International Journal of Agriculture, Environment and Food Sciences

e-ISSN: 2618-5946 https://dergipark.org.tr/jaefs

DOI: https://doi.org/10.31015/2025.1.12

Int. J. Agric. Environ. Food Sci. 2025; 9 (1): 98-107

Inheritance patterns of major phenological traits in pear and breeding effectiveness of parental varieties

Kerem Mertoğlu¹

glu¹ 🕛 🛛 🛛 🛛

Mehmet Polat²

Yasemin Evrenosoğlu³

¹Departmen of Horticulture, Faculty of Agriculture, Uşak University, Uşak, Türkiye ²Departmen of Horticulture, Faculty of Agriculture, Isparta University of Applied Science, Isparta, Türkiye ³Departmen of Horticulture, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Türkiye

Article History Received: January 5, 2025 Revised: March 4, 2025 Accepted: March 6, 2025 Published Online: March 10, 2025

Article Info Article Type: Research Article Article Subject: Horticultural Production

Corresponding Author Kerem Mertoğlu ⊠ krmertoglum@gmail.com

Available at https://dergipark.org.tr/jaefs/issue/90253/1613747

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License.

Copyright © 2025 by the authors.

Abstract

This study was conducted to plan targeted breeding programs in pear cultivation and, as a result, genetic parameters of major phenological traits (full bloom time, harvest time, and the duration from full bloom to harvest) were calculated along with the breeding values of parental varieties for these traits. In this context, phenological records of 2,051 hybrid plants obtained from 37 crossing combinations were collected. It was determined that all examined traits were quantitative. The genetic effect on the inheritance of full bloom time was found to be low at 31%, whereas it was higher for harvest time (83%) and the duration from full bloom to harvest (86%). In the development of early-maturing genotypes, the 'Akça' variety stood out both as a maternal parent (204.88 days) and as a pollinator (211.32 days). For late-maturing genotypes, 'Kieffer' (236.11 days) as a maternal parent and 'Ankara' (239.09 days) as a pollinator were prominent. Among the study materials, hybrids of 'Williams×Conference,' which bloomed after the 100th day of the year and completed their physiological development in approximately 150 days, showed promise for breeding lateblooming, late-maturing genotypes. Conversely, the 'Santa Maria×Akça' combination, which bloomed in the same period and required less than 100 days from full bloom to harvest, was significant for developing late-blooming, earlymaturing genotypes. The results of this study provide valuable insights for planning new breeding projects addressing the impacts of global climate change. Keywords: Phenology, Heterosis, Inheritance, Hybrid, Pyrus communis L.

Cite this article as: Mertoglu, K., Polat, M., Evrenosoglu, Y. (2025). Inheritance patterns of major phenological traits in pear and breeding effectiveness of parental varieties. International Journal of Agriculture, Environment and Food Sciences, 9 (1): 98-107. https://doi.org/10.31015/2025.1.12

INTRODUCTION

With its favorable climatic conditions, Türkiye demonstrates its potential in early, mid, and late-season pear (*Pyrus communis* L.) production and ranks among the top five pear-producing countries globally (FAO, 2022). Despite this advantageous position in production, the country's export volume is still quite low with 89,302 tons (FAO, 2022). The pear market offers significant economic opportunities because the global trade volume of fresh pears exceeds 3 million tons. Achieving higher export levels in this economically promising species seems feasible by ensuring quality and standardization in production. In this context, breeding programs aimed at developing genotypes that meet the demands of both producers and consumers are essential. The traits targeted in breeding programs are predominantly quantitative, controlled by multiple genes, and exhibit a complex inheritance pattern (Evrenosoğlu et al., 2019; Karaat and Serce, 2020). Consequently, hybrid breeding remains the most widely employed method (Bilgin et al., 2020; Saridas et al., 2021; Kurnaz et al., 2024). However, in hybrid breeding programs, the emergence of desirable traits in new genotypes largely depends on chance, making the process unpredictable (Lyrene, 2018; Paranhos et al., 2022).

Wild species are often favored in breeding programs due to their superior resistance against diverse biotic and abiotic stressors. However, hybridizations involving wild species frequently lead to the expression of undesirable traits in progeny, such as grittiness (caused by stone cells), small fruit size, thorniness, and irregular fruit shapes

(Simionca Marcaşan et al., 2023). To address these issues, subsequent backcrossing with high-quality cultivars is typically required. Despite this approach, the unpredictable inheritance of desirable traits in backcrossed progeny, coupled with the lengthy, labor-intensive, and resource-intensive nature of such breeding efforts, has redirected contemporary breeding strategies toward utilizing cultivars with greater commercial value (Evrenosoğlu et al., 2010). The limited number of pear varieties cultivated globally has further resulted in the reuse of parental lines from previous programs in contemporary breeding initiatives.

To enhance the effectiveness of hybrid breeding programs, researchers must undertake comprehensive genetic studies aimed at improving both the predictability and efficiency of these initiatives. A key component of such efforts is the meticulous evaluation of parental lines for their breeding values, determined based on the traits under investigation. Additionally, the prediction of genetic parameters for each trait and the detailed elucidation of their inheritance mechanisms are indispensable for shaping the direction of future breeding programs. By carefully selecting optimal parental lines during the initial stages, the probability of obtaining progeny with the desired traits can be substantially increased. This strategy not only streamlines the hybrid breeding process but also reduces the time and financial resources required to achieve targeted breeding outcomes. Recent research efforts have increasingly prioritized addressing uncertainties in breeding programs by pinpointing the genetic loci associated with specific traits (Sanchez-Perez et al., 2012; Zhen et al., 2018) and elucidating their inheritance mechanisms (Liu et al., 2024). This line of investigation has not only gained significant prominence but also exhibited a marked upward trend in recent years reflecting its critical importance in advancing the field of plant genetics and breeding (Nyadanu et al., 2017; Evrenosoğlu et al., 2019; Fallah et al., 2022).

In this study, some phenological characteristics of 2051 F_1 pear hybrids obtained from 37 hybridization combinations involving 12 pear varieties were analyzed, and the parental varieties' breeding values were assessed. regarding related traits. Additionally, hybridization combinations that produced heterotic individuals were determined, providing practical recommendations for future pear breeding programs regarding the selection of parental lines and combinations. Furthermore, genetic parameter estimates were calculated for all evaluated traits, providing insights into the efficiency of hybridization in trait development, the genetic malleability of these traits, and their sensitivity to environmental factors.

MATERIALS AND METHODS

Material

The study material consisted of 2051 hybrids obtained from 37 distinct hybridization combinations involving 5 maternal and 11 pollinator varieties within the scope of projects aimed at developing fire blight-resistant pear genotypes with high fruit quality parameters (TUBITAK TOVAG 1060719 and TUBITAK TOVAG 1100938) (Evrenosoğlu et al., 2010).

The study material that was located in experimental fields of Eskisehir Osmangazi University, Faculty of Agriculture in Eskişehir, where has a typical continental climate. The climatic characteristics observed during the experimental period at the trial site are presented in Table 1. Due to global climate change, air temperatures in both experimental years were generally observed to be higher than the long-term averages. This increase in air temperature, which enhances the potential for water vapor dissolution in the air, was accompanied by a similar trend in relative humidity. Regarding precipitation, an examination of long-term data reveals consistency across seasonal months; however, during the study period, irregular rainfall and drought periods were observed.

	Precip	oitation	(mm)	Humid	lity (%)		Tempe	rature (°C)
	2018	2019	LTA	2018	2019	LTA	2018	2019	LTA
December	63.6	74.1	45.1	96.0	89.9	93.6	2.7	2.9	3.6
November	29.6	33.9	29.2	79.2	76.2	80.3	8.4	7.9	7.5
October	41.0	18.3	27.0	75.5	70.1	79.6	14.0	14.2	12.9
September	2.8	4.0	17.0	65.4	62.1	58.4	18.6	18.3	17.3
August	18.0	3.2	12.4	63.5	61.0	54.7	22.9	22.3	21.8
July	39.2	36.4	14.2	65.5	62.4	53.0	22.3	21.3	21.9
June	46.6	36.6	29.9	69.5	67.9	57.2	19.9	20.9	18.9
May	62.2	39.8	41.9	74.8	65.1	60.8	16.8	16.5	14.8
April	12.6	24.8	40.5	61.6	69.3	62.8	13.8	9.5	9.9
March	53.6	9.2	30.3	73.5	64.5	65.1	9.2	6.3	5.3
February	40.5	50.1	32.5	90.7	79.6	92.6	6.6	3.4	4.7
January	31.5	60.2	38.7	95.5	91.0	98.2	2.2	4.3	0.3
Average	36.8	32.6	29.9	75.9	71.6	71.4	13.1	12.3	11.6

Table 1. Climate Characteristics of the Experimental area.

LTA: Average climate data between 1929 and 2019, bold lines mean growing periods.

Phenonological observations

The full bloom stage was recorded as the period when 70-80% of flower buds had fully bloomed (Karaçalı, 2012). The determination of whether the fruits had reached harvest maturity was based on criteria such as color development, abscission layer formation, and taste (Mertoğlu and Evrenosoğlu, 2017). The total number of days between the full bloom date and the harvest date was calculated (Karaçalı, 2012).

Genetic Parameter Estimation and Statistical Analyses

The genetic parameters of the traits under consideration were calculated using estimates of variance components. Variance component estimates were obtained using the REML (Restricted Maximum Likelihood) method, based on the mathematical model (1) provided below, and computed through the ASReml software.

$$y = Z_1 Y I L + Z_2 a + Z_3 b + Z_4 melez + E$$
⁽¹⁾

Here;

YIL;	$\sim N(0, A\sigma_{vu}^2)$
	impacts of the chance regarding year,
<i>a;</i>	$\sim N(0, A\sigma_a^2)$
	impacts of the chance regarding maternal parents,
<i>b;</i>	$\sim N(0, A\sigma_h^2)$
	impacts of the chance regarding pollinators,
melez;	$\sim N(0, I\sigma_{melez}^2)$
	impacts of the chance regarding hybrids,
<i>E</i> ;	$\sim N(0, I\sigma_F^2)$
	impacts of the chance regarding error,
Z_{1}, Z_{2}, Z_{3} and Z_{4} ;	the design matrices are displayed.

By using the results of the model-based estimates namely; additive genetic variance $\begin{pmatrix} V_A \end{pmatrix}$, non-additive genetic variance (dominance and epistasis), total genetic variance (V_{nona}), total phenotypic variance (V_P), total (V_g) ; genetic parameter estimates such as narrow-sense heritability (n^-), broad-sense genetic variance H^2), maternal effects (M^2), general combining ability (V_{GCA}), and specific combining ability (V_{SCA}) variance components were calculated using the formulas below (2) (Baker, 1978; Evrenosoğlu et al., 2019).

 $V_A = 2(\sigma_a^2 + \sigma_b^2)$ (2)

$$V_D = 4(\sigma_{melez}^2)$$

$$V_G = V_A + V_D$$

$$V_p = \sigma_{YIL}^2 + \sigma_a^2 + \sigma_b^2 + \sigma_{melez}^2 + \sigma_E^2$$

$$H^2 = V_G / V_p$$

$$h^2 = V_a / V_p$$

$$M^2 = \sigma_h^2 / V_p$$

$$d^2 = V_D / V_p$$

RESULTS AND DISCUSSION

In the F_1 hybrids obtained from different hybridizations, measurements were taken over two consecutive years, and the results regarding the variance components and genetic parameters of the phenological traits are presented in Table 2. The variance attributed to additive genes for full bloom was proportionally lower within the total phenotypic variance compared to harvest time and the duration from full bloom to harvest. Consequently, the narrow-sense heritability derived from these ratios was estimated as 32% for full bloom time. In contrast, it was 83% and 86% for harvest time and the duration from full bloom to harvest, respectively. These results indicate that environmental factors significantly influence full bloom traits compared to harvest time and the duration from full bloom to harvest (Table 2). This phenomenon can be attributed to the requirement for specific climatic thresholds to initiate flowering. Szabo et al. (2019) and Legave et al. (2013) emphasized that meeting temperature requirements is a critical factor influencing the initiation of flowering, with a reported linear regression relationship between temperature and flowering at $R^2 = 0.55$. In contrast, fruit development is a dynamic process that continues uninterrupted from fertilization to harvest. Assimilation products generated during daytime photosynthesis are transported to the fruits day and night, making harvest time and the duration from full bloom to harvest less susceptible to year-to-year environmental variations compared to full bloom time. Similar findings have been reported in other studies, which also noted that the narrow-sense heritability for full bloom time is lower than that of other phenological traits due to the reduced influence of genotype on this trait (Piaskowski et al., 2018; Hajnajari et al., 2019). The inclusion of data spanning two vegetation periods in this study allowed for a clearer delineation of these trait differences.

The broad-sense heritability, which incorporates the effects of non-additive genes, was estimated at 52%, 92%, and 98% for full bloom time, harvest time, and the duration from full bloom to harvest, respectively. These results indicate that multiple genes are involved in the inheritance of these phenological traits, demonstrating a polygenic inheritance pattern. Similar findings have been reported in studies on other fruit species, including almond (Sanchez-Perez et al., 2007), peach (Rakonjac et al., 2011), sour cherry (Piaskowski et al., 2018), and apple (Hajnajari et al., 2019), where phenological traits were also shown to exhibit polygenic inheritance. In such cases, identifying the chromosomal loci of the genes controlling these traits becomes crucial, with an emphasis on achieving genetic progress through major-effect genes (Sanchez-Perez et al., 2007). The dominance heritability estimates from additive genes were found to be relatively low, at 5%, 2%, and 3% for full bloom time, harvest time, and the duration from full bloom to harvest, respectively. This suggests that epistatic interactions have a greater influence on inheritance compared to dominance effects. A study by Hwang et al. (2015) on Asian pears examined the inheritance of harvest time using 13 varieties and 15 hybrid combinations. Their findings, consistent with our results, reported heritability values generally exceeding 80%.

	Variance	components			Genetic parameters						
	V_A	V_D	σ_{YIL}^2	σ_E^2	σ_P^2	h^2	H^2	d^2			
NDBH	366.47	50.69	7.38	172.54	425.83	0.86	0.98	0.03			
Harvest time	452.43	53.27	142.76	164.61	546.91	0.83	0.92	0.02			
Full Bloom	3.72	2.54	12.08	7.42	12.08	0.31	0.52	0.05			

Table 2. Variance Components and Genetic Parameter Estimates for Phenological Traits.

NDBH: Number of days from full bloom to harvest, V_A : additive genetic variance, V_D : non-additive genetic variance (dominance and epistasis), σ_{YIL}^2 : variance of year, σ_E^2 : Error variance, σ_P^2 : total phenotypic variance, h^2 : narrow-sense heritability, H^2 : broad-sense heritability, d^2 : Heritability of dominance

Descriptive statistics and breeding values for full bloom time, harvest time, and the duration from full bloom to harvest across parent varieties and years are provided in Table 3. Significant statistical differences were observed among maternal parents, pollinators, and years for all traits examined.

The mean values of hybrids derived from maternal parents for full bloom indicated the following sequence of reaching full bloom: 'Kieffer' (93.39 days), 'Akça' (96.60 days), 'Williams' (98.06 days), 'Santa Maria' (98.13 days), and 'Maggness' (99.79 days). Similarly, the ranking of pollinators for this trait was as follows: 'Conference' (95.51 days), 'Santa Maria' (96.29 days), 'Moonglow' (96.97 days), 'Bursa' (96.97 days), 'Taş' (97.18 days), 'Kieffer' (97.23 days), 'Ankara' (97.35 days), 'Williams' (97.40 days), 'Kaiser Alexandre' (98.57 days), 'Limon' (99.30 days), and 'Akça' (101.19 days). In a study conducted under the ecological conditions of Bingöl-Türkiye, the full bloom times of five varieties ('Akça,' 'Ankara,' Deveci,' 'Santa Maria,' and 'Williams') ranged between the 83rd ('Williams') and 119th ('Santa Maria') days of the year across two consecutive years (Osmanoğlu et al., 2013). Similarly, in Serbia, under a harsh continental climate, hybrids reached full bloom between the 105th and 146th days of the year over three years (Gordana, 2019). Another study conducted at the Horticulture Research Institute in Erzincan observed that approximately 15% of genotypes reached full bloom early, 70% during the mid-period, and 15% late (Öz and Aslantaş, 2015). Full bloom variations for both maternal and pollinator varieties showed approximately 10% variation (Table 3), suggesting a low and uniform level of variation for this trait.

When evaluating the effects of maternal parents on ripening, the 'Akça' (204.88 days) stood out as the leading candidate for obtaining early genotypes, while 'Kieffer' (236.11 days) was prominent for late-ripening genotypes.

Other maternal parents, such as 'Santa Maria' (220.33 days), 'Williams' (229.93 days), and 'Maggness' (230.99 days) were identified within this range. The 'Akça' (211.32 days) also stood out as a pollinator for early ripening, while 'Ankara' (239.09 days) was promising for late-ripening generations. Among pollinators, 'Bursa' (219.68 days) and 'Moonglow' (220.39 days) contributed to early ripening, while 'Limon' (234.70 days) and 'Kieffer' (235.33 days) were effective for obtaining late-ripening genotypes. Studies with similar materials indicated that harvest times for the examined varieties and genotypes ranged between July 17 and September 9, reflecting the population's broad variation (Mertoğlu and Evrenosoğlu, 2017; Evrenosoğlu and Mertoğlu, 2020). A study in Bosnia and Herzegovina under ex-situ conditions also reported wide variation, ranging from extremely early ripening to late-season maturity (Zeljkovic et al., 2019).

The coefficients of variation for harvest time were generally between 6-7%, lower than those for full bloom. Similarly, hybrids derived from 15 different crossing combinations showed that the coefficient of variation for harvest time did not exceed 4% (Hwang et al., 2015). In the current study, the coefficients of variation for full bloom ranged from 9-11%, while those for harvest time ranged from 6-8%, suggesting that subsequent generations resemble the parent varieties more closely for harvest time than for full bloom.

The duration from full bloom to harvest followed trends similar to harvest time. The 'Akça' variety contributed to the fastest completion of developmental physiology as both a maternal parent (109.29 days) and a pollinator (111.38 days). Conversely, 'Kieffer' (143.69 days) as a maternal parent and 'Ankara' (142.75 days) as a pollinator contributed to the slowest development. Other maternal parents such as 'Santa Maria' (123.22 days) supported relatively faster development, whereas 'Maggness' (132.46 days) and 'Williams' (132.91 days) contributed to later-season genotypes. Among pollinators, varieties such as 'Bursa' (123.70 days), 'Moonglow' (124.42 days), and 'Williams' (127.51 days) supported moderate fruit development speed, while 'Limon' (136.39 days), 'Santa Maria' (138.35 days), and 'Kieffer' (139.10 days) contributed to slower fruit development. A study in northern Anatolia reported that promising pear genotypes required 89 to 212 days from full bloom to harvest maturity across years (Öztürk and Demirsoy, 2013). Variation observed for harvest time was higher than for full bloom. The 'Kieffer' variety was promising for developing late-ripening genotypes, as indicated by its low coefficient of variation (4.75%).

During the first year of the study, data from all hybrids indicated that full bloom occurred around the 90th day of the year, while in the second year, it extended to the 110th day. The earlier bloom in 2018 was likely due to higher average temperatures in April of that year (Table 3). Legave et al. (2013) and Szabo et al. (2019) identified temperature requirements as the most critical factor influencing the onset of bloom. The delay in bloom during the second year also affected harvest time, which occurred on average 15 days later (238th day) than in the first year (223rd day). Additionally, the shorter duration from full bloom to harvest in 2018 (129 days) compared to 2019 (135 days) highlights the role of warmer temperatures in accelerating development, whereas cooler conditions prolonged it (El Yaacoubi et al., 2014).

The performances of hybridization combinations for the evaluated phenological traits obtained from 37 hybridizations are presented in Table 4. For full bloom, combinations ranged between the 88th day (Akça × Taş) and the 112th day (Maggness × Moonglow) of the year, while harvest dates occurred between the 194th day (Akça × Taş) and the 246th day (Williams × Conference). Regarding the duration from full bloom to harvest, the hybrid combinations exhibited a distribution between 99.86 days (Santa Maria × Akça) and 144.82 days (Williams × Conference).

In regions where early-season cultivation is emphasized, genotypes that complete their development quickly gain importance. In this context, among the hybridizations the Akça used, especially the 'Santa Maria \times Akça' (99.86 days) stands out prominently. Conversely, genotypes that bloom after late spring frosts and do not require a very high accumulated temperature are needed in areas with high altitudes and a predominant continental climate. Within the study material, the 'Williams \times Conference' combination, which blooms after the 100th day of the year and has a harvest time exceeding 140 days from full bloom, appears promising for such conditions.

Matorna	E1	Il Bloom	s anu i	Jiccuii	ig valu	Horvest		n i nen	ological	NDRU			
1			M	М.	CV	Manuel	M	M.	CV	Marris	м:	Ma	CV
1	IN	Mean±S.D	NI1	Ma	C.v	Mean±S.D	IVI1	ма	C.v	Mean±S.D	MI	Ma	C.v
			n	X	(%)		n	X	(%)		n	X	(%)
William	9	(0.25)98.06	79.	118	10.6	(5.66)229.93	187	271	8.96	(5.30)132.9	84.	184	14.5
S	3	^B ±10.45	00	.00	6	^B ±20.61	.00	.00		1 ^B ±19.33	00	.00	5
	2												
Maggne	4	(1.64)99.79	82.	118	11.0	(7.73)230.99	182	273	6.76	(6.23)132.4	74.	221	12.3
SS	8	A±11.01	00	.00	4	^B ±15.61	.00	.00		6 ^B ±16.41	00	.00	9
	2												
Akca	4	(-	84.	118	11.6	(-	179	245	7.74	(-	83.	137	12.4
3	2	0 09)96 60 ^C	00	00	5	22.02)204.88	00	00		21 94)109 2	00	00	2
	-	+11.26	00	.00	5	D+15.85	.00	.00		9 ^D +13 57	00	.00	-
SantaM	3	(-	82	118	10.8	(-	170	266	8 60	(-	75	157	14.4
orio	1	$(-12)08 13^{B}$	02.	00	10.0	(- 5 55)220 22 ^C	00	200	0.00	(-	00	00	7
alla	4	10.62	00	.00	4	12 05	.00	.00		(5.52) (125.22)	00	.00	/
17. 66	0	±10.05	00	110	10.4	± 10.93	104	250	475	$^{-\pm 1}/.03$	07	1.0	0.26
Kieffer	2	(-	82.	118	10.4	(14.18)236.1	184	258	4.75	(15.93)143.	97.	169	8.30
	4	1.69)93.39	00	.00	8	1 ^A ±11.21	.00	.00		69 ^A ±12.02	00	.00	
	7	±9.79											
Pollinat	Ν	Mean±S.D	Mi	Ma	C.V	Mean±S.D	Mi	Ma	C.V	Mean±S.D	Mi	Ma	C.V
or			n	х	(%)		n	х	(%)		n	х	(%)
Akça	3	(0.22)101.1	79.	118	10.7	(-	179	259	7.88	(-	74.	221	14.0
3	9	9 ^A ±10.86	00	.00	4	21.07)211.32	.00	.00		21.07)111.3	00	.00	8
	9					^F +16.64				$8^{E}+15.68$			
William	1	(1 51)97 40	86	116	10.6	(652)22391	190	253	6 14	(5.02)127.5	100	157	986
s annun	1	$C_{\pm 10.40}$	00.	00	7	$DCE_{\pm 13,76}$	00	00	0.14	$1^{DC}+1258$	00	00	2.00
3	2	±10.40	00	.00	/	15.70	.00	.00		1 ±12.36	.00	.00	
V:-ff	3	(07	117	11.0	(7.09)225.22	107	071	0.10	(7.09)120.1	00	104	12.0
Kieffer	1	(-	82.	117	11.2	(7.08)235.35 B: 10.29	18/	2/1	8.19	(7.98)139.1 0B 17.96	90.	184	12.8
	2	0.93)97.23	00	.00	1	¹ ±19.28	.00	.00		$0^{5}\pm17.86$	00	.00	4
~	4	±10.90											
SantaM	4	(0.77)96.29	82.	118	11.3	(-	179	262	6.18	(-	91.	169	10.5
aria	2	DE±10.96	00	.00	8	0.57)233.64 ^в	.00	.00		1.47)138.35	00	.00	0
	9					±14.43				^{BA} ±14.52			
Confere	7	(-	82.	115	10.7	(2.96)224.54	187	269	8.45	(3.71)130.0	83.	162	13.2
nce	0	0.78)95.51 ^E	00	.00	2	DC±18.97	.00	.00		3 ^C ±17.20	00	.00	3
		±10.24											
Kaiser	9	(2.09)98.57	85.	118	9.64	(2.83)227.53	187	266	8.62	(0.74)129.9	91.	156	13.2
	1	B+9.50	00	.00		è+19.61	.00	.00		$6^{C}+17.19$	00	.00	3
Ankara	5	(-	82	117	10.5	$(7\ 21)239\ 09$	184	271	635	(954)1427	91	175	8 91
1 11111111	5	2 32)97 35 ^C	00	00	3	A+15 18	00	00	0.00	5 ^A +12 72	00	00	0.71
	3	± 10.25	00	.00	5	±15.10	.00	.00		5 ±12.72	00	.00	
Maanal	2	± 10.23	01	112	0.02	(101	262	5 70	(100	155	0 74
Moongi	5	(0.38)90.97	04. 00	115	9.92	(-	191	202	5.72	(-	100	155	0.24
ow	0	5°±9.62	00	.00		5.82)220.59 ⁵	.00	.00		4.37)124.42 D. 10.25	.00	.00	
D		(0.05)06.05	0.6	110	0.47	² ±12.61	105	252	0.00	^D ±10.25	0.0	150	160
Bursa	4	(0.35)96.97	86.	113	9.67	(-	187	252	8.39	(-	83.	158	16.3
	0	^{DC} ±9.37	00	.00		$2.51)219.68^{E}$.00	.00		2.83)123.70	00	.00	1
						± 18.43				$^{D}\pm20.17$			
Taş	1	(-	83.	118	11.2	(-	191	273	8.36	(-	97.	164	11.8
	4	1.30)97.18 ^D	00	.00	0	2.44)226.43 ^C	.00	.00		1.16)130.26	00	.00	0
	3	^C ±10.88				±18.92				^C ±15.38			
Limon	2	(-	87.	116	11.4	(3.82)234.70	215	245	4.02	(3.91)136.3	117	154	7.99
	3	0.19)99.30 ^B	00	.00	9	^B ±9.43	.00	.00		9 ^B ±10.90	.00	.00	
		±11.41				-							
Veare	N	Mean+S D	Mi	Ma	CV	Mean+S D	м	Ma	CV	Mean+9 D	м	Ma	CV
10015	TA	incan_0.D	n 1911	v	(0/2)	mean_0.D	n	v	(%)	wican-5.D	n	v	(0/2)
2010			11 04	л 110	(70)		100	л 072	(70)		11 74	л 164	(70)
2019		110.004	70. 00	110	3.11	227 20A	102	213	1.91	124 254	/4.	104	13.4
2019		110.00.1	00	.00	2.22	231.39.	.00	.00	7.50	154.55**	00	.00	J 10.0
2018		oo oo ^p	/9.	99.	3.32	222 50 ^D	1/9	2/1	1.52	100 20 ^P	86.	221	12.9
		89.23°	-00	00		222.59₽	.00	.00		128.39 ^b	00	.00	0

Table 3. Descriptive Statistics and Breeding Values of Parent Varieties for Phenological Traits

N: Number of plants, NDBH: Number of days from full bloom to harvest, C.V: Coefficient of variation

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ful	l Bloom				Harvest				NDBH			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ν	Mean±S.	Mi	Ma C.V Mean±S Mi Ma					C.V	Ma C.V			
$\begin{aligned} \begin{aligned} & \Lambda_{\rm ca} = N^{-1} \\ & \Lambda_{\rm ca} = N^{$			D	n	х	(%)	.D	n	Х	(%)	.D	n	Х	(%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Akça×Willia	7	95.14 ^{J-}	88.	114	11.5	208.57 ^{J-}	194	224	11.4	114.43 ^{G-}	104	137	11.
$\begin{aligned} & Akga \times Start a \\ & Start$	ms		^o ±11.02	00	.00	8	^N ±4.34	.00	.00	7	^J ±4.51	.00	.00	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Akça×Kieffer	5	93.60 ^{L-}	84.	111	10.9	203.40 ^{L-}	199	214	6.43	110.80 ^{H-}	90.	122	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			^o ±10.29	00	.00	9	^N ±2.87	.00	.00		^J ±5.49	00	.00	8
	Akça×Santa	1	95.77 ^{F-}	85.	115	11.6	201.08 ^{K-}	179	245	20.7	106.31 ^{IJ}	91.	131	13
Akça×Confere I 9(736) 8(6, 115 12.1 205.096) 187 232 12.2 109.4611 8(1) 3, 130 16 10 16 16 16 16 16 16 16 16 16 16 16 16 16	Maria	3	^к ±11.15	00	.00	4	^N ±5.76	.00	.00	6	± 3.65	00	.00	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Akça×Confere	1	96.73 ^{G-}	86.	115	12.1	205.09 ^{K-}	187	232	12.2	109.36 ^{IJ}	83.	130	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nce	1	^L ±11.73	00	.00	3	^N ±3.71	.00	.00	9	± 4.98	00	.00	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Akça×Kaiser	5	$105.20^{B}\pm$	90.	118	12.2	212.80 ^{H-}	188	245	22.0	108.60^{IJ}	99.	136	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12.87	00	.00	4	^M ±9.84	.00	.00	0	±6.93	00	.00	0
	Akça ×Taş	1	$88.00^{P} \pm *$	88.	88.	*	194.00 ^N	194	194	*	107.00^{IJ}	107	107	*
	, ,			00	00		\pm^*	.00	.00		$\pm \times$.00	.00	
a $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Williams×Akc	2	101.29 ^{DC}	79.	117	10.9	210.38 ^{I-}	187	259	15.5	110.09 ^{IJ}	84.	146	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a ,	4	± 11.04	00	.00	0	^M ±0.99	.00	.00	4	± 0.84	00	.00	4
		5												
figr model and the set of the se	Williams×Kie	7	94.92 ^{J-}	84.	113	10.5	236.82 ^{A-}	187	271	19.9	142.91 ^B	98.	184	17
	ffer	4	$^{0}\pm 10.05$	00	.00	9	$F_{\pm 2.32}$.00	.00	2	A±2.00	00	.00	7
	Williams×	3	99 03 ^{C-}	84	113	10.4	229 23 ^{B-}	200	262	15.9	131 19 ^{A-}	110	155	13
	Santa Maria	1	^I +10 37	00	00	7	G_{+2} 87	00	00	9	F+251	00	00	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Williams×	1	101.88^{C} +	88	115	10.4	245 71A	217	269	16.4	144.82^{A}	108	162	12
	Conference	7	101.00 ± 10.64	00.	00	10.4 4	+4.00	00	20)	9	+3.14	00	00	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Williams×	4	99.02 ^{C-}	89	116	9.60	232 02 ^{A-}	199	266	163	134.00^{A-}	102	155	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Kaiser	6	^I +9 51	00	00	2.00	$G_{\pm 2}$ 41	00	00	3	E+1 99	00	00	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WilliamsX	1	97.02F-	83	113	10.2	240.27^{B}	102	271	157	144 24A	01	175	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ankoro	1	57.02 K⊥0.80	00	00	0	A+0.77	00	271	2	+0.58	00	00	5
	AllKala	6	19.89	00	.00	0	±0.77	.00	.00	2	10.58	00	.00	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WilliamexMo	1	03 82K-	84	112	8 24	220 88E-	100	266	12.6	128 06A-	116	155	00
	onglow	7	95.82 0±7.72	04.	00	0.24	220.88 J⊥2.06	00	200	2	$G_{\pm 2} 15$	00	00	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	William WDar	1	$-\pm/./5$	00	.00	0.00	227.02	.00	.00	12.2	$^{-\pm}2.13$.00	.00	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	williams^bur	1	95.85	89. 00	115	9.00	237.92 ¹² D+2.52	213	232	12.2	145.08 ⁻	00	138	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sa William NT-	2	$^{\circ}\pm 9.20$	00	.00	10.4	$^{2}\pm 3.33$.00	.00	2	$121 22^{A-1}$.00	.00	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	w illiams× Iaş	/	95.26	85.	118	10.4	225.49	191	257	19.6	131.23 ⁴⁴	106	158	14
	W/11'	0	$^{\circ}\pm10.43$	00	.00	5 10.2	$^{-\pm}2.54$.00	.00	1	$\frac{1}{\pm 1.70}$.00	.00	0
on 5.20 00 .00 $9^{-6\pm7.78}$.00 .00 $6^{-2\pm2.84}$.00 .00 $8^{-2\pm2.84}$.00 .00 $8^{-2\pm2.84}$.00 .00 $8^{-2\pm2.84}$.00 .00 $1^{-2\pm2.84}$.10 .157 .12 .00 .00 .00 $1^{-2\pm1.30}$.00 .00 $6^{-2\pm1.19}$.00 .00 $4^{-2\pm3.03}$.00 .00 $4^{-2\pm3.03}$.00 .00 $4^{-2\pm3.03}$.00 .00 $4^{-2\pm3.03}$.00 .00 $4^{-2\pm3.19}$.112 11.5 227.73^{-18} .155 .128 .28^{-1} .102 .157 .155 .128 .28^{-1} .102 .157 .155 .128 .28^{-1} .102 .157 .155 .00 .00 .00 $4^{-2\pm1.99}$.112 .11.5 227.73^{-1} .195 .266 .18.6 .133.67^{-1} .102 .157 .155 .00 .00 .00 $4^{-2\pm3.03}$.00 .00 $4^{-2\pm3.03}$.00 .00 $4^{-2\pm3.19}$.00 .00 $4^{-2\pm2.55}$.00 .00 $5^{-2\pm2.93}$.00 .00 $4^{-2\pm2.55}$.00 .00 $5^{-2\pm2.93}$.00 .00 $4^{-2\pm2.55}$.00 .00 .00 $5^{-2\pm2.93}$.00 .00 $5^{-2\pm$	Williams×Lim	4	96.00 ^m ±	87.	105	10.3	231.754	215	245	15.5	136./54	129	141	5.0
Kieffer×Santa 2 93.41 ^{-D} 82. 118 10.4 236.11 ^{-A} 184 258 11.2 143.69 ^A 97. 169 12 Maria 4 ${}^{0}\pm 9.79$ 00 .00 8 ${}^{E}\pm 0.71$.00 .00 1 ${}^{\pm}0.77$ 00 .00 2 Santa 4 100.52 ^{C-} 84. 118 10.9 199.39 ^{M-} 179 228 14.2 99.86 ¹ ${}^{\pm}2$ 75. 134 13 Maria×Akça 4 ${}^{E}\pm 11.03$ 00 .00 7 ${}^{N}\pm 2.14$.00 .00 2 .03 00 .00 4 Santa 1 97.59 ^{F-} 86. 116 10.6 224.83 ^{B-} 190 253 13.3 128.24 ^{A-} 100 157 12 Maria×Willia 0 ${}^{1}\pm 10.43$ 00 .00 9 ${}^{1}\pm 1.30$.00 .00 6 ${}^{G}\pm 1.19$.00 .00 6 ms 5 Santa 3 101.58 ^{DC} 85. 113 10.8 229.52 ^{A-} 187 262 22.2 128.94 ^{A-} 94. 155 19 Maria×Kieffer 1 ${}^{\pm}10.98$ 00 .00 1 ${}^{G}\pm 3.99$.00 .00 4 ${}^{G}\pm 3.03$ 00 .00 6 SantaMaria×C 2 92.56 ^O \pm 9 82. 110 10.5 219.84 ^E 194 262 15.5 128.28 ^{A,} 97. 153 15 onference 5 .77 00 .00 5 ${}^{K}\pm 3.11$.00 .00 4 ${}^{G}\pm 3.03$ 00 .00 6 Santa 3 97.60 ^{F-} 85. 116 9.71 223.03 ^{C-} 187 263 23.7 126.43 ^{B-} 91. 156 20 Maria×Kiefer 0 ${}^{1}\pm 9.79$ 00 .00 6 ${}^{1}\pm 3.30$.00 .00 4 ${}^{1}\pm 3.70$ 00 .00 6 Santa 3 97.60 ^{F-} 85. 116 9.71 223.03 ^{C-} 187 263 23.7 126.43 ^{B-} 91. 156 20 Maria×Kier 0 ${}^{1}\pm 9.7^{-1}$ 82. 112 11.5 227.73 ^{B-} 195 266 18.6 133.67 ^{A-} 102 157 15 Ankara 0 ${}^{0}\pm 10.99$ 00 .00 6 ${}^{H}\pm 3.40$.00 .00 2 ${}^{E}\pm 2.87$.00 .00 4 Santa 1 99.11 ^{C-} 87. 113 10.3 219.28 ^{F-} 191 237 12.9 121.17 ^{D-} 100 145 10 Maria×Mong 8 ${}^{1}\pm 10.30$ 00 .00 ${}^{K}\pm 3.05$.00 .00 6 ${}^{1}\pm 2.55$.00 .00 2 low Santa 2 97.46 ^{F-} 86. 112 9.57 211.86 ^{H-} 187 231 14.7 115.39 ^{F-} 83. 141 16 Maria×Taş 3 ${}^{1}\pm 1.81$ 00 .00 ${}^{1}\pm 3.39$.00 .00 8 ${}^{1}\pm 3.09$ 00 .00 7 Santa 4 100.21 ^{C-} 83. 115 11.1 222.00 ^{D-} 191 253 19.4 122.79 ^{C-} 97. 149 14 Maria×Taş 3 ${}^{1}\pm 1.81$ 00 .00 ${}^{1}\pm 3.39$.00 .00 9 ${}^{1}\pm 2.50$ 00 .00 7 Santa 4 101.75 ^C L 89. 116 12.4 238.75 ^{A-} 232 245 5.85 138.00 ^{A-} 121 154 13 Maria×Limon 6.22 00 .00 5 ${}^{1}\pm 3.39$.00 .00 ${}^{1}\pm 1.72$ 00 .00 5 ${}^{2}\pm 2.93$.00 .00 ${}^{1}\pm 1.72$.00 .00 5 ${}^{2}\pm 2.93$.00 .00 ${}^{1}\pm 1.72$.00 .00 5	on	•	5.20	00	.00	9	$^{0}\pm/./8$.00	.00	6	^D ±2.84	.00	.00	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Kieffer×Santa	2	93.41	82.	118	10.4	236.11 ^{A-}	184	258	11.2	143.69 ^A	97.	169	12
Santa 4 100.52 ^{C-} 84. 118 10.9 199.39 ^{M-} 179 228 14.2 99.86 ¹ ± 2 75. 134 13 Maria×Akça 4 ^E ± 11.03 00 .00 7 ^N ± 2.14 .00 .00 2 .03 00 .00 4 Santa 1 97.59 ^{F-} 86. 116 10.6 224.83 ^{B-} 190 253 13.3 128.24 ^{A-} 100 157 12 Maria×Willia 0 ¹ ± 10.43 00 .00 9 ¹ ± 1.30 .00 .00 6 ^G ± 1.19 .00 .00 6 ms 5 Santa 3 101.58 ^{DC} 85. 113 10.8 229.52 ^{A-} 187 262 22.2 128.94 ^{A-} 94. 155 19 Maria×Kieffer 1 ± 10.98 00 .00 1 ^G ± 3.99 .00 .00 4 ^G ± 3.53 00 .00 6 SantaMaria×C 2 92.56 ^Δ ± 9 82. 110 10.5 219.84 ^{E-} 194 262 15.5 128.28 ^{A-} 97. 153 15 onference 5 .77 00 .00 5 ^K ± 3.11 .00 .00 4 ^G ± 3.03 00 .00 6 Santa 3 97.60 ^{F-} 85. 116 9.71 223.03 ^{C-} 187 263 23.7 126.43 ^{B-} 91. 156 20 Maria×Kaiser 0 ¹ ± 9.47 00 .00 ¹ ± 4.33 .00 .00 4 ^H ± 3.70 00 .00 6 Santa Maria × 3 95.07 ¹⁻ 82. 112 11.5 227.73 ^{B-} 195 266 18.6 133.67 ^{A-} 102 157 15 Ankara 0 ⁰ ± 10.99 00 .00 6 ^H ± 3.40 .00 .00 2 ^E ± 2.87 .00 .00 4 Santa 1 99.11 ^{C-} 87. 113 10.3 219.28 ^{F-} 191 237 12.9 121.17 ^{D-} 100 145 10 Maria×Kaiser 8 ¹ ± 10.30 00 .00 9 ^K ± 3.05 .00 .00 6 ^H ± 2.55 .00 .00 2 low Santa 3 100.21 ^{C-} 83. 115 11.1 222.00 ^{D-} 191 237 12.9 121.17 ^{D-} 100 145 10 Maria×Taş 3 ^F ± 1.94 00 .00 ^S ^L ± 3.39 .00 .00 9 ^L ± 2.55 .00 .00 2 low Santa 4 101.75 ^C \pm 89. 116 12.4 238.75 ^{A-} 232 245 5.85 138.00 ^{A-} 121 154 13 Maria×Limon 6.22 00 .00 5 ^L ± 3.39 .00 .00 9 ^L ± 2.50 00 .00 9 Maggness×Ak 1 101.22 ^{DC} 87. 117 10.3 218.18 ^{G-} 182 248 16.8 118.88 ^{E-} 74. 221 18 c _a 1 ± 10.48 00 .00 6 ^L ± 1.61 .00 .00 6 ^L ± 1.72 00 .00 5	Maria	4	⁰ ±9.79	00	.00	8	± 0.71	.00	.00	I	± 0.77	00	.00	2
Santa 4 100.52 ^{C-} 84. 118 10.9 199.39 ^{A-F} 179 228 14.2 99.86 [±] 2 75. 134 13 Maria×Akça 4 $E_{\pm}11.03$ 00 .00 7 $E_{\pm}2.14$.00 .00 2 .03 00 .00 4 Santa 1 97.59 ^{F-} 86. 116 10.6 224.83 ^{B-} 190 253 13.3 128.24 ^{A-} 100 157 12 Maria×Willia 0 $E_{\pm}10.43$ 00 .00 9 $E_{\pm}1.30$.00 .00 6 $E_{\pm}1.19$.00 .00 6 ms 5 Santa 3 101.58 ^{DC} 85. 113 10.8 229.52 ^{A-} 187 262 22.2 128.94 ^{A-} 94. 155 19 Maria×Kieffer 1 ± 10.98 00 .00 1 $E_{\pm}3.99$ 00 .00 4 $E_{\pm}3.53$ 00 .00 6 SantaMaria×C 2 92.56 ^{O±} 9 82. 110 10.5 219.84 ^{E-} 194 262 15.5 128.28 ^{A-} 97. 153 15 onference 5 .77 00 .00 5 $E_{\pm}3.11$.00 .00 4 $E_{\pm}3.03$ 00 .00 6 Santa 3 97.60 ^{F-} 85. 116 9.71 223.03 ^{C-} 187 263 23.7 126.43 ^{B-} 91. 156 20 Maria×Kaiser 0 $E_{\pm}9.47$ 00 .00 $E_{\pm}2.773^{B-}$ 195 266 18.6 133.67 ^{A-} 102 157 15 Ankara 0 $O_{\pm}10.99$ 00 .00 6 $E_{\pm}3.09$.00 .00 4 $E_{\pm}2.87$.00 .00 4 Santa 1 99.11 ^{C-} 87. 113 10.3 219.28 ^{F-} 191 237 12.9 121.17 ^{D-} 100 145 10 Maria×Moong 8 $E_{\pm}10.30$ 00 .00 9 $E_{\pm}3.05$.00 .00 6 $E_{\pm}2.55$.00 .00 2 low Santa 2 97.46 ^{F-} 86. 112 9.57 211.86 ^{H-} 187 231 14.7 115.39 ^{F-} 83. 141 16 Maria×Taş 3 $E_{\pm}1.81$ 00 .00 $E_{\pm}2.339$.00 .00 8 $E_{\pm}2.55$.00 .00 7 Santa 4 101.75 ^{C±} 89. 116 12.4 238.75 ^{A-} 232 245 5.85 138.00 ^{A-} 121 154 13 Maria×Limon 6.22 00 .00 5 $E_{\pm}2.93$.00 .00 9 $E_{\pm}2.55$.00 .00 9 Maggness×Ak 1 101.22 ^{DC} 87. 117 10.3 218.18 ^{G-} 182 248 16.8 118.88 ^{E-} 74. 221 18 q ₄ ±10.48 00 .00 6 $E_{\pm}1.61$.00 .00 6 $E_{\pm}1.72$.00 .00 9 Maggness×Ak 1 101.22 ^{DC} 87. 117 10.3 218.18 ^{G-} 182 248 16.8 118.88 ^{E-} 74. 221 18 q ₄ ±10.48 00 .00 6 $E_{\pm}1.61$.00 .00 6 $E_{\pm}1.61$.00 .00 6 $E_{\pm}1.72$.00 .00 9		1	100 500			10.0	100.001							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa	4	100.52	84.	118	10.9	199.39 ^{M-}	179	228	14.2	99.86 ³ ±2	75.	134	13.
Santa 1 97.59 ^F 86. 116 10.6 224.83 ^{B-} 190 253 13.3 128.24 ^{A-} 100 157 12 Maria×Willia 0 ¹ ±10.43 00 .00 9 ¹ ±1.30 .00 .00 6 ^G ±1.19 .00 .00 6 ms 5 Santa 3 101.58 ^{DC} 85. 113 10.8 229.52 ^{A-} 187 262 22.2 128.94 ^{A-} 94. 155 19 Maria×Kieffer 1 ±10.98 00 .00 1 ^G ±3.99 .00 .00 4 ^G ±3.53 00 .00 6 SantaMaria×C 2 92.56 ^O ±9 82. 110 10.5 219.84 ^{E-} 194 262 15.5 128.28 ^{A-} 97. 153 15 onference 5 .77 00 .00 5 ^K ±3.11 .00 .00 4 ^G ±3.03 00 .00 6 Santa 3 97.60 ^{F-} 85. 116 9.71 223.03 ^{C-} 187 263 23.7 126.43 ^{B-} 91. 156 20 Maria×Kaiser 0 ¹ ±9.47 00 .00 ⁻¹ ±4.33 .00 .00 4 ^H ±3.70 00 .00 6 Santa Maria × 3 95.07 ^{J-} 82. 112 11.5 227.73 ^{B-} 195 266 18.6 133.67 ^{A-} 102 157 15 Ankara 0 ^O ±10.99 00 .00 6 ^H ±3.40 .00 .00 2 ^E ±2.87 .00 .00 4 Santa 1 99.11 ^{C-} 87. 113 10.3 219.28 ^{F-} 191 237 12.9 121.17 ^{D-} 100 145 10 Maria×Moong 8 ¹ ±10.30 00 .00 9 ^K ±3.05 .00 .00 6 ¹ ±2.55 .00 .00 2 low Santa 3 100.21 ^{C-} 83. 115 11.1 222.00 ^{D-} 191 253 19.4 122.79 ^{C-} 97. 149 14 Maria×Taş 3 ^F ±1.94 00 .00 5 ¹ ±3.39 .00 .00 9 ¹ ±2.50 00 .00 5 Santa 4 101.75 ^C ± 89. 116 12.4 238.75 ^{A-} 232 245 5.85 138.00 ^{A-} 121 154 13 Maria×Limon 6.22 00 .00 5 ¹ ±3.39 .00 .00 6 ¹ ±1.72 00 .00 9 Maggness×Ak 1 101.22 ^{DC} 87. 117 10.3 218.18 ^{G-} 182 248 16.8 118.88 ^{E-} 74. 221 18 c ₀	Maria×Akça	4	$E \pm 11.03$	00	.00	7	^N ±2.14	.00	.00	2	.03	00	.00	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa	1	97.59 ^{F-}	86.	116	10.6	224.83 ^{в-}	190	253	13.3	128.24 ^{A-}	100	157	12.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Willia	0	^J ±10.43	00	.00	9	¹ ±1.30	.00	.00	6	^G ±1.19	.00	.00	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ms	5	D.C.											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa	3	101.58 ^{DC}	85.	113	10.8	229.52 ^{A-}	187	262	22.2	128.94 ^{A-}	94.	155	19.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Kieffer	1	± 10.98	00	.00	1	^G ±3.99	.00	.00	4	^G ±3.53	00	.00	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SantaMaria×C	2	$92.56^{\circ}\pm9$	82.	110	10.5	219.84 ^{E-}	194	262	15.5	128.28 ^{A-}	97.	153	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	onference	5	.77	00	.00	5	^K ±3.11	.00	.00	4	^G ±3.03	00	.00	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa	3	97.60 ^{F-}	85.	116	9.71	223.03 ^{C-}	187	263	23.7	126.43 ^{B-}	91.	156	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Kaiser	0	^J ±9.47	00	.00		^J ±4.33	.00	.00	4	^H ±3.70	00	.00	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa Maria ×	3	95.07 ^{J-}	82.	112	11.5	227.73 ^{B-}	195	266	18.6	133.67 ^{A-}	102	157	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ankara	0	^o ±10.99	00	.00	6	^H ±3.40	.00	.00	2	E±2.87	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Santa	1	99.11 ^{C-}	87.	113	10.3	219.28 ^{F-}	191	237	12.9	121.17 ^{D-}	100	145	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Moong	8	^I ±10.30	00	.00	9	^K ±3.05	.00	.00	6	^I ±2.55	.00	.00	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	low													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa	2	97.46 ^{F-}	86.	112	9.57	211.86 ^{H-}	187	231	14.7	115.39 ^{F-}	83.	141	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Bursa	8	^J ±1.81	00	.00		^M ±2.79	.00	.00	8	^J ±3.09	00	.00	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa	3	100.21 ^{C-}	83.	115	11.1	222.00 ^{D-}	191	253	19.4	122.79 ^{c-}	97.	149	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Tas	3	^F ±1.94	00	.00	5	^I ±3.39	.00	.00	9	^I ±2.50	00	.00	5
Maria×Limon 6.22 00 .00 5 $c_{\pm 2.93}$.00 .00 $c_{\pm 6.75}$.00 .00 9 Magness×Ak 1 101.22 ^{DC} 87. 117 10.3 218.18 ^{G-} 182 248 16.8 118.88 ^{E-} 74. 221 18 ça 1 ± 10.48 00 .00 6 $L_{\pm 1.61}$.00 .00 6 $L_{\pm 1.72}$ 00 .00 5	Santa	4	101.75° +	89	116	12.4	238.75 ^{A-}	232	245	5.85	138.00 ^{A-}	121	154	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maria×Limon	r	6 22	00	00	5	C+2 93	00	00	5.05	$C_{+6.75}$	00	00	9
c_{a} 1 ±10.48 00 .00 6 ^L ±1.61 .00 .00 6 ^L ±1.72 00 .00 5	Maggness×Δŀ	1	101 22 ^{DC}	87	117	10.3	218 18 ^{G-}	182	248	16.8	118 88 ^{E-}	.00 74	221	18
y_{a} 1 ±10.70 00 .00 0 ±1.01 .00 0 0 ±1.72 00 .00 J		1	+10.49	00	00	6	L+1 61	00	00	6	I+1 77	00	00	5
	<i>yu</i>	0	-10.70	00	.00	0	-1.01	.00	.00	0	-1./2	00	.00	5

unce of Hybrid Combinations for Phanological Trait

Maggness× Williams Maggness× Kieffer Maggness× Santa Maria	1 4 4 1 3 8	$\begin{array}{c} 93.00^{\text{M-}} \\ o_{\pm *} \\ 98.45^{\text{C-}} \\ {}^{\text{L}}\pm 11.45 \\ 100.88^{\text{C-}} \\ {}^{\text{E}}\pm 11.43 \end{array}$	93. 00 82. 00 86. 00	93. 00 117 .00 118 .00	* 11.6 3 11.3 3	$\begin{array}{c} 235.00^{A-} \\ {}^{F_{\pm}*} \\ 240.55^{B} \\ {}^{A_{\pm}} 1.69 \\ 233.29^{A-} \\ {}^{G_{\pm}} 1.25 \end{array}$	235 .00 220 .00 196 .00	235 .00 258 .00 261 .00	* 11.2 1 14.6 6	$\begin{array}{c} 143.00^{B} \\ {}^{A_{\pm \times}} \\ 143.09^{B} \\ {}^{A_{\pm}1.79} \\ 133.41^{A_{-}} \\ {}^{E_{\pm}1.07} \end{array}$	143 .00 105 .00 99. 00	143 .00 170 .00 168 .00	* 11.9 0 12.5 2
Maggness× Conference Maggness× Kaiser Maggness× Ankara	1 7 1 0 1 0 7	$\begin{array}{l} 92.71^{\rm NO\pm} \\ 6.60 \\ 96.10^{\rm HM\pm} \\ 7.20 \\ 99.24^{\rm C-} \\ {}^{\rm H}\pm11.19 \end{array}$	87. 00 89. 00 85. 00	110 .00 115 .00 117 .00	7.12 7.49 11.2 7	$\begin{array}{c} 222.88^{\text{C}\text{-}}\\ {}^{\text{J}}\pm1.72\\ 227.70^{\text{B}\text{-}}\\ {}^{\text{H}}\pm4.36\\ 237.72^{\text{A}\text{-}}\\ {}^{\text{D}}\pm0.93 \end{array}$	210 .00 195 .00 184 .00	241 .00 241 .00 262 .00	7.08 13.7 8 9.64	$\begin{array}{c} 131.18^{\text{A-}}\\ {}^{\text{F}}\pm 1.87\\ 132.60^{\text{A-}}\\ {}^{\text{E}}\pm 4.84\\ 139.48^{\text{A-}}\\ {}^{\text{C}}\pm 1.34\end{array}$	118 .00 103 .00 93. 00	149 .00 153 .00 174 .00	7.72 15.3 1 13.8 5
Maggness× Moonglow	1	112.00 ^A ± *	112 .00	112 .00	*	232.00 ^{A-} _{G±*}	232 .00	232 .00	*	$^{121.00^{D-1}}_{I_{\pm \times}}$	121 .00	121 .00	*
Maggness×	3	98.28 ^{D-}	86.	113	11.0	232.72 ^{A-}	202	273	15.2	135.44 ^{A-}	101	164	15.8
Taş	9	^J ±1.76	00	.00	2	^G ±2.44	.00	.00	6	^D ±2.54	.00	.00	8
Maggness×	1	99.53 ^{c-}	88.	116	11.9	234.40 ^{A-}	218	245	8.56	135.87 ^{A-}	117	152	11.8
Limon	5	^G ±3.09	00	.00	8	^G ±2.21	.00	.00		^D ±3.05	.00	.00	2

N: Number of plants, NDBH: Number of days from full bloom to harvest, C.V: Coefficient of variation

CONCLUSIONS AND RECOMMENDATIONS

All examined traits exhibited polygenic inheritance. High heritability levels were observed for phenological traits, moderate for morphological traits, and low for pomological and chemical traits. The heritability of full bloom time (31%) was found to be significantly lower than that of harvest time (83%) and the duration from full bloom to harvest (86%). With global climate change, the duration and severity of late spring frosts have increased in recent years, making the selection of genotypes suited to specific regions more critical. Therefore, late-blooming genotypes, as well as early or late-maturing genotypes, will undoubtedly gain importance. For late blooming, the parent variety 'Maggness' and the pollinator variety 'Akça' are recommended for breeding programs.

One of the most striking results of the study is the demonstrated importance of gene interactions between parents due to their specific combining abilities. Among the study material, the 'Williams×Conference' hybrids, which bloom after the 100th day of the year and complete their development in approximately 150 days, showed promise for breeding late-blooming, late-maturing genotypes. Similarly, the 'Santa Maria×Akça' combination, which blooms late but requires less than 100 days from full bloom to harvest, was found highly promising for the development of late-blooming, early-maturing genotypes.

Compliance with Ethical Standards

Peer-review

Externally peer-reviewed.

Declaration of Interests

The authors do not have a conflict of interest to declare.

Author contribution

All authors have contributed equally to the article.

Ethics committee approval

This article does not contain any studies with human participants or animals by any of the authors.

Funding

The projects in which the study materials were obtained and inoculated were supported by TUBITAK (TOVAG 1060719 and TOVAG 1100938).

Acknowledgments

This study is a part of the PhD thesis of the first author.

REFERENCES

Bilgin, N.A., Evrenosoğlu, Y., Mısırlı, A. Remzi, K. (2020). Analysis of fruit properties of 'Hacıhaliloğlu' x 'Boccucia' hybrid population. *Erwerbs-Obstbau*, 62(2), 231-239.

- El Yaacoubi, A., Malagi, G., Oukabli, A., Hafidi, M. & Legave, J.M. (2014). Global warming impact on floral phenology of fruit trees species in Mediterranean region. *Scientia horticulturae*, *180*, 243-253.
- Evrenosoğlu, Y. & Mertoğlu, K. (2018). Evaluation of pear (*Pyrus communis* L.) hybrid combinations for the transmission of fire blight resistance and fruit characteristics. *Czech Journal of Genetics and Plant Breeding*, 54(2), 78-85.
- Evrenosoğlu, Y. & Mertoğlu, K. (2020). Ön Seleksiyonla Seçilen F1 Armut Melezlerinin Fenolojik ve Fiziko-Kimyasal Özellikleri. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 30(2), 276-283.

- Evrenosoğlu, Y., Mertoğlu, K., Bilgin, N.A., Misirli, A. & Özsoy, A. N. (2019). Inheritance pattern of fire blight resistance in pear. *Scientia horticulturae*, 246, 887-892.
- Evrenosoğlu, Y., Mısırlı, A., Saygılı, H., Ünal, A., Özdemir, N., Günen, E. & Akçay, M.E. (2010). Ateş Yanıklığına (*Erwinia amylovora*) Dayanıklı Armut Tiplerinin Melezleme Yoluyla Islahı. TÜBİTAK- TOVAG 1060719 Sonuç Raporu.
- FAO (2022) Statistical database. https://www.fao.org/faostat/en/#data/QCL. Accessed 14 April, 2024.
- Gordana, S.T. (2019). The phenological and pomological traits of selected genotypes of wild pear [*Pyrus pyraster* (L.) Du Roi] important for the production of generative rootstocks. *Acta Scientiarum Polonorum. Hortorum Cultus*, 18(2), 133-145.
- Hajnajari, H., Kohneshine Leily, H. & Bakhshi, D. (2019). Selection of promising early ripening progenies and assessment of earliness heritability in the breeding program of apple. Agriculturae Conspectus Scientificus, 84(3), 245-256.
- Hwang, H.S., Byeon, J.K., Kim, W.C. & Shin, I.S. (2015). Inheritance of fruit ripening time in oriental pear (*Pyrus pyrifolia* var. culta Nakai). *Korean Journal of Horticultural Science and Technology*, 33(5), 712-721
- Karaat, F.E. & Serce, S. (2020). Heritability estimates and the variation of pomological traits, total phenolic compounds, and antioxidant capacity in two apricot progenies. *Turkish Journal of Agriculture and Forestry*, 44(1), 54-61.
- Karaçalı İ (2012). Bahçe Ürünlerinin Muhafazası ve Pazarlanması. İzmir, Turkey: Ege Üniversitesi Ziraat Fakültesi Yayınları.
- Kurnaz, O.C., Ozturk, A., Faizi, Z.A., Ates, U. & Ozturk, B. (2024). Pomological, bioactive compounds, and antioxidant activity of selected superior genotypes from a highly diversified loquat population. *Genetic Resources and Crop Evolution*, 71(4), 1507-1520.
- Legave, J. M., Blanke, M., Christen, D., Giovannini, D., Mathieu, V. & Oger, R. (2013). A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. *International Journal of Biometeorology*, 57(2), 317-331.
- Lyrene, P.M. (2018). Hybridization of cultivated highbush blueberry with *Vaccinium stamineum*: Phenotype and fertility of backcross1 populations. *HortScience*, *53*(2), 159-166.
- Liu, Z., Yang, S., Hao, L., Wang, H., Zhang, J., He, W. & Wang, X. (2024). Phenotypic characters and inheritance tendency of agronomic traits in F₁ progeny of chinese cherry. *Agronomy*, *14*(12), 2862.
- Mertoğlu, K. & Evrenosoğlu, Y. (2017). Ateş yanıklığı (*Erwinia amylovora*) hastalığına dayanıklılık ıslahında, hastalığa karşı testlenmiş F₁ melez armut popülasyonunun fenolojik ve meyve özellikleri. *Tekirdağ Ziraat Fakültesi Dergisi*, 14(3), 104-115.
- Nyadanu, D., Akromah, R., Adomako, B., Akrofi, A.Y., Dzahini-Obiatey, H., Lowor, S.T. & Larbi-Koranteng, S. (2017). Genetic control, combining ability and heritability of resistance to stem canker in cacao (*Theobroma cacao* L.). *Euphytica*, 213(12), 263.
- Osmanoğlu, A., Şimşek, M. & Şanlı, A. (2013). Bazı standart armut çeşitlerinin Bingöl ekolojisindeki performansı üzerinde bir araştırma. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 23(3), 222-228.
- Öz, M.H. & Aslantaş, R. (2015). Doğu Anadolu Bölgesi armut genotiplerinin morfolojik karakterizasyonu. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 46(2), 93-106.
- Öztürk, A. & Demirsoy, L. (2013). Promising pear genotypes from North Anatolia, Turkey: Preliminary observations. *Journal of the American Pomological Society*, 67(4), 217-227.
- Paranhos, J. G., Ishikawa, F. H., de Lima, M. A. C., & Lima Neto, F. P. (2022). Estimation of genetic parameters and prediction of breeding values for fruit-quality traits in hybrid mangoes. *International Journal of Fruit Science*, 22(1), 608-617.
- Piaskowski, J., Hardner, C., Cai, L., Zhao, Y., Iezzoni, A. & Peace, C. (2018). Genomic heritability estimates in sweet cherry reveal non-additive genetic variance is relevant for industry-prioritized traits. *BMC genetics*, 19(1), 1-16.
- Sanchez-Perez, R., Dicenta, F. & Martínez-Gómez, P. (2012). Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. *Tree Genetics & Genomes*, 8(2), 379-389.
- Sanchez-Perez, R., Ortega, E., Duval, H., Martínez-Gómez, P. & Dicenta, F. (2007). Inheritance and relationships of important agronomic traits in almond. *Euphytica*, 155(3), 381-391.
- Saridas, M. A., Simsek, O., Donmez, D., Kacar, Y. A., & Kargi, S. P. (2021). Genetic diversity and fruit characteristics of new superior hybrid strawberry (Fragaria× ananassa Duchesne ex Rozier) genotypes. *Genetic Resources and Crop Evolution*, 68(2), 741-758.
- Simionca Marcaşan, L. I., Pop, R., Somsai, P. A., Oltean, I., Popa, S., Sestras, A. F., ... & Sestras, R. E. (2023). Comparative evaluation of Pyrus species to identify possible resources of interest in pear breeding. *Agronomy*, 13(5), 1264.
- Szabo, T., Lakatos, L. T., Vaszily, B. & Lakatos, L. (2017). Climate change effects on apple and sour cherry phenology in a gene bank plantation of Hungary. *Aerul si Apa. Componente ale Mediului*, 251-258.

- Zeljkovic, M.K., Ivanovska, S. & Đurić, G. (2019). Phenological characteristics and global tree architecture of the pear germplasm from Bosnia and Herzegovina in ex situ conditions. *Journal of Agricultural, Food and Environmental Sciences, JAFES*, 73(1), 83-91.
- Zhen, Q., Fang, T., Peng, Q., Liao, L., Zhao, L., Owiti, A. & Han, Y. (2018). Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. *Horticulture Research*, 5(1), 14.