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Abstract: Smart water management systems (SWMS) leverage engineering innovations, such as IoT sensors, machine 

learning algorithms, and real-time monitoring, to improve water conservation and distribution efficiency. The traditional 

water systems, characterized by high water wastage (30%) and substantial leakage (15%), are being increasingly 

replaced by smarter systems that utilize IoT sensors, automated valves, and data analytics to reduce wastage, improve 

reliability, and increase system efficiency. In a comparison of water usage efficiency, smart systems exhibit a 40% 

reduction in average daily water usage, from 500,000 liters to 300,000 liters. Water leakage is reduced from 15% to 5%, 

and water wastage due to improper distribution decreases from 30% to 10%. Consumer satisfaction also improves, with 

complaints decreasing and system response times dropping from 24 hours to 2 hours. IoT sensors, such as pressure and 

flow rate sensors, offer high accuracy and low power consumption, ensuring reliable data transmission and energy 

efficiency, with a mean transmission frequency of 10-15 minutes and power consumption as low as 8 mW. Cost analysis 

indicates a higher initial setup cost for smart systems (₦150 million) compared to traditional ones (₦100 million), but 

the reduction in annual maintenance (₦2 million vs. ₦5 million) and operational costs (40% reduction) make smart 

systems more cost-effective over time. Energy consumption is reduced by 16%, with solar-powered IoT sensors 

contributing to a decrease in carbon footprint by 60%. Regression and statistical analyses confirm that water pressure 

uniformity, leak detection time, and daily water demand significantly influence water loss, while machine learning 

optimization leads to an 18% improvement in water distribution efficiency. A correlation model was developed to assess 

the relationship between key parameters: the correlation coefficient between leak detection time and water wastage is 

found to be 0.85, indicating a strong positive correlation. Similarly, the correlation between pressure uniformity and 

system efficiency shows a value of 0.92, reflecting a strong positive relationship. These innovations collectively 

represent a transformative shift toward sustainable and efficient water management. 
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1. Introduction 

Water scarcity and inefficient water distribution remain critical global challenges, exacerbated by climate 

change, population growth, and urbanization [1, 2]. In response to these challenges, Smart Water Management 

Systems (SWMS) have emerged as a promising solution, integrating advanced technologies such as the 

Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins to optimize water conservation and 

distribution [3, 4]. These systems enable real-time monitoring, predictive analytics, and automated control 

mechanisms, contributing to significant improvements in water resource efficiency and sustainability [5, 6]. 

SWMS utilize a network of sensors, smart meters, and cloud-based frameworks to gather and analyze water 

usage data, allowing authorities to make informed decisions on resource allocation and management [7, 8]. 

Smart water management systems influence IoT, AI, and real-time data analytics to enhance water 

conservation and distribution efficiency. Singapore’s Smart Water Grid employs sensors and AI-driven 

analytics to reduce non-revenue water losses and optimize supply [9]. Amsterdam integrates a digital twin 

system that simulates real-time canal conditions, predicting floods and improving wastewater management 

[10]. In Barcelona, an IoT-based smart irrigation system optimizes water usage in parks, reducing 

consumption by 25% [11]. Similarly, Australia’s Murray-Darling Basin uses remote sensing and GIS to 

distribute water efficiently for agriculture [12]. Bengaluru, India, has adopted AI-powered leak detection, 

decreasing non-revenue water losses by 30% [13]. These case studies highlight how smart technologies 

significantly improve water sustainability by minimizing waste, predicting issues, and optimizing resource 

use. Implementing similar systems globally can help address water scarcity and promote efficient urban and 

agricultural water management. 

Smart water grids and digital twins have revolutionized water distribution networks, enhancing reliability 

and reducing wastage through predictive maintenance and anomaly detection [14, 15]. Furthermore, IoT-

enabled irrigation systems have shown significant promise in agricultural water management, enabling precise 

water delivery based on real-time soil and weather conditions [16, 17]. In urban environments, smart water 

systems play a pivotal role in monitoring water quality, detecting leaks, and ensuring equitable water 

distribution [18, 19]. These systems are supported by innovative software architectures that enable efficient 

data processing and user interaction, improving transparency and accountability [20, 21]. Additionally, 

integration with decision support tools has allowed authorities to better manage complex reservoir systems 

and adapt to fluctuating water demands [22, 23]. 

Despite these advancements, challenges such as high implementation costs, data security concerns, and 

the need for skilled personnel remain significant barriers to widespread adoption [23, 24]. However, ongoing 

research and pilot projects continue to demonstrate the potential of SWMS in addressing water-related issues 

across diverse geographic and socioeconomic contexts [25]. This paper explores the engineering innovations 

underpinning smart water management systems, highlighting their role in promoting sustainable water 

conservation and equitable distribution on a global scale. 

2. Material and Methods 

2.1. Study Area and Data Collection 

The study area is Benin City, the capital of Edo State, Nigeria, a rapidly growing urban center with a 

population exceeding 1.7 million people [1]. As one of Nigeria’s historical and economic hubs, the city 

experiences significant challenges related to water management due to rapid urbanization, population growth, 

aging infrastructure, and climate variability [2]. Ensuring sustainable water supply and efficient distribution 

is crucial to supporting both residential and industrial activities in the city. Benin City lies within the tropical 

rainforest zone, characterized by heavy rainfall, high humidity, and a distinct wet and dry season [26]. The 

annual rainfall ranges between 1,500 mm and 2,000 mm, with the wet season spanning from April to October 

[4]. Despite abundant rainfall, water distribution issues persist due to infrastructure limitations, leakage, and 

inefficient monitoring [5]. The city's water supply is managed by the Benin Owena River Basin Development 

Authority (BORBDA) and Edo State Urban Water Board, with major sources including Ikpoba River Dam, 

Ovia River Waterworks, and groundwater sources (boreholes and wells) [6]. However, challenges such as 

intermittent supply, high non-revenue water (NRW) losses, and outdated pipeline networks hinder efficient 

distribution [7]. Leakages and unauthorized water connections contribute to significant water wastage [8]. The 

implementation of a Smart Water Management System (SWMS) is critical for improving water conservation, 
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leakage detection, pressure regulation, and real-time monitoring in Benin City [9]. Engineering innovations 

such as IoT-enabled sensors, automated metering, and AI-driven analytics can enhance efficiency by: 

Reducing water losses through real-time leak detection [10]; Optimizing distribution networks to match 

demand [11]; Improving water quality monitoring [12]; Enhancing consumer engagement via smart billing 

systems [13]. With increasing urban expansion, integrating smart water management technologies into the 

city's infrastructure will play a crucial role in ensuring sustainable water supply, reducing operational costs, 

and improving resilience to climate change impacts [14]. 

 

Figure 1. The Study area, Benin Edo State, Nigeria 

2.1.1. Data Collection Process 

The following data collection were employed in this study: 

i. Field Surveys: Conducted to assess current water management practices. 

ii. Sensor Deployment: IoT-enabled sensors were installed to monitor water flow, pressure, temperature, 

and quality parameters. 

iii. Data Logging Systems: Cloud-based data loggers were used to record real-time information. 

iv. Stakeholder Interviews: Conducted to gather feedback on water conservation initiatives. 

v. Historical Data Analysis: Previous water management records from municipal bodies were reviewed. 

2.1.2. Study Duration 

The study was conducted over 12 months, ensuring seasonal variations were captured in the data. 
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Table 1. Tools, Equipment, and Technologies Used [7, 8, 11] 

Equipment/Tool Purpose Specification 

IoT Sensors 
Real-time water flow, pressure, and temperature 

monitoring 
Calibrated flow meters (±0.5% accuracy) 

Water Quality Sensors pH, turbidity, and chlorine level analysis Multi-parameter water quality probe 

Data Loggers Continuous data collection Cloud-based logging system 

GIS Mapping Software Spatial analysis of water distribution ArcGIS Pro 

Automated Valves Remote water flow control IoT-enabled valves 

Smart Pumps Energy-efficient water pumping Variable frequency drive pumps 

Analytical Software Data analysis and modeling MATLAB, R Studio 

2.2. Mathematical Models and Equations 

Key performance indicators (KPIs) were modeled using mathematical equations specific to each 

parameter evaluated in the study. 

2.2.1. Water Usage Efficiency 

Water usage efficiency was evaluated using the equation 1 [12, 15]: 

 η﷩w﷩ = (1 −  𝐿﷩𝑇﷩) × 100                       

(1) 

Where: 

ηw = Water efficiency (%) 

L = Water lost due to leaks (liters) 

T = Total water supplied (liters) 

Parameters Evaluated: The following parameters were evaluated: Total water supplied, water lost through 

leaks, distribution efficiency, non-revenue water percentage, daily water demand, storage efficiency, leak 

detection time, repair response time, water distribution route efficiency and water pressure uniformity 

respectively 

2.2.2. IoT Sensor Performance 

The performance of IoT sensors was evaluated using Equation 2 [5]: 

 A﷩s﷩ = (  𝑉﷩𝑚﷩ −  𝑉﷩𝑎﷩﷩ 𝑉﷩𝑚﷩﷩) × 100        

   (2) 

Where: 

As = Sensor accuracy (%) 

Vm = Measured value 

Va = Actual value 

Parameters Evaluated: Sensor accuracy, sensor precision, signal latency, data transmission frequency, 

sensor calibration frequency, battery life of sensors, sensor range, environmental adaptability, maintenance 

frequency, data packet loss rate 

2.2.3. Cost Analysis 

The total cost efficiency was analyzed using Equation 3 [5]: 

Ctotal=Csetup+(Cmaintenance ×N) − Csavings            (3) 

Where: 

Csetup = Initial setup cost 

Cmaintenance = Annual maintenance cost 
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N = System lifespan (years) 

Csavings = Cost savings due to efficiency improvements 

The parameters evaluated included: Installation cost, maintenance cost, energy cost savings, water loss 

cost savings, sensor replacement cost, software licensing cost, operational efficiency cost, Return on 

Investment (ROI), Break-even period, and annual financial savings. 

2.2.4. Energy Consumption 

Energy consumption was modeled using Equation 4 [12, 13, 14]: 

E=P×H             (4) 

Where: 

E = Energy consumed (kWh) 

P = Power consumption (kW) 

H = Operational hours (h) 

Parameters evaluated included: Energy consumption per pump, peak operational hours, standby energy 

consumption, renewable energy integration, voltage fluctuations, energy conversion efficiency, energy loss in 

transmission, system downtime due to energy failure, power load balancing efficiency, cost per kWh. 

2.2.5. Water Distribution Optimization 

Optimization efficiency was determined using Equation 5 [12, 15, 18]: 

 η﷩opt﷩ = (  Q﷩opt﷩﷩ Q﷩in﷩﷩) × 100        

   (5) 

Where: 

ηopt = Optimization efficiency (%) 

Qopt = Optimized water flow (m³) 

Qin = Input water flow (m³) 

Parameters Evaluated: Water flow uniformity, pressure optimization, valve response time, leakage 

prevention efficiency, seasonal adjustment accuracy, emergency response efficiency, real-time flow 

adjustment, demand prediction accuracy, pump efficiency, smart valve coordination 

2.2.6. Water Conservation Impact 

Water conservation impact was calculated using Equation 6 [5, 9, 12]: 

 R﷩w﷩ = (  𝑊﷩𝑡﷩ −  𝑊﷩𝑠﷩﷩ 𝑊﷩𝑡﷩﷩) × 100       

    (6) 

Where: 

Rw = Water conservation reduction (%) 

Wt = Total water used traditionally (liters) 

Ws = Water used in the smart system (liters) 

2.2.7. Consumer Awareness and Engagement 

Engagement success rate was evaluated using Equation 7 [4, 9]: 

 S﷩e﷩ = (  𝐸﷩𝑎﷩﷩ 𝐸﷩𝑡﷩﷩) × 100         

   (7) 

Where: 
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Se = Success rate of engagement (%) 

Ea = Actual engagement (number of responses) 

Et = Total engagement opportunities 

2.2.8. Data Transmission Reliability 

Reliability of data transmission was calculated using Equation 8 [12, 15]: 

 R﷩d﷩ = (  𝐷﷩success﷩﷩ 𝐷﷩total﷩﷩) × 100        

   (8) 

Where: 

Rd = Reliability of data transmission (%) 

Dsuccess = Successfully transmitted data packets 

Dtotal = Total data packets sent 

2.2.9. Water Quality Monitoring 

The water quality index (WQI) was calculated using Equation 9 [2, 4, 5, 7, 9]: 

WQI =  𝑖 = 1﷩𝑛﷩ 𝑄﷩𝑖﷩﷩ −  𝑊﷩𝑖﷩         

   (9) 

Where: 

Qi = Quality rating of parameter i 

Wi = Weight of parameter i 

n = Number of parameters 

2.2.10. Environmental Sustainability 

Environmental efficiency was calculated using Equation 10 [2, 5, 9]: 

 E﷩s﷩ = (  𝑅﷩𝑤﷩ +  𝐸﷩𝑒﷩ +  𝑀﷩𝑟﷩﷩3﷩)          

              (10) 

Where: 

Es = Environmental sustainability index 

Rw = Water reuse (%) 

Ee = Energy efficiency (%) 

Mr = Material recycling rate (%) 

2.3. Data Analysis Techniques 

2.3.1. Statistical Analysis 

The statistical analysis was used to Identify relationships, correlations, and dependencies among variables 

such as water pressure, leak detection time, demand patterns, and efficiency metrics. 

Tools Used: 

SPSS version 23 (Statistical Package for Social Sciences): Used for hypothesis testing, correlation 

analysis, and multivariate regression. 

MATLAB was Applied for advanced mathematical modeling and data visualization. 

Key Techniques Applied: 
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Correlation Analysis: To determine the strength and direction of relationships between water pressure 

and leak detection time. 

Regression Analysis: Predicting water consumption based on historical data and environmental factors. 

ANOVA (Analysis of Variance): To compare means across multiple zones for parameters like leak 

density and consumption efficiency. 

2.3.2. Multiple Linear Regression Model 

The Equation 11 is the multiple linear regression model [12]: 

Y=β0+β1X1+β2X2+...+βnXn+ε                     (11) 

Where: 

Y: Dependent Variable (e.g., water demand) 

X1, X2,...,Xn: Independent Variables (e.g., pressure, leak density, zone type) 

β0: Intercept 

β1, β2,...,βn: Coefficients of independent variables 

ε: Error term 

This model was used to; Identified key predictors of water consumption and t[ determined how water 

pressure uniformity impacts leak detection efficiency. 

2.3.3. Machine Learning Models 

Machine Learning Models was used to build predictive models for future water demand and optimize 

resource allocation. 

Tools Used: 

Python Libraries: Scikit-learn, TensorFlow, Keras, Pandas, and NumPy. 

Techniques Applied: 

Linear Regression: To predict water demand based on historical consumption data. 

Random Forest Regression: To handle non-linear relationships and improve prediction accuracy. 

K-Means Clustering: To classify zones based on water consumption patterns. 

The machine learning regression model is stated in Equation 12 [4]: 

Y^=f(X)+ε                      (12) 

Where: 

Y^: Predicted water demand 

f(X): Machine learning model mapping input features (e.g., temperature, population density) to water 

demand 

ε: Residual error 

This model was used to obtain; Accurate prediction of peak water demand periods and Identification of 

high-risk zones for leakages and inefficiencies. 

2.3.4. GIS Mapping 

GIS Mapping was used to analyze spatial data for efficient water distribution and identify areas prone to 

leaks or inefficiencies. 

Tools Used: ArcGIS and QGIS (Quantum GIS) 

Key Techniques Applied: 
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Spatial Interpolation: Estimate water quality and leak density at unsampled locations. 

Route Optimization: Plan efficient water distribution paths to minimize energy and resource waste. 

Heat Mapping: Visual representation of leak-prone zones and areas with high water consumption. 

The Equation for Spatial Interpolation using Inverse Distance Weighting – IDW is [2, 5, 9]: 

𝑍(𝑥)  𝑖 = 1﷩𝑀﷩ 𝑍﷩𝑖﷩ −  𝑊﷩𝑖﷩﷩﷩ 𝑖 = 1﷩𝑁﷩ 𝑊﷩𝑖﷩﷩﷩      

                (13) 

Where: 

Z(x): Estimated value at location xxx 

Zi: Known value at point iii 

wi: Weight assigned to each point based on distance 

This model was used to; Geospatial hotspots for leaks identified and Optimized distribution routes 

established for water delivery. 

2.3.5. Time-Series Analysis 

Time-Series Analysis was used to analyze temporal trends in water consumption, leak detection 

efficiency, and seasonal variations. 

Tools Used: Python Libraries: Stats models, Prophet, Matplotlib and SPSS Time-Series Module 

Key Techniques Applied included: 

Autoregressive Integrated Moving Average (ARIMA): To model and forecast time-dependent water 

consumption trends. 

Seasonal Decomposition: To isolate and interpret seasonal patterns in water consumption data. 

Exponential Smoothing (ETS Model): To predict short-term changes in water demand. 

ARIMA Model Equation is presented as Equation 14 [5, 9, 12, 13, 15]: 

Yt=c+φ1Yt−1+θ1εt−1+ε                      (14) 

Where: 

Yt: Observation at time t 

c: Constant 

φ1: Autoregressive coefficient 

θ1: Moving average coefficient 

εt: White noise error term 

This model was used to obtain; Seasonal peaks and troughs in water demand identified and Enhanced 

preparedness for seasonal changes in water requirements. 

2.4. GIS Mapping for Water Distribution Optimization 

2.4.1. Spatial Distribution and Leak Hotspots 

Spatial datasets were analyzed using ArcGIS Pro., Leakage density maps and optimized water distribution 

routes were created. 

Table 2. Summary of Techniques and Integration 

Technique Tools Objective Key Methods 

Statistical Analysis SPSS, MATLAB Relationship & dependency Correlation, Regression, ANOVA 

Machine Learning Python Prediction & Classification Regression, Clustering 

GIS Mapping ArcGIS, QGIS Spatial Optimization Route Mapping, Heat Mapping 

Time-Series Analysis SPSS, Python Temporal Trend Analysis ARIMA, Seasonal Decomposition 
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3. Results and Discussion  

Table 3. Water Usage Efficiency Comparison between Traditional and Smart Systems 

Parameter Traditional System Smart System 

Average daily water usage (liters) 500,000 300,000 

Water leakage (%) 15 5 

Water wastage due to improper distribution (%) 30 10 

Consumer complaints High Low 

Response time to leaks (hours) 24 2 

Water distribution equity (%) 60 90 

Average service interruption (hours) 10 2 

Data transmission reliability (%) 90 98 

Operational downtime (%) 10 1 

Water quality monitoring frequency (times/day) 1 24 

The smart water system significantly enhances water efficiency compared to traditional methods. Daily 

water usage drops by 40% (Table 3), with leakage reducing from 15% to 5% [1, 5]. Smart systems minimize 

wastage (10% vs. 30%) and improve distribution equity (90% vs. 60%) [3, 7]. Faster leak response (2 vs. 24 

hours) and real-time monitoring (24 vs. 1 time/day) enhance reliability [6, 10]. 

Table 4. Performance of IoT Sensors in Water Distribution Networks 

Sensor 

Type 

Accuracy 

(%) 

Response 

Time 

(seconds) 

Power 

Consumption 

(mW) 

Coverage 

Area 

(m²) 

Transmission 

Frequency 

(min) 

Cost 

(₦) 

Sensor 

Lifetime 

(years) 

Maintenance 

Frequency 

(months) 

Data 

Transmission 

Range (m) 

Pressure 

Sensor 
98 2 10 1000 15 15,000 10 12 500 

Flow Rate 

Sensor 
97 3 15 500 10 12,000 8 6 300 

Temperature 

Sensor 
99 1 8 800 20 10,000 12 6 400 

The IoT sensors in Table 4 demonstrate high accuracy, with the temperature sensor achieving 99%, 

aligning with findings by [6, 10]. Response times vary, with the temperature sensor being the fastest (1s), 

supporting [12]. Power consumption is minimal (8–15 mW), ensuring efficiency [5]. Coverage areas differ, 

with pressure sensors covering 1000m², confirming [9]. Transmission frequency and maintenance schedules 

optimize longevity [3, 17]. 

Table 5. Cost Analysis of Smart Water Systems vs. Traditional Infrastructure 

Component Traditional System (₦) Smart System (₦) 

Initial Setup Cost 100,000,000 150,000,000 

Annual Maintenance 5,000,000 2,000,000 

Operational Efficiency (%) 80 95 

System Life Expectancy (years) 20 15 

Water Waste Reduction (%) 5 20 

Installation Time (months) 12 6 

Technology Upgrade Cost (every 5 years) 10,000,000 5,000,000 

Staff Training Cost (₦) 2,000,000 500,000 

Reliability (%) 85 95 

Consumer Cost (₦/month) 1,000 1,200 



Journal of Studies in Advanced Technologies 2025, 3, 1      22 

The smart water system, despite its higher initial setup cost (₦150M vs. ₦100M) [1], significantly 

reduces annual maintenance (₦2M vs. ₦5M) [2] and installation time (6 vs. 12 months) [3]. It enhances 

operational efficiency (95% vs. 80%) [4] and water waste reduction (20% vs. 5%) [5]. Although consumer 

costs rise (₦1,200 vs. ₦1,000) [6], improved reliability (95% vs. 85%) [7] and lower upgrade costs (₦5M vs. 

₦10M) [8] justify the investment. 

 

Table 6. Energy Consumption in Smart Water Management Systems 

Component 

Energy 

Consumption 

(kWh/month) 

Average 

Load 

(W) 

Power 

Source 

Operational 

Hours 

(h/day) 

Cost 

per 

kWh 

(₦) 

Annual 

Energy 

Cost (₦) 

CO₂ 

Emissions 

(kg/year) 

Efficiency 

(%) 

IoT Sensors 150 1 Solar 24 20 36,000 100 90 

Automated Valves 200 2 Grid 16 25 48,000 120 85 

Data Analytics Systems 300 4 Grid 24 30 72,000 180 92 

Table 6 highlights the energy consumption of smart water management components. IoT sensors 

consume 150 kWh/month, operating 24 hours on solar power with high efficiency (90%) [5]. Automated 

valves rely on the grid, using 200 kWh/month, costing ₦48,000 annually [6]. Data analytics systems have the 

highest energy demand (300 kWh/month) and CO₂ emissions (180 kg/year) [10]. 

Table 7. Water Distribution Optimization Using Machine Learning Algorithms 

Parameter Without Optimization With Optimization 

Water Distribution Efficiency (%) 75 90 

Consumer Satisfaction Low High 

System Response Time (minutes) 15 3 

Average Water Loss (%) 20 5 

Algorithm Execution Time (seconds) 20 5 

Cost of Water Distribution (₦/m³) 25 15 

Peak Demand Prediction Accuracy (%) 70 95 

Distribution Equity (%) 70 90 

Operational Cost Reduction (%) 15 40 

System Scalability (%) 60 85 

The results in Table 7 demonstrate significant improvements in water distribution using machine learning 

algorithms. Optimization increased efficiency from 75% to 90%, enhancing consumer satisfaction and 

reducing response time from 15 to 3 minutes. Water loss dropped from 20% to 5%, while algorithm execution 

time improved (20s to 5s). Costs declined, with ₦/m³ reducing from 25 to 15, and operational cost reduction 

rising to 40% [5]. Peak demand prediction accuracy improved (70% to 95%) [10], ensuring equitable 

distribution (90%) [15]. 

Table 8. Impact of Smart Water Management on Water Conservation 

Area 

Water 

Wastage 

Reduction 

(%) 

Water 

Leakage 

Reduction 

(%) 

Energy 

Consumption 

Reduction 

(%) 

Operational 

Cost 

Reduction 

(%) 

System 

Reliability 

(%) 

Water 

Reuse 

(%) 

Consumer 

Satisfaction 

(%) 

Installation 

Time 

(months) 

Water Quality 

Improvement 

(%) 

Urban 

Areas 
25 20 30 20 95 45 80 8 15 

Agricultural 

Zones 
30 15 40 25 92 50 85 6 20 

Industrial 

Areas 
15 10 35 10 90 40 75 10 18 

Table 8 highlights the effectiveness of smart water management in different sectors. Urban areas show a 

25% reduction in wastage and 20% in leakage, enhancing system reliability to 95% and consumer satisfaction 

to 80% [3, 6]. Agricultural zones exhibit the highest water reuse (50%) and wastage reduction (30%) due to 
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IoT-based irrigation [15]. Industrial areas have lower savings, with 15% wastage and 10% leakage reductions, 

yet achieve 90% reliability [9, 14]. These findings align with sustainability goals for water conservation [5, 

10]. 

 

 

Table 9. Consumer Awareness and Engagement with Smart Water Management Systems 
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Real-time Notifications 85 5 50 500,000 90 80 70 95 75 85 

Automated Billing System 70 2 40 200,000 85 65 60 92 60 80 

Consumer Feedback Surveys 60 1 30 100,000 80 50 40 90 40 75 

Table 9 highlights consumer engagement with smart water management systems, showing real-time 

notifications as the most effective, with an 85% success rate and 90% satisfaction [1, 3]. Automated billing 

follows, with a 70% success rate but lower adoption [5, 7]. Feedback surveys lag in engagement and data 

sharing, suggesting a need for improved consumer education [10, 12]. 

Table 10. Reliability of Data Transmission in Smart Water Systems 

Transmission 

Mode 

Reliability 

(%) 

Latency 

(seconds) 

Power 

Consumption 

(mW) 

Coverage 

Area 

(m²) 

Data 

Integrity 

(%) 

Redundancy 

Type 

Error 

Rate 

(%) 

Connection 

Stability 

(%) 

Backup 

Duration 

(hours) 

Wired 

Connection 
98 0.5 10 1000 99 None 0.01 95 48 

Wireless 

Connection 
95 1.2 15 500 97 

Mesh 

Network 
0.05 92 24 

Satellite 

Connection 
93 2.0 20 2000 95 Hybrid 0.1 90 36 

Table 10 illustrates the reliability of data transmission in smart water systems. Wired connections exhibit 

the highest reliability (98%) with minimal latency (0.5s) and error rate (0.01%), ensuring stable 

communication (95%) over a 1000 m² coverage area [1]. Wireless connections, though slightly less reliable 

(95%), benefit from mesh redundancy but experience higher latency (1.2s) [2]. Satellite connections provide 

the broadest coverage (2000 m²) but with increased latency (2.0s) and error rates (0.1%) [3]. 

Table 11. Water Quality Monitoring in Smart Systems 
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pH Level 7.0 7.2 99 24 6.5-8.5 0.3 0.1 25 95 

Turbidity 0.5 0.3 98 12 0.5-5 0.2 0.05 20 85 

Chlorine Concentration 0.1 0.05 99 10 0-1 0.1 0.05 30 80 

Temperature 25 24 99 6 20-30 0.5 0.05 26 80 

Table 11 highlights the effectiveness of smart water quality monitoring systems, ensuring compliance 

with standard parameters. The pH level remains within the acceptable range (6.5–8.5) with 99% sensor 
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accuracy [1, 5]. Turbidity is efficiently reduced to 0.3 NTU, improving water clarity (6, 9). Chlorine 

concentration meets safety levels [7, 10]. Temperature remains stable [12, 15]. 

 

 

 

 

Table 12. Sustainability and Environmental Impact of SWMS 

Parameter Traditional System Smart System 

Carbon Footprint (kg CO2/year) 500,000 200,000 

Water Reuse (%) 10 50 

Energy Efficiency (%) 60 90 

Material Usage (kg/month) 500 300 

Environmental Impact (H2O consumption, m³) 10,000 4,000 

System Durability (years) 20 15 

Waste Generation (kg/month) 200 50 

Renewable Energy Usage (%) 5 25 

Recycling Rate (%) 5 30 

Operational Emissions (g CO2/km) 150 50 

The sustainability and environmental impact of Smart Water Management Systems (SWMS) 

significantly surpass traditional systems. SWMS reduce carbon footprint by 60% (Table 12), aligning with 

findings from [1, 5, 6]. Water reuse improves fivefold, supporting efficiency studies [7, 10]. Energy efficiency 

reaches 90%, confirming smart solutions' benefits [4, 12]. Material usage drops 40%, reducing waste [14, 19]. 

Environmental impact lessens by 60%, reinforcing conservation strategies [3, 9]. SWMS enhance recycling 

and renewable energy adoption [15, 18]. Though durability slightly declines, overall sustainability benefits 

are substantial [11, 16]. 

3.1. Statistical Analysis (SPSS and MATLAB) 

Table 13. Correlation Coefficients 

Parameter 1 Parameter 2 Correlation Coefficient (r) Significance (p-value) 

Water Pressure Uniformity Leak Detection Time 0.85 <0.01 

Sensor Accuracy Data Transmission Frequency 0.92 <0.01 

Energy Consumption System Downtime -0.76 <0.05 

Water Efficiency Daily Water Demand 0.88 <0.01 

Table 13 demonstrates strong correlations between key parameters in smart water management. Water 

pressure uniformity and leak detection time show a strong positive correlation (r = 0.85, p < 0.01), indicating 

efficient pressure regulation aids faster leak detection [1]. Sensor accuracy strongly correlates with data 

transmission frequency (r = 0.92, p < 0.01), emphasizing real-time monitoring importance [2]. Energy 

consumption negatively correlates with system downtime (r = -0.76, p < 0.05), suggesting higher energy 

efficiency reduces operational disruptions [3]. Water efficiency and daily demand exhibit a strong positive 

relationship (r = 0.88, p < 0.01), highlighting optimized usage patterns [4]. 

3.2. Regression Analysis 

Regression analysis was performed using MATLAB. The dependent variable was Water Loss (L). 

Independent variables included Water Pressure Uniformity (WPU), Daily Water Demand (DWD), and Leak 

Detection Time (LDT). Equation 15 shows the regression equation obtained: 

L=5.4−0.3(WPU)+0.5(DWD)−0.2(LDT)L                    (15) 
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Table 14. Statistical Significance; Regression Output 

Parameter Coefficient t-Statistic p-Value 

Water Pressure Uniformity -0.3 -4.56 <0.01 

Daily Water Demand 0.5 6.32 <0.01 

Leak Detection Time -0.2 -3.85 <0.05 

Table 14 presents the regression analysis results, demonstrating significant relationships between key 

water management parameters. Water pressure uniformity negatively impacts efficiency (coefficient = -0.3, p 

< 0.01), aligning with prior studies on pressure fluctuations affecting supply stability [1, 4]. Daily water 

demand positively correlates with system performance (coefficient = 0.5, p < 0.01), consistent with demand-

driven optimization models [6, 11]. Leak detection time negatively influences efficiency (coefficient = -0.2, 

p < 0.05), supporting findings that prolonged leaks reduce sustainability [9, 12]. These results reinforce smart 

water management strategies. 

Table 15. Model Performance Metrics 

Metric Value 

R² Score 0.93 

Mean Squared Error (MSE) 15.4 

The model demonstrates strong predictive accuracy, with an R² score of 0.93, indicating that 93% of the 

variance is explained by the model [1]. A Mean Squared Error (MSE) of 15.4 suggests minimal deviation 

from actual values, confirming reliability [2]. These metrics align with previous studies on smart water 

management [3]. 

Table 16. Comparative Parameter Analysis of Summary of Improvements 

Parameter Baseline Value Post-Implementation Value % Improvement 

Water Efficiency (%) 72 89 23.6% 

Leak Detection Time (hours) 12 3 75% 

Energy Consumption (kWh/day) 500 420 16% 

Distribution Efficiency (%) 78 92 18% 

Water Loss (%) 25 10 60% 

The implementation of smart water management systems significantly enhanced key performance 

metrics. Water efficiency improved by 23.6% [1, 3], while leak detection time reduced by 75%, ensuring faster 

issue resolution [5, 6]. Energy consumption dropped by 16%, optimizing resource utilization [7, 9]. 

Distribution efficiency increased by 18%, leading to better service reliability [10, 12]. Notably, water loss 

decreased by 60%, reducing waste and enhancing sustainability [14, 15]. 

Table 17. Correlation Coefficients Between Key Parameters 

Parameter 1 Parameter 2 
Correlation 

Coefficient (r) 

Significance  

(p-value) 
R² Value 

Standard 

Error 

Confidence 

Interval (95%) 

Water Pressure 

Uniformity 
Leak Detection Time 0.85 <0.01 0.722 0.05 0.75–0.95 

Sensor Accuracy 
Data Transmission 

Frequency 
0.92 <0.01 0.846 0.03 0.85–0.99 

Energy Consumption System Downtime -0.76 <0.05 0.577 0.07 -0.85–-0.65 

Water Efficiency Daily Water Demand 0.88 <0.01 0.774 0.04 0.80–0.96 

Leak Volume Pressure Drop 0.81 <0.05 0.656 0.06 0.70–0.92 

Real-Time Data 

Accuracy 
Monitoring Frequency 0.93 <0.01 0.865 0.02 0.88–0.98 

Table 17 highlights significant correlations between key parameters in smart water management. Water 

pressure uniformity and leak detection time show a strong positive correlation (r = 0.85, p < 0.01), indicating 

that improved pressure consistency enhances leak detection efficiency [1]. Sensor accuracy and data 
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transmission frequency exhibit the highest correlation (r = 0.92, p < 0.01), emphasizing real-time data 

reliability [3]. Energy consumption negatively correlates with system downtime (r = -0.76, p < 0.05), implying 

higher energy efficiency reduces failures 555. Additionally, real-time data accuracy strongly correlates with 

monitoring frequency (r = 0.93, p < 0.01), reinforcing the importance of frequent updates [10]. 

 

 

 

Table 18. Regression Analysis Results 

Parameter Coefficient t-Statistic p-Value 
Standard 

Error 

Confidence 

Interval (95%) 

Water Pressure Uniformity -0.3 -4.56 <0.01 0.065 -0.42 – -0.18 

Daily Water Demand 0.5 6.32 <0.01 0.079 0.34 – 0.66 

Leak Detection Time -0.2 -3.85 <0.05 0.058 -0.31 – -0.09 

Energy Consumption 0.15 2.67 0.03 0.043 0.04 – 0.26 

System Downtime -0.1 -2.01 0.05 0.050 -0.21 – 0.00 

Table 18's regression analysis highlights key determinants of smart water system efficiency. Water 

pressure uniformity negatively impacts efficiency (-0.3, p < 0.01) [1], while daily water demand positively 

influences it (0.5, p < 0.01). Leak detection time (-0.2, p < 0.05) and system downtime (-0.1, p = 0.05) reduce 

efficiency. Energy consumption improves efficiency (0.15, p = 0.03) [5]. 

Regression Model is presented in Equation 16; 

Tables 1–10 provide a comprehensive analysis of key aspects of green hydrogen production: Table 1 

compares electrolysis technologies by performance parameters; Table 2 details material advancements in 

electrolyzer components; Table 3 evaluates hydrogen storage methods; Table 4 analyzes hydrogen distribution 

technologies and efficiency metrics; Table 5 examines water usage by electrolysis technology; Table 6 

presents lifecycle carbon emissions of hydrogen production methods; Table 7 highlights global hydrogen 

projects; Table 8 compares hydrogen production costs by technology and region; Table 9 assesses the 

environmental impact of hydrogen production methods; and Table 10 outlines policy and regulatory 

frameworks for the hydrogen economy. 

L=5.4−0.3(WPU)+0.5(DWD)−0.2(LDT)+0.15(EC)−0.1(SD)                 (16) 

Model Statistics: R²: 0.87, Adjusted R²: 0.85, F-Statistic: 45.62 and Significance Level: p < 0.01 

Table 19. Machine Learning Model Performance Metrics 

Metric Training Data Testing Data 

R² Score 0.95 0.93 

Mean Squared Error 12.5 15.4 

Mean Absolute Error 2.8 3.1 

Root Mean Squared Error 3.5 3.9 

Explained Variance 0.94 0.91 

Prediction Bias 0.03 0.05 

The machine learning model demonstrates high accuracy, with an R² score of 0.95 for training and 0.93 

for testing, indicating strong predictive capability [1, 2]. The RMSE (3.5, 3.9) and MAE (2.8, 3.1) values show 

minimal error, confirming reliable performance [3]. A low prediction bias (0.03, 0.05) suggests unbiased 

predictions [4]. The explained variance (0.94, 0.91) further supports model robustness [5]. 

Table 20. GIS-Based Water Leak Density Analysis 

Zone 

ID 

Leak Density 

(leaks/km²) 

Pressure 

Drop (%) 

Pipeline Age 

(years) 

Repair Frequency 

(per year) 

Water Loss 

(m³/year) 

Z1 15 22 25 5 1,200 

Z2 28 35 30 8 2,100 

Z3 12 18 20 3 950 
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Z4 35 45 40 12 3,500 

Z5 20 25 15 4 1,500 

The GIS-based analysis (Table 20) reveals a direct correlation between leak density and pipeline age, 

pressure drop, and repair frequency. Z4 has the highest leak density (35 leaks/km²), pressure drop (45%), and 

water loss (3,500 m³/year), emphasizing aging infrastructure’s impact on efficiency. Z3, with the lowest 

values, suggests newer pipelines perform better [12, 18]. 

 

Table 21. Time-Series Seasonal Water Consumption Trends 

Month 
Average Demand 

(m³/day) 

Peak 

Hours 

Leak Rate 

(%) 

Temperature 

(°C) 

Pressure Variance 

(%) 

January 1,500 7–9 AM 5 22 2 

February 1,800 6–8 AM 6 25 3 

March 2,200 6–9 AM 8 30 5 

July 2,800 5–8 PM 12 35 8 

December 1,300 8–10 AM 4 20 1.5 

The seasonal water consumption trends (Table 21) indicate variations in demand, peak hours, leak rates, 

temperature, and pressure variance. March and July show the highest demand, with peaks in the morning and 

evening, respectively. Increased temperatures correlate with higher demand and leak rates [5, 9]. December 

exhibits the lowest demand, likely due to reduced temperature and minimal pressure variance [12, 17]. Leak 

rates peak in July, influenced by extreme heat and pressure fluctuations [6, 10]. 

Table 22. Comparison of Key Performance Indicators (KPIs) 

Parameter Baseline Value 
Post-Implementation 

Value 

Percentage 

Improvement 

(%) 

Benchmark 

Water Efficiency (%) 72 89 23.6% 90% 

Leak Detection (hrs) 12 3 75% 2 hrs 

Energy Use (kWh/day) 500 420 16% 400 

Pressure Uniformity (%) 78 92 18% 95% 

The implementation of smart water management technologies significantly improved key performance 

indicators (Table 22). Water efficiency increased by 23.6%, nearing the 90% benchmark [1, 3]. Leak detection 

time was reduced by 75%, approaching the optimal 2-hour standard [6, 10]. Energy consumption dropped by 

16%, moving closer to the 400 kWh/day target [5, 12]. Pressure uniformity improved by 18%, enhancing 

distribution efficiency [7, 14]. These results demonstrate substantial operational enhancements. 

Table 23. Real-Time Monitoring Data Accuracy 

Sensor ID Accuracy (%) Response Time (ms) Data Loss (%) Operational Uptime (%) 

S1 98 120 0.2 99.8 

S2 96 150 0.5 99.5 

S3 94 180 0.8 99.0 

Table 23 demonstrates high accuracy in real-time monitoring, with Sensor S1 exhibiting the best 

performance at 98% accuracy, the lowest data loss (0.2%), and the highest uptime (99.8%). S2 and S3 show 

slightly reduced accuracy (96% and 94%) and increased response times (150 ms and 180 ms). These results 

align with previous studies highlighting the importance of sensor precision in smart water systems [1, 5, 10]. 
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Figure 2. Water Pressure Uniformity vs Leak Detection Time 

Figure 2 illustrates the relationship between water pressure uniformity and leak detection time, revealing 

a scattered trend where uniformity fluctuates with varying detection durations. Studies [4, 8] suggest that 

lower uniformity correlates with extended detection times due to pressure inconsistencies. Research [6, 10] 

highlights the role of advanced leak monitoring in minimizing detection delays. Efficient detection methods 

[3] improve pressure stability, reducing resource wastage and enhancing distribution system performance. 

 

Figure 3. Seasonal Water Consumption Trends 

Figure 3 illustrates seasonal water consumption trends, showing peak demand in July (2800 m³/day) and 

a decline towards December (1600 m³/day). Studies [2, 5] highlight temperature-driven consumption patterns, 

with summer months requiring more water. Research [7, 9] suggests reduced usage in colder months due to 

lower evaporation rates. Efficient water management strategies [4] help mitigate seasonal demand 

fluctuations, ensuring sustainable resource allocation throughout the year. 
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Figure 4. Leak Density Across Zones 

Figure 4 illustrates leak density across zones, with Z4 having the highest leak density (35 leaks/km²), 

followed by Z2 (28 leaks/km²), while Z3 records the lowest (12 leaks/km²). Studies [3, 6] suggest aging 

infrastructure and high-pressure zones contribute to increased leakage. Research [8,10] emphasizes targeted 

maintenance in high-density areas to minimize losses. Strategic pipeline monitoring [7] enhances leak 

detection, improving overall water network efficiency. 

The integration of IoT sensors, machine learning, and AI into water management systems has proven to 

be an effective strategy for improving water usage efficiency, reducing wastage and leakage, lowering 

operational costs, and contributing to environmental sustainability. These results align with previous research 

and underscore the transformative potential of smart water management technologies. The findings also 

highlight the economic and environmental advantages of adopting these systems on a wider scale, reinforcing 

their relevance in the global effort to address water scarcity and improve resource management. 

4. Conclusion 

In conclusion, the implementation of a smart water management system, as demonstrated in this study, 

offers significant improvements in water conservation, leak detection, system efficiency, and environmental 

sustainability. The data analysis from the results highlights the effectiveness of IoT and machine learning 

algorithms in optimizing water distribution systems. The findings align with global trends and corroborate 

results from leading research in the field, particularly regarding the reduction in water wastage, energy 

consumption, and carbon footprint. Moreover, the financial implications of adopting smart systems are 

favorable in the long term due to the operational savings, despite higher initial investments. This research 

underscores the importance of integrating advanced technologies for sustainable water resource management 

and sets a foundation for further advancements in smart water systems, ensuring more efficient, responsive, 

and eco-friendly solutions to global water challenges. 
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