with the identity element UE. 
 
Moreover, since (₣,Ⱥ)∆𝜀𝜀∅∅=∅∅∆𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, ∅∅ is the zero of 
(SE(U),∆𝜀𝜀 ,∩R), and thus (SE(U),∆𝜀𝜀 ,∩R) is a hemiring. (Sezgin and Çağman, 2025) 
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7) (SE(U),\𝜀𝜀 ,∩R) is a multiplicatively commutative and multiplicatively idempotent semiring with the 
identity element UE,  where Ⱥ∩⅌∩Ϩ=∅.  
 
Although (₣,Ⱥ)\𝜀𝜀∅∅=∅∅\𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, namely, ∅∅ is the zero of 
(SE(U),\𝜀𝜀 ,∩R), (SE(U),\𝜀𝜀 ,∩R) cannot be a hemiring, since it is not additively commutative, but it is semiring 
with zero. 
 
8) (SE(U),γ𝜀𝜀 ,∩R) is a multiplicatively commutative and multiplicatively idempotent semiring with the 
identity element UE, where Ⱥ∩⅌∩Ϩ=∅.  
 
Although (₣,Ⱥ)γ𝜀𝜀∅∅=∅∅γ𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, namely, ∅∅ is the zero of 
(SE(U),γ𝜀𝜀 ,∩R), (SE(U),\𝜀𝜀 ,∩R) cannot be a hemiring, since it is not additively commutative, but it is semiring 
with zero. 
 
9) (SE(U),+𝜀𝜀 ,∩R) is a multiplicatively commutative and multiplicatively idempotent semiring with the 
identity element UE, where Ⱥ∩⅌∩Ϩ=∅.  
 
Although (₣,Ⱥ)+𝜀𝜀∅∅=∅∅+𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, namely, ∅∅ is the zero of 
(SE(U),+𝜀𝜀 ,∩R),  (SE(U),+𝜀𝜀 ,∩R) cannot be a hemiring, since it is not additively commutative, but it is 
semiring with zero. 
 
10) (SE(U),𝜆𝜆𝜀𝜀 ,∩R) is a multiplicatively commutative and multiplicatively idempotent semiring with the 
identity element UE, where Ⱥ ∩⅌∩Ϩ=∅.  
 
Although (₣,Ⱥ)𝜆𝜆𝜀𝜀∅∅=∅∅𝜆𝜆𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, namely, ∅∅ is the zero of 
(SE(U),𝜆𝜆𝜀𝜀 ,∩R),  (SE(U),𝜆𝜆𝜀𝜀 ,∩R) cannot be a hemiring, since it is not additively commutative, but it is semiring 
with zero. 
 
11) (SE(U),θ𝜀𝜀 ,∩R) is an additively and multiplicatively commutative and multiplicatively idempotent 
semiring with the identity element UE, where Ⱥ∩⅌∩Ϩ=∅.  
 
Moreover, since (₣,Ⱥ)θ𝜀𝜀∅∅=∅∅θ𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, namely, ∅∅ is the zero of 
(SE(U),θ𝜀𝜀 ,∩R), (SE(U),θ𝜀𝜀 ,∩R) is a hemiring, where Ⱥ∩⅌∩Ϩ=∅. 
 
12) (SE(U),＊𝜀𝜀 ,∩R) is an additively and multiplicatively commutative and multiplicatively idempotent a 
semiring with the identity element UE, where Ⱥ∩⅌∩Ϩ=∅.  
 
Moreover, since (₣,Ⱥ)＊𝜀𝜀∅∅=∅∅＊𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅∅=∅∅ ∩R(₣,Ⱥ)=∅∅, namely, ∅∅ is the zero 
of (SE(U),＊𝜀𝜀 ,∩R), (SE(U),＊𝜀𝜀 ,∩R) is a hemiring, where Ⱥ∩⅌∩Ϩ=∅. 
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13) (SE(U),

~
∩, ∩R) is an additively and multiplicatively idempotent, multiplicatively commutative semiring 

with the identity element UE, where Ⱥ∩⅌’∩Ϩ=∅. 
 

14) (SE(U),
~
∪,∩R) is an additively and multiplicatively idempotent, multiplicatively commutative semiring 

with the identity element UE, where Ⱥ∩⅌’∩Ϩ=∅. 
 

15) (SE(U),
~
∆ ,∩R) is a multiplicatively commutative and idempotent semiring with the identity element UE, 

where Ⱥ∩⅌’∩Ϩ=∅ (Sezgin and Yavuz, 2023b). 
 
16)  (SE(U),∪𝜀𝜀 ,∩R) is a bounded distributive lattice with the lower bound ∅∅ and the upper bound UE.  
 
In fact, (SE(U),∪𝜀𝜀) and (SE(U),∩R) are commutative idempotent monoids with the identity element ∅∅ and 
UE, respectively (Ali et al., 2011) and restricted intersection distributes over extended intersection from 
both left and right sides in SE(U). Thus, (SE(U),∪𝜀𝜀 ,∩R) is a bounded distributive lattice with the lower bound 
∅∅ and the upper bound UE. Since (₣,Ⱥ)∪𝜀𝜀(₣,Ⱥ)r≠ UE and (₣,Ⱥ)∩R(₣,Ⱥ)r≠ ∅∅, the algebraic structure 
(SE(U),∪𝜀𝜀 ,∩R) is not complemented, thus it is not a Boolean algebra. (Ali et al., 2011; Qin and Hong, 2010) 
 
ii) Algebraic structures in SE(U) with two binary operations, the second binary operation of which is the 
extended intersection operation  
 
Let (₣,Ⱥ), (ℭ,⅌) and (Ҥ,Ϩ) be ՏՏs over U. Then, 
 
1)  (SE(U),∪R,∩𝜀𝜀) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element ∅∅. 
 
Moreover, since (₣,Ⱥ)∪R ∅E=∅E ∪R(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩𝜀𝜀 ∅E=∅E ∩𝜀𝜀(₣,Ⱥ)=∅E, the algebraic structure 
(SE(U),∪R,∩𝜀𝜀) is a hemiring (Ali et al., 2011). 
 
2) (SE(U),∩R,∩ε) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element ∅∅ where (Ⱥ∆⅌)∩Ϩ=∅ and Ⱥ ∩(⅌∆ Ϩ)=∅. 
 
Here, we also want to correct an error made in a previous study by Ali et al. (2011). It was stated that 
(SE(U),∩R,∩ε) is a hemiring with the identity ∅∅. However, since (₣,Ⱥ)∩𝑅𝑅 UE=UE ∩𝑅𝑅(₣,Ⱥ)=(₣,Ⱥ) and 
(₣,Ⱥ)∩ε UE = UE ∩ε(₣,Ⱥ)≠ UE, (SE(U),∩R,∩ε) cannot be a hemiring. Moreover, since extended 
intersection distributes over restricted intersection from LHS and RHS, respectively where (Ⱥ∆⅌)∩Ϩ=∅ 
and Ⱥ ∩(⅌∆ Ϩ)=∅. (SE(U),∩R,∩ε) cannot be a hemiring. 
 
3)  (SE(U),∩𝜀𝜀 ,∩𝜀𝜀) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element ∅∅ and without zero. 
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4)  (SE(U),

~
∪,∩𝜀𝜀) is a multiplicatively commutative, additively and multiplicatively idempotent semiring 

with the identity element ∅∅ and without zero,  where Ⱥ ∩(⅌∆ Ϩ)=∅. 
 

5)  (SE(U),
~
∩,∩𝜀𝜀) is a multiplicatively commutative, additively and multiplicatively idempotent semiring 

with the identity element ∅∅ and without zero, where (Ⱥ∆⅌)∩Ϩ=∅. 
 
6) (SE(U),∪R,∩ε) is a bounded distributive lattice with the lower bound ∅E and the upper bound ∅∅. Since 
(₣,Ⱥ)∪R(₣,Ⱥ)r≠ ∅∅ and (₣,Ⱥ)∩ε(₣,Ⱥ)r≠ UE, the algebraic structure (SE(U),∪R,∩ε) is non-complemented, 
bounded and distributive lattice; thus, it is not a Boolean algebra. (Ali et al., 2011; Qin and Hong, 2010) 
 
4.2.2.2. Algebraic structures with two binary operations in 𝐒𝐒Ⱥ(U): 
 
i) Algebraic structures in SȺ(U) with two binary operations, the second binary operation of which is the 
restricted intersection operation: 
 

1) (SȺ(U),∩R,∩R), (SȺ(U),∩𝜀𝜀 ,∩R), (SȺ(U),
~
∩,∩R) are additively and multiplicatively commutative and 

idempotent semirings with the identity element UȺ and without zero. 
 
2) (SȺ(U),∪R,∩R) are additively and multiplicatively commutative and idempotent semirings with the 
identity element UȺ. 
 
Moreover, since (₣,Ⱥ)∪R ∅Ⱥ=∅Ⱥ ∪R(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅Ⱥ=∅Ⱥ ∩R(₣,Ⱥ)=∅Ⱥ, namely ∅Ⱥ is the zero 
of  (SȺ(U),∪R,∩R), (SȺ(U),∪R,∩R) is a hemiring (Ali et al., 2011). 
 
3) (SȺ(U),∆R,∩R) is an additively and multiplicatively commutative and multiplicatively idempotent 
semiring with the identity element UȺ. 
 
Moreover, since (₣,Ⱥ)∆R∅Ⱥ=∅Ⱥ∆R(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅Ⱥ=∅Ⱥ ∩R(₣,Ⱥ)=∅Ⱥ, namely ∅Ⱥ is the zero of  
(SȺ(U),∆R,∩R), (SȺ(U),∆R,∩R) is a hemiring.  
 
Additionally, (SȺ(U),∆R,∩R) is a ring with the identity element, and since (₣,Ⱥ)2=(₣,Ⱥ)∩R(₣,Ⱥ), 
(SȺ(U),∆R,∩R) is a Boolean Ring. The fact that (₣,Ⱥ)∆R(₣,Ⱥ)=∅Ⱥ and (₣,Ⱥ)∩R(ℭ,Ⱥ)=(ℭ,Ⱥ)∩R(₣,Ⱥ) is a 
natural consequence of the algebraic structure (SȺ(U),∆R,∩R) being a Bool ring (Eren and Çalışıcı, 2019). 
 
4) (SȺ(U), ∪𝜀𝜀 ,∩R) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UȺ,  
 
Moreover, since (₣,Ⱥ)∪𝜀𝜀 ∅Ⱥ=∅Ⱥ ∪𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅Ⱥ=∅Ⱥ ∩R(₣,Ⱥ)= ∅Ⱥ, namely ∅Ⱥ is the zero 
of (SȺ(U),∪𝜀𝜀 ,∩R), (SȺ(U),∪𝜀𝜀 ,∩R) is a hemiring.  
 



 Natural & Applied Sciences Journal Vol. 8 (1) 2025 102 
 
 
5) (SȺ(U),∆𝜀𝜀 ,∩R) is an additively and multiplicatively commutative, multiplicatively idempotent semiring 
with the identity element UȺ,   
 
Moreover, since (₣,Ⱥ)∆𝜀𝜀∅Ⱥ=∅Ⱥ∆𝜀𝜀(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅Ⱥ=∅Ⱥ ∩R(₣,Ⱥ)=∅Ⱥ, namely ∅Ⱥ is the zero of 
(SȺ(U),∆𝜀𝜀 ,∩R), (SȺ(U),∆𝜀𝜀 ,∩R) is a hemiring (Sezgin and Çağman, 2025). 
 

6)  (SȺ(U),
~
∪,∩R) is an additively and multiplicatively commutative and idempotent is a semiring with the 

identity element UȺ. 
 

Moreover, since (₣,Ⱥ)
~
∪∅Ⱥ=∅Ⱥ

~
∪(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅Ⱥ=∅Ⱥ ∩R(₣,Ⱥ)=∅Ⱥ, namely ∅Ⱥ is the zero of 

(SȺ(U),
~
∪,∩R),  (SȺ(U),

~
∪,∩R) is a hemiring.  

 

7)  (SȺ(U),
~
∆ ,∩R) is an additively and multiplicatively commutative, multiplicatively idempotent semiring 

with the identity element UȺ. 
 

Moreover, since (₣,Ⱥ)
~
∆∅Ⱥ=∅Ⱥ

~
∆(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩R ∅Ⱥ=∅Ⱥ ∩R(₣,Ⱥ)=∅Ⱥ, namely ∅Ⱥ is the zero of  

(SȺ(U),
~
∆ ,∩R),  (SȺ(U),

~
∆ ,∩R) is a hemiring (Sezgin and Yavuz, 2023b). 

 
8) (SȺ(U),∪𝜀𝜀 ,∩R) is a complemented, bounded, distributive lattice with the lower bound  ∅Ⱥ and the upper 
bound UȺ.  
 
In fact, it was presented that (SȺ(U),∪𝜀𝜀) and (SȺ(U),∩R) are commutative idempotent monoids with the 
identity element  ∅Ⱥ and UȺ, respectively,  ∪𝜀𝜀 ve ∩R  hold distributive laws in SȺ(U), and restricted 
intersection distributes over extended union from both left and right sides in SȺ(U). 
 
Furthermore, since (₣,Ⱥ)∪𝜀𝜀(₣,Ⱥ)r= UȺ and (₣,Ⱥ)∩R(₣,Ⱥ)r= ∅Ⱥ, (SȺ (U),∪𝜀𝜀 ,∩R,r) is a complemented, 
bounded and distributive lattice; thus, it is a Boolean algebra. Moreover, since it satisfies the De Morgan 
law, that is, [(₣,Ⱥ)∩R(ℭ,Ⱥ)]r=(₣,Ⱥ)r∪𝜀𝜀(ℭ,Ⱥ)r and [(₣,Ⱥ)∪𝜀𝜀G,Ⱥ)]r=(₣,Ⱥ)r∩R (ℭ, Ⱥ)r. Thus, (SȺ(U),∪𝜀𝜀 ,∩R, c) 
is a De Morgan Algebra. 
 
Additionally, (₣,Ⱥ)∩R (₣, Ⱥ)r=∅Ⱥ ⊆� (ℭ,Ⱥ)∪𝜀𝜀(ℭ,Ⱥ)r=UȺ for all (₣,Ⱥ),(ℭ,Ⱥ)∈ SA(U),  thus (SȺ(U),∪𝜀𝜀 ,∩R, r) 
is a Kleene Algebra. 
 
Additionally, it is known that (₣,Ⱥ) ∩R (₣,Ⱥ)r= ∅Ⱥ and if (₣,Ⱥ)∩R(ℭ,Ⱥ)= ∅Ⱥ, then (ℭ,Ⱥ) ⊆�  (₣,Ⱥ)r. This 
shows that (₣,Ⱥ)r is the pseudo-complement of (₣,Ⱥ). Furthermore, since (₣,Ⱥ)r∪𝜀𝜀 ((₣,Ⱥ)r)r=UȺ, 
(SȺ(U),∪𝜀𝜀 ,∩R, r) satisfies Stone's unit property and thus, the algebraic structure  (SȺ(U),∪𝜀𝜀 ,∩R, r) is a Stone 
Algebra (Ali et al., 2011). 
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9)  (SȺ(U),∪R,∩R ,r) and (SȺ(U),

~
∪,∩R ,r) is a complemented, bounded, distributive lattice with the lower 

bound  ∅Ⱥ and the upper bound UȺ, is therefore a Boolean algebra, De Morgan algebra, besides,  Kleene 
algebra and Stone algebra.  
 
Additionally (SȺ(U),r,∩R) is an MV-algebra with the constant UȺ (Ali et al., 2011). 
 
To show that (SȺ(U),r,∩R, UȺ) is an MV-algebra, we need to show that it satisfies the MV-algebra 
conditions. 

• (MV1) (SȺ(U), ∩R) is commutative monoid with the identity element UȺ. 

• (MV2) ((₣,Ⱥ)r)r=(₣,Ⱥ). 

• (MV3) (UȺ)r∩R(₣,Ⱥ)=  ∅Ⱥ ∩R(₣,Ⱥ) = ∅Ⱥ = (UȺ)r. 

• (MV4) [(₣,Ⱥ)r∩R(ℭ,Ⱥ)]r ∩R(ℭ,Ⱥ)=((ℭ,Ⱥ)r∩R(₣,Ⱥ)r)r∩R(₣,Ⱥ). Indeed, 
       [(₣,Ⱥ)r∩R(ℭ,Ⱥ)] r∩R (ℭ,Ⱥ) =[((₣,Ⱥ)r) r∪R (ℭ,Ⱥ)r] ∩R (ℭ,Ⱥ) 
                                                                               =[(₣,Ⱥ) ∪R (ℭ,Ⱥ)r] ∩R (ℭ,Ⱥ) 
                                                     =[(₣,Ⱥ) ∩R (ℭ,Ⱥ)] ∪R[(ℭ,Ⱥ)r∩RG,Ⱥ)] 
                                                     =[(₣,Ⱥ) ∩R (ℭ,Ⱥ)] ∪R [(₣,Ⱥ) ∩R (₣,Ⱥ)r]  
                                                     = (₣,Ⱥ) ∩R [(ℭ,Ⱥ) ∪R (₣,Ⱥ)r] 
                                                     = (₣,Ⱥ) ∩R [(ℭ,Ⱥ)r ∩R (₣,Ⱥ)]r 

                                                                                 = [(ℭ,Ⱥ)r ∩R (₣,Ⱥ)]r  ∩R (₣, Ⱥ) 
Thus, (SȺ(U), r,∩R) is an MV-algebra with the constant UȺ. 
 
ii) Algebraic structures in SȺ(U) with two binary operations, the second binary operation of which is the 
extended intersection operation: 
 

1) (SȺ(U),∩𝜀𝜀 ,∩𝜀𝜀), (SȺ(U),
~
∩,∩𝜀𝜀), (SȺ(U),∩𝑅𝑅,∩𝜀𝜀)  are additively and multiplicatively commutative and 

idempotent semirings with the identity element UȺ and without zero. 
 
2) (SȺ(U),∪R,∩𝜀𝜀) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UA. 
 
Moreover, since (₣,Ⱥ)∪R ∅Ⱥ=∅Ⱥ ∪R(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩𝜀𝜀 ∅Ⱥ=∅Ⱥ ∩𝜀𝜀(₣,Ⱥ)= ∅Ⱥ, namely ∅Ⱥ is the zero 
of (SȺ(U),∪R,∩𝜀𝜀), (SȺ(U),∪R,∩𝜀𝜀) is a hemiring. 
 
3) (SȺ(U),∪ε,∩𝜀𝜀) is an additively and multiplicatively commutative and idempotent semiring with the 
identity element UȺ. 
 
Moreover, since (₣,Ⱥ)∪ε ∅Ⱥ=∅Ⱥ ∪ε(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩𝜀𝜀 ∅Ⱥ=∅Ⱥ ∩𝜀𝜀(₣,Ⱥ)= ∅Ⱥ, namely ∅Ⱥ is the zero of 
(SȺ(U),∪ε,∩𝜀𝜀), (SȺ(U),∪ε,∩𝜀𝜀) is a hemiring. 
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4) (SȺ(U),
~
∪,∩𝜀𝜀) is an additively and multiplicatively commutative and idempotent semiring with the 

identity element UȺ.   

Moreover, since (₣,Ⱥ)
~
∪∅Ⱥ=∅Ⱥ

~
∪(₣,Ⱥ)=(₣,Ⱥ) and (₣,Ⱥ)∩𝜀𝜀 ∅Ⱥ=∅Ⱥ ∩𝜀𝜀(₣,Ⱥ)=∅Ⱥ,  namely ∅Ⱥ is the zero of 

(SȺ(U),
~
∪,∩𝜀𝜀), (SȺ(U),

~
∪,∩𝜀𝜀) is a hemiring. 

 
5) (SȺ(U),∪𝜀𝜀 ,∩𝜀𝜀) is a complemented, bounded, distributive lattice with the lower bound  ∅Ⱥ and the upper 
bound UȺ.  
 
In fact, it was presented that (SȺ(U),∪𝜀𝜀) and (SȺ(U),∩𝜀𝜀) are commutative idempotent monoids with the 
identity element  ∅Ⱥ and UȺ, respectively,  ∪𝜀𝜀 ve ∩𝜀𝜀  hold distributive laws in SȺ(U), and extended 
intersection distributes over extended union from both left and right sides in SȺ(U). 
 
Furthermore, since (₣,Ⱥ)∪𝜀𝜀(₣,Ⱥ)r= UȺ and (₣,Ⱥ)∩𝜀𝜀(₣,Ⱥ)r= ∅Ⱥ,  (SȺ(U),∪𝜀𝜀 ,∩𝜀𝜀,r) is a complemented, 
bounded and distributive lattice; thus a Boolean algebra.  
 
Moreover, since De Morgan law, that is [(₣,Ⱥ)∩𝜀𝜀(ℭ,Ⱥ)]r=(₣,Ⱥ)r∪𝜀𝜀(ℭ,Ⱥ)r and 
[(₣,Ⱥ)∪𝜀𝜀G,Ⱥ)]r=(₣,Ⱥ)r∩𝜀𝜀 (ℭ, Ⱥ)r is satisfied, (SȺ(U),∪𝜀𝜀 ,∩𝜀𝜀 , c) is a De Morgan Algebra. 
 
Additionally, (₣,Ⱥ)∩𝜀𝜀 (₣, Ⱥ)r=∅Ⱥ ⊆�(ℭ,Ⱥ)∪𝜀𝜀(ℭ,Ⱥ)r=UȺ, for all (₣, Ⱥ), (ℭ, Ⱥ) ∈ SȺ(U), thus (SȺ(U),∪𝜀𝜀 ,∩𝜀𝜀 , r) 
is a Kleene Algebra. 
 
Additionally, it is known that (₣,Ⱥ)∩𝜀𝜀(₣,Ⱥ)r=∅Ⱥ and if (₣,Ⱥ) ∩𝜀𝜀 (ℭ,Ⱥ)=∅Ⱥ, then (ℭ,Ⱥ) ⊆�(₣,Ⱥ)r. This shows 
that (₣,Ⱥ)r is the pseudo-complement of (₣,Ⱥ). Furthermore, since (₣,Ⱥ)r∪𝜀𝜀 ((₣,Ⱥ)r)r=Ⱥ, (SA(U),∪𝜀𝜀 ,∩𝜀𝜀 , r) 
satisfies Stone's unit property and thus,  (SȺ(U),∪𝜀𝜀 ,∩𝜀𝜀 , r) is a Stone Algebra. 
 

6) (SȺ(U),∪𝑅𝑅,∩𝜀𝜀 ,r) and (SȺ(U),
~
∪,∩𝜀𝜀 ,r) are complemented, bounded, distributive lattice with the lower 

bound  ∅Ⱥ and the upper bound UȺ, is therefore, a Boolean algebra, De Morgan algebra, Kleene algebra, 
and Stone algebra.  Additionally (SȺ(U),r,∩𝜀𝜀) is an MV-algebra the constant element UȺ. 
 
To show that (SȺ(U),r,∩𝜀𝜀 , UȺ) is an MV-algebra, we neeed show that it satisfies the MV-algebra conditions. 

• (MV1) (SȺ(U), ∩𝜀𝜀, UȺ)  commutative monoid with UȺ. 

• (MV2) ((₣,Ⱥ)r)r=(₣,Ⱥ). 

• (MV3) (UA)r∩𝜀𝜀(₣,Ⱥ)=  ∅Ⱥ ∩𝜀𝜀(₣,Ⱥ) = ∅Ⱥ = (UȺ)r. 

• (MV4) [(₣,Ⱥ)r∩𝜀𝜀(ℭ,Ⱥ)]r ∩𝜀𝜀(ℭ,Ⱥ)=((ℭ,Ⱥ)r∩𝜀𝜀(₣,Ⱥ)r)r∩𝜀𝜀(₣,Ⱥ).  Indeed, 
       [(₣,Ⱥ)r∩𝜀𝜀(ℭ,Ⱥ)]r∩𝜀𝜀(ℭ,Ⱥ) =[((₣,Ⱥ)r)r∪𝜀𝜀(ℭ,Ⱥ)r] ∩𝜀𝜀(ℭ,Ⱥ) 
                                                                          =[(₣,Ⱥ)∪𝜀𝜀(ℭ,Ⱥ)r] ∩𝜀𝜀(ℭ,Ⱥ) 
                                                 =[(₣,Ⱥ)∩𝜀𝜀(ℭ,Ⱥ)]∪𝜀𝜀[(ℭ,Ⱥ)r∩𝜀𝜀 (ℭ, Ⱥ)] 



 Natural & Applied Sciences Journal Vol. 8 (1) 2025 105 
 
 
                                                 =[(₣,Ⱥ)∩𝜀𝜀(ℭ,Ⱥ)]∪𝜀𝜀[(₣,Ⱥ)∩𝜀𝜀(₣,Ⱥ)r]   
                                                 = (₣,Ⱥ)∩𝜀𝜀[(ℭ,Ⱥ)∪𝜀𝜀(₣,Ⱥ)r] 
                                                 = (₣,Ⱥ)∩𝜀𝜀[(ℭ,Ⱥ)r∩𝜀𝜀 (₣,Ⱥ)]r 

                                                                          = [(ℭ,Ⱥ)r∩𝜀𝜀(₣,Ⱥ)]r  ∩𝜀𝜀 ( F,Ⱥ) 
Thus, (SȺ(U), r,∩𝜀𝜀) is an MV-algebra with the constant UȺ. 
 

 
 

This work presents a thorough examination of all of the characteristics of restricted intersection and 
extended intersection operations, which are key concepts in ՏՏ theory. First of all, the intersection 
operations are viewed historically, demonstrating the incompleteness of the restricted intersection definition 
by Ali et al., 2009 and Ali et al., 2011. As the definition has rough edges, the claims in all papers examining 
the characteristics of the concept and applying it suffer from some problematic circumstances, as it is 
neglected that the parameter sets of the ՏՏs contained in restricted intersection may also be disjoint. 
Following the inadequate definition of restricted intersection, some theorems and assertions in previous 
research on restricted and extended intersection operations were presented without proofs, or the proofs 
were wrong or missing sections. First and foremost, the presentation of the concept of restricted union is 
renewed in this study in a new manner that eliminates any incorrectness. This study typically gives proofs 
based on function equality and corrects any faulty parts in these studies. When evaluating the properties 
and distributive rules of restricted and extended intersection operations, the case in which the intersection 
of the parameter sets of the ՏՏs is empty is always considered in the statements and proofs. Moreover, the 
relationships between restricted and extended intersection operations and the soft subset proposed by Pei 
and Miao (2005) are also examined in relation to their classical set counterparts. We also add many more 
properties to the properties that were previously supplied in this topic. In the set of ՏՏs with a fixed 
parameter set and in the set of sets over the universe, the distribution rules and absorption laws are 
thoroughly investigated, and the algebraic structures formed by these operations individually and in 
combination with other ՏՏ operations are thoroughly examined with their detailed proofs by also correcting 
the incorrect parts in the literature in this regard. Boolean algebra, De Morgan algebra, MV-algebra, Kleene 
algebra, Stone algebra, semiring, hemiring, bounded distributive lattice, monoid, and bounded semi-lattice 
are some examples of these algebraic structures associated with restricted and extended intersection 
operations. Furthermore, if a distribution rule does not hold, we specify the condition(s) under which the 
assertions do. According to these perspectives, this paper represents the most comprehensive analysis of 
ՏՏs in the literature that is currently available in terms of restricted and extended intersection operations, 
taking into account all of the earlier research on the topic such as Ali et al., 2009; Ali et al., 2011; Maji et 
al., 2003; Pei and Miao, 2005; Qin and Hong, 2010; Sen, 2014; Sezgin and Atagün, 2011; Singh and 
Onyeozili, 2012c as well as Neog and Sut, 2011; Fu, 2011; Ge and Yang S, 2011; Zhu and Wen, 2013; 
Onyeozili and Gwary, 2014; Husain and Shivani, 2018)), as there isn't any literature available at the moment 
with such a thorough analysis. As ՏՏ operations serve as the theoretical foundation for several approaches 
to soft computing, which open the door to a variety of applications, such as the development of new ՏՏ-
based cryptography techniques and decision-making processes and the studies on soft algebraic structures 
have been the basis for understanding the applications of ՏՏ algebra in both classical and non-classical 
logic, this paper fills a significant gap for the past and future literature by advancing both the theoretical 
and practical aspects of ՏՏ theory. Future research can be employed from the perspective of this study to 
address other basic ՏՏ operations, such as restricted and extended union, difference, and symmetric 
difference operations. 

 
 

5. CONCLUSION 
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