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Abstract: The objective of this paper is to determine the eigenvalue intervals for which positive solutions

are guaranteed for the iterative system of the 3rd -order impulsive boundary value problem. The existence of

solutions is established by applying the well-known Guo-Krasnosel’skii fixed point theorem. An illustrative

example is provided to demonstrate the applicability of the theoretical results.
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1. Introduction

Boundary value problems (BVPs) serve as fundamental tools for modeling complex phenomena

in physics, biology, and engineering. A specific subclass, impulsive boundary value problems (IB-

VPs), offers a robust framework for analyzing systems subject to sudden, discontinuous changes.

Foundational contributions by Lakshmikantham [12], Bainov [5] and Simeonov [4] established the

core theory of impulsive differential equations, extending to higher-order systems. Subsequently,

advanced mathematical techniques-such as fixed point theorems and variational methods-have been

employed to address more complex formulations [3, 12]. In addition to their theoretical strength,

IBVPs are widely applicable across various scientific and engineering domains. For instance, in

mechanical engineering, they are used to analyze structural vibrations under sudden loads, such as

during seismic events affecting bridges [17]. In biomedical modeling, they support the optimization

of oscillatory behavior in drug delivery systems [30]. In control theory, they aid in investigating the

controllability of impulsive dynamic systems [1]. Furthermore, they find meaningful applications

in population dynamics [26] and financial market modeling [27]. Moreover, the study by Zhang et

al. [33] in the references demonstrates significant potential for applications in autonomous robot
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swarms, drone fleets, distributed sensor networks, and intelligent transportation systems.

Determining eigenvalue intervals is crucial for analyzing the existence and uniqueness of

solutions to boundary value problems, as eigenvalues characterize the spectral properties of differ-

ential operators and thus dictate the system’s stability and behavior [16]. These intervals reveal

the parameter values (typically denoted by λ) at which nontrivial solutions arise, which is vital

for various applications-including vibration analysis in mechanical systems to determine resonance

frequencies in beams [34], estimation of energy levels in quantum mechanics via Schrödinger equa-

tions [8]. Recent studies have also emphasized their significance in fractional and nonlinear BVPs,

thereby enhancing system design and optimization across disciplines [9].

Although extensive research has been conducted on third-order impulsive boundary value

problems (BVPs) [6, 10, 11] and iterative systems [13, 18, 19, 22, 24], the literature still lacks

focused investigations on eigenvalue intervals for third-order impulsive systems with iterative

structures. Addressing this gap, the present study is, to the best of our knowledge, the first

to explore eigenvalue intervals in this specific context. By employing the Guo–Krasnosel’skii fixed

point theorem [12], we establish the existence of positive solutions and identify the corresponding

eigenvalue intervals.

Compared to previous studies, this work significantly advances the field by unifying third-

order dynamics, impulsive effects, iterative structures, and eigenvalue intervals into a single frame-

work. In contrast to earlier studies-for instance, Zhang and Yao [31], who investigated solution

multiplicity for second-order p-Laplacian impulsive equations using variational methods, or Oz

and Karaca [19], who examined eigenvalue intervals for second-order m-point impulsive BVPs via

fixed-point theory-our study focuses on third-order systems. Likewise, although Zhang and Ao [32]

studied some third-order BVPs with eigenparameter-dependent boundary conditions on specific

time scales, they did not consider iterative systems. Other works, such as those by Bi and Liu [6],

Feliz and Rui [10], primarily addressed the existence of solutions, without investigating the role of

eigenvalue intervals. In 2022, Bouabdallah et al. [7] studied eigenvalue boundary value problem

with impulsive conditions, but the problem they considered is neither of third order nor does it

involve an iterative system. Therefore, our study not only fills a significant gap in the existing

literature but also provides a novel and comprehensive perspective for future research on com-

plex impulsive systems. Based on the above-mentioned results and the importance of theoretical

solutions to contribute to the application areas, in this work, we handle the following nonlinear
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3rd -order with p-Laplacian impulsive boundary value problem (IBVP)’s iterative system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕp(κ′′i (t)))′ + µiqi(t)hi(κi+1(t)) = 0, t ∈ I = [0,1], t ≠ tm, i ∈ {1,2,3,⋯, n}

κn+1(t) = κ1(t)

△κi∣t=tm = µiIim(κi+1(tm)), m ∈ {1,2,⋯..., k}

△κ′i∣t=tm = −µiJim(κi+1(tm)), m ∈ {1,2,⋯..., k}

a1κi(0) − a2κ′i(0) = 0

a3κi(1) + a4κ′i(1) = 0

κ′′i (0) = 0,

(1)

where t ≠ tm , m ∈ {1,2,3,⋯ . . . , k} such that 0 < t1 < t2 < ⋯... < tk < 1. Furthermore, for

i ∈ {1,2,3,⋯..., n}, the functions △κi and △κ′i at the point t = tm stand for the jump of κi(t)

and κ′i(t) at the point t = tm , i.e.,

△κi∣t=tm = κi(t+m) − κi(t−m), △κ′i∣t=tm = κ′i(t+m) − κ′i(t−m),

where the values κi(t+m) , κ′i(t+m) state the right-hand limit of κi(t) and κ′i(t) at the point t = tm ,

m ∈ {1,2,3,⋯, k} , and similarly κi(t−m) , κ′i(t−m) state left-hand limit of κi(t) and κ′i(t) at the

point t = tm , m ∈ {1,2,3,⋯, k} . In addition, the function ϕp(s) is a p-Laplacian operator, i.e.,

ϕp(s) = ∣s∣p−2s for p > 1.

In this paper, we assume that the following conditions are given:

(C1) a1, a2, a3, a4 are positive real constants.

(C2) For i = 1,⋯, n, hi is a continuous function from the set R+ to R+ .

(C3) For i ∈ {1,2,3,⋯, n}, qi ∈ C(I,R+) and on any closed subinterval of I, qi does not vanish

identically.

(C4) For i ∈ {1,2,3,⋯, n}, Iim ∈ C(R,R+) and Jim ∈ C(R,R+) are bounded functions and the

inequality [a4 + a3(1 − tm)]Jim(η) > a3Iim(η), t < tm, m ∈ {1,2,3,⋯, k} is satisfied, where

η be any nonnegative number.

(C5) Each of the following expressions is a positive real number:

h0
i = lim

κ→0+

hi(κ)
κp−1 , I0im = lim

κ→0+

Iim(κ)
κ

.

J0
im = lim

κ→0+

Jim(κ)
κ

, and h∞i = lim
κ→∞

hi(κ)
κp−1 , i ∈ {1,2,3, ..., n},
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where positive solutions of the nonlinear 3rd -order IBVP (1)’s iterative system with p-Laplacian

exist for µi , i ∈ {1,2,3,⋯, n} .

The primary structure of this manuscript unfolds as follows. Section 2 introduces several

definitions and fundamental lemmas, which serve as key tools for establishing our main result.

Section 3 determines the eigenvalue intervals that ensure the existence of positive solutions in

the 3rd -order IBVP (1)’s iterative system with the p -Laplacian operator. Section 4 provides an

illustrative example to demonstrate the applicability of the main results.

2. Preliminaries

In this section, we introduce fundamental definitions in Banach spaces and supply several supple-

mentary lemmas that will be utilized later.

Define I ′ = I/{t1, t2,⋯, tk} . The space C(I) denotes the Banach space of all continuous

mappings κ ∶ I → R equipped with the norm ∥κ∥ = sup
t∈I
∣κ(t)∣ . The space PC(I) consists of func-

tions κ ∶ I → R such that κ ∈ C(I ′) , κ(t+m) and κ(t−m) exist and κ(t−m) = κ(tm) for m ∈ {1,2,⋯, k} .

PC(I) is also a Banach space with the norm ∥κ∥PC = sup
t∈I
∣κ(t)∣ . Additionally, The space C2(I ′)

consists of all twice continuously differentiable functions defined on an interval I ′ to R .

Let B = PC(I) ∩ C2(I ′) . A function (κ1,⋯, κn) ∈ Bn is considered a solution of the 3rd -

order IBVP (1)’s iterative system if it satisfies the conditions of the 3rd -order IBVP (1)’s iterative

system.

We first consider the case i = 1 in the 3rd -order IBVP (1). Accordingly, the solution κ1 of the

3rd -order IBVP (2) is obtained. Once κ1 is determined, we proceed to compute κn . Continuing

in this manner, we successively determine κn−1, κn−2, . . . , until we reach κ2 . In this way, the

complete solution (κ1, . . . , κn) of the iterative system associated with the 3rd -order IBVP (1) is

constructed.

Assume that x(t) ∈ C(I), then we deal with the following 3rd -order IBVP:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕp(κ′′1(t)))′ + x(t) = 0, t ∈ I = [0,1], t ≠ tm

△κ1∣t=tm = µ1I1m(κ2(tm)), m ∈ {1,2,⋯, k}

△κ′1∣t=tm = −µ1J1m(κ2(tm)), m ∈ {1,2,⋯, k}

a1κ1(0) − a2κ′1(0) = 0

a3κ1(1) + a4κ′1(1) = 0

κ′′1(0) = 0.

(2)
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The following homogeneous equation’s solutions are specified via τ and η .

ϕp(κ′′i (t))′ = 0, t ∈ I (3)

under the initial conditions

⎧⎪⎪⎪⎨⎪⎪⎪⎩

τ(0) = a2, τ ′(0) = a1

η(1) = a4, η′(1) = −a3.
(4)

Using the initial conditions (4), we can deduce from (3) for τ and η the following equations:

τ(t) = a2 + a1t, and η(t) = a4 + a3(1 − t). (5)

Set

δ ∶= a1a4 + a1a3 + a2a3. (6)

Lemma 2.1 Assume that the conditions (C1)-(C5) are satisfied. If κ1 , which is belonging to set

B , is a solution of the following equation

κ1(t) = ∫
1

0
G(t, s)ϕ−1p (∫

s

0
x(ω)dω)ds +

k

∑
m=1

H1m(t, tm), (7)

where

G(t, s) = 1

δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a2 + a1s)[a4 + a3(1 − t)], s ≤ t

(a2 + a1t)[a4 + a3(1 − s)], t ≤ s
(8)

and

H1m(t, tm) =
1

δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a2 + a1t)[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))], t < tm

(a4 + a3(1 − t))[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))], tm ≤ t,
(9)

then κ1 is a solution of the 3rd -order IBVP (2).

Proof Let κ1 satisfy (7), then we will show that y is a solution of the IBVP (2). Because κ1

satisfies (7), then we obtain

κ1(t) = ∫
1

0
G(t, s)ϕ−1p (∫

s

0
x(ω)dω)ds +

k

∑
m=1

H1m(t, tm),
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i.e.,

κ1(t) = 1

δ
∫

t

0
(a2 + a1s)[a4 + a3(1 − t)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∫

1

t
(a2 + a1t)[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∑

0<tm<t
(a4 + a3(1 − t))[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))]

+1
δ
∑

t<tm<1
(a2 + a1t)[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))],

κ′1(t) = 1

δ
∫

t

0
(−a3)(a2 + a1s)ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∫

1

t
(a1)[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∑

0<tm<t
(−a3)[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))]

+1
δ
∑

t<tm<1
(a1)[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))].

Thus,

κ′′1(t) =
1

δ
[−a3(a2 + a1t) − a1(a4 + a3(1 − t))]ϕ−1p (∫

t

0
x(ω)dω)

= −ϕ−1p (∫
t

0
x(ω)dω)

and

κ
′′

1(0) = 0.

So that

(ϕp(κ′′1(t)))′ = −x(t),

i.e.,

(ϕp(κ′′1(t)))′ + x(t) = 0.
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Since

κ1(0) = 1

δ
∫

1

0
a2[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1

a2[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))]

and

κ′1(0) = 1

δ
∫

1

0
(a1)[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1

a1[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))],

we get

a1κ1(0) − a2κ′1(0) = 0.

Since

κ1(1) = 1

δ
∫

1

0
(a2 + a1s)(a3 + a4)ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1
(a3 + a4)[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))]

and

κ′1(1) = 1

δ
∫

1

0
(−a3)(a2 + a1s)ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1
(−a3)[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))],

we have

a3κ1(1) + a4κ′(1) = 0.

◻

Lemma 2.2 Let (C1)-(C5) hold. For κ1 ∈ B with x(t) ≥ 0 for t ∈ I, the solution κ1 of the

3rd -order IBVP (2) satisfies, for t ∈ I , κ1(t) ≥ 0 .
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Proof Initially, for t, s ∈ I × I , it is apparent from the description that Green’s function G is

positive. In addition, since the functions I1m and J1m are positive, we have the positivity of H1m.

Consequently, for t ∈ I , κ1(t) is positive. ◻

Lemma 2.3 [13] Assume that (C1)-(C5) are satisfied. For t ∈ I , the 3rd -order IBVP (2)’s

solution, i.e., κ1 ∈ B satisfy the inequality κ′1(t) ≥ 0 .

Lemma 2.4 Suppose that the conditions (C1)-(C5) are satisfied. Therefore, for any t, s ∈ I, we

get the following inequality

G(s, s) ≥ G(t, s) ≥ 0, (10)

where the function G(t, s) defined as in (8).

Proof The claimed inequality can be easily obtained from (8). ◻

Lemma 2.5 [13] Assume that the conditions (C1)-(C5) are fulfilled. Let σ ∈ (0, 1
2
). Therefore,

for any t, s ∈ I , we get

G(s, s) ≤ 1

γ
G(t, s), (11)

where γ ∶=min{a2 + a1σ
a2 + a1

,
a4 + a3σ
a4 + a3

} .

The set P defined as P = {κ1 ∈ PC(I) ∶ κ1(t) is nonnegative, nondecreasing and concave

on I} is a cone of the set PC(I) .

Lemma 2.6 Assume that the conditions (C1)-(C5) are satisfied and κ1(t) ∈ P . Then, the

following inequality is satisfied,

min
t∈[σ,1−σ]

κ1(t) ≥ σ∥κ1∥PC , (12)

where σ ∈ (0, 1
2
) and ∥κ1∥PC = sup

t∈I
∣κ1(t)∣ .

Proof Since κ1 is an element of P , we can say that κ1(t) is concave on I . As a consequence of

this, ∥κ1∥PC = sup
t∈I
∣κ1(t)∣ = κ1(1) and min

t∈[σ,1−σ]
κ1(t) = κ1(σ) . As κ1 ’s graph is concave downward

on the interval I , we achieve

κ1(1) − κ1(0)
1 − 0

≤ κ1(σ) − κ1(0)
σ − 0

,
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i.e., κ1(σ) ≥ σκ1(1) + (1 − σ)κ1(0). Thus, κ1(σ) ≥ σκ1(1) . ◻

If and only if

κ1(t) =∫
1

0
G(t, s1)ϕ−1p

⎛
⎝
µ1 ∫

s1

0
q1(ω1)h1

⎛
⎝
⋯hn−1

⎛
⎝∫

sn

0
G(ωn−1, sn)ϕ−1p

⎛
⎝
µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn

⎞
⎠
dsn

+
k

∑
m=1

Hnm(ωn−1, tm)
⎞
⎠
⋯
⎞
⎠
dω1

⎞
⎠
ds1 +

k

∑
m=1

H1m(t, tm)

where for i = 1,2,⋯, n

κi(t) =∫
1

0
G(t, s)ϕ−1p (µi ∫

s

0
qi(ω)hi(κi+1(ω))dω)ds +

k

∑
m=1

Him(t, tm), t ∈ I,

κn+1(t) = κ1(t),

Him(t, tm) =
1

δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a2 + a1t)[−a3µiIim(κi+1(tm)) + (a4 + a3(1 − tm))µiJim(κi+1(tm))], t < tm

(a4 + a3(1 − t))[a1µiIim(κi+1(tm)) + (a2 + a1tm)µ1Jim(κi+1(tm))], tm ≤ t.

We state that an n -tuple (κ1(t), κ2(t),⋯, κn(t)) is a solution of the 3rd -order IBVP (1)’s

iterative system. We will employ a fixed point theorem called Guo-Krasnosel’skii [12] to determine

the eigenvalue intervals wherein the 3rd -order IBVP (1)’s iterative system possesses at least one

positive solution within a cone.

Theorem 2.7 [12] Let X denote a Banach space and P ⊂ X be a cone within X . Suppose

Ω1 and Ω2 are two bounded open subsets of X such that 0 ∈ Ω1 and Ω̄1 ⊂ Ω2 . Consider

A ∶ P ∩ (Ω̄2 ∖ Ω1) → P as a completely continuous operator, satisfying either of the following

conditions:

i. For all x ∈ P ∩ ∂Ω1 , ∥Ax∥ ≤ ∥x∥ , and for all x ∈ P ∩ ∂Ω2 , ∥Ax∥ ≥ ∥x∥ ,

ii. For all x ∈ P ∩ ∂Ω1 , ∥Ax∥ ≥ ∥x∥ , and for all x ∈ P ∩ ∂Ω2 , ∥Ax∥ ≤ ∥x∥ .

Under these conditions, the operator A possesses at least one fixed point in P ∩ (Ω̄2 ∖Ω1) .

3. Main Result
In this section, we establish the conditions necessary to identify the eigenvalues for which the

iterative system associated with the third-order impulsive boundary value problem (2) has at least

one positive solution in a cone. Then, we define an integral operator T ∶ P → B for κ1 ∈ P , where
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Tκ1(t) =∫
1

0
G(t, s1)ϕ−1p (µ1 ∫

s1

0
q1(ω1)h1(⋯hn−1(∫

sn

0
G(ωn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn

+
k

∑
m=1

Hnm(ωn−1, tm))⋯)dω1)ds1 +
k

∑
m=1

H1m(t, tm),

(13)

thereby setting the foundation for analyzing the behavior of the solutions within this framework.

From conditions (C1)–(C5), Lemmas 2.2 and 2.3, and the definition of T , it follows that for

κ1 ∈ P , the following hold: Tκ1(t) ≥ 0 , (Tκ1)′(t) ≥ 0 , and (Tκ1)′(t) is concave on I . Therefore,

T (P) ⊂ P . Moreover, one can show that the operator T is completely continuous by applying the

Arzelà–Ascoli Theorem.
We now explore the relevant fixed points of T within the cone P . For convenience, we

introduce the following notation. Let

N1 ∶= max
1≤i≤n

{[ϕp (γσ∫
1−σ

σ
G(s, s) (∫

s

0
qi(ω)dω)ds)h∞i ]

−1

}

and

N2 = min
1≤i≤n

{[µ
2−p
p−1
i (∫

1

0
G(s, s) (∫

s

0
qi(ω)dω)ds+

k

δ
(2a1+a2)(a3+a4))⋅(max{ϕ−1p (h0

i ), I0im, J0
im})]

−1

}.

Theorem 3.1 Suppose that the conditions (C1)-(C5) are met. Therefore, for each µ1, µ2,⋯, µn

satisfying

N1 < µi < N2, i = 1,2,⋯, n (14)

an n-tuple (κ1, κ2,⋯, κn) exists, satisfying (1), with each κi(t) > 0 for i ∈ {1,2,3, ..., n} on I .

Proof Assume µr , for 1 ≤ r ≤ n , be as defined in (14). Choose ε > 0 such that

max
1≤i≤n

{[ϕp (γσ∫
1−σ

σ
G(s, s)ϕ−1p (∫

s

0
qi(ω)dω)ds) (h∞i − ε)]

−1

} ≤ min
1≤r≤n

µr

and

max
1≤r≤n

µr ≤ min
1≤i≤n

{[(µ
2−p
p−1
i ∫

1

0
G(s, s)ϕ−1p (∫

s

0
qi(ω)dω)ds +

k

δ
(2a1 + a2)(a3 + a4))

⋅ (max{ϕ−1p (h0
i + ε), I0im + ε, J0

im + ε})]
−1

}.
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We investigate the fixed points of the completely continuous operator T ∶ P → P , as defined

in (13). Utilizing the definitions of h0
i , I

0
im, J0

im , there exists a constant K1 > 0 such that, for each

i ∈ {1,2,3,⋯, n} and 1 ≤m ≤ k ,

hi(κ) ≤ (h0
i + ε)κp−1, Iim(κ) ≤ (I0im + ε)κ, Jim(κ) ≤ (J0

im + ε)κ, 0 < κ <K1.

Suppose that κ1 ∈ P with ∥κ1∥ =K1 . We begin by verifying that κn ≤K1 holds in the case

when i = n . For 0 ≤ sn−1 ≤ 1 , by applying Lemma 2.4 and the choice of ε , we obtain

∫
1

0
G(sn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn +

k

∑
m=1

Hnm(sn−1, tm)

≤ µn[(µ
2−p
p−1
n ∫

1

0
G(sn, sn)ϕ−1p (∫

sn

0
qn(ωn)dωn)dsn +

k

δ
(2a + b)(c + d))

⋅ (max{ϕ−1p (h0
n + ε), I0nm + ε, J0

nm + ε})]∥κ1∥

≤K1.

Proceeding with the case i = n − 1 , we now demonstrate that κn−1 is also less than K1 .

This pattern persists with Lemma 2.4, where, for 0 ≤ sn−2 ≤ 1 , it holds that

∫
1

0
G(sn−2, sn−1)ϕ−1p

⎛
⎝
µn−1 ∫

sn−1

0
qn−1(ωn−1)hn−1

⎛
⎝∫

1

0
G(ωn−1, sn)ϕ−1p

⎛
⎝
µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn

⎞
⎠
dsn

+
k

∑
m=1

Hnm(ωn−1, tm)
⎞
⎠
dωn−1

⎞
⎠
dsn−1 +

k

∑
m=1

Hn−1,m(sn−2, tm)

≤ µn−1

⎡⎢⎢⎢⎢⎣

⎛
⎝
µ

2−p
p−1
n−1 ∫

1

0
G(sn−1, sn−1)ϕ−1p (∫

sn−1

0
qn−1(ωn−1)dωn−1)dsn−1 +

k

δ
(2a1 + a2)(a3 + a4)

⎞
⎠

⋅
⎛
⎝
max{ϕ−1p (h0

n−1 + ε), I0n−1,m + ε, J0
n−1,m + ε}

⎞
⎠

⎤⎥⎥⎥⎥⎦
∥κ1∥

≤ ∥κ1∥ =K1.

Proceeding with this argument, we obtain

∫
1

0
G(t, s1)ϕ−1p (µ1 ∫

s1

0
q1(ω1)h1(µ2⋯)dω1)ds1 +

k

∑
m=1

H1m(t, tm)

≤ µ1[(µ
2−p
p−1
1 ∫

1

0
G(s1, s1)ϕ−1p (∫

s1

0
q1(ω1)dω1)ds1 +

k

δ
(2a1 + a2)(a3 + a4))

⋅ (max{ϕ−1p (h0
1 + ε), I01m + ε, J0

1m + ε})]K1

≤K1 = ∥κ1∥.
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Thereby, ∥Tκ1∥ ≤K1 = ∥κ1∥ . If we define Ω1 = {κ ∈ B ∶ ∥κ∥ <K1} , then the inequality

∥Tκ1∥ ≤ ∥κ1∥ holds for κ1 ∈ P ∩ ∂Ω1. (15)

From the definitions of h∞i , i = 1,2,⋯, n, there is a K̄2 > 0 such that, for each 1 ≤ i ≤ n,

hi(κ) ≥ (h∞i − ε)κp−1, κ ≥ K̄2. Let K2 = max{2K1,
K̄2

σ
}. Let κ1 ∈ P and ∥κ1∥ = K2. Therefore,

min
t∈[σ,1−σ]

κ1(t) ≥ σ∥κ1∥ ≥ K̄2 is gained with the help of the Lemmas 2.5 and 2.6. We begin by

verifying that κn ≥K2 holds in the case when i = n .

Consequently, utilizing Lemmas 2.5 and 2.6, and given the selection of ε , we obtain

∫
1

0
G(sn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn +

k

∑
m=1

Hnm(sn−1, tm)

≥ γ ∫
1−σ

σ
G(sn, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn

≥ ϕ−1p (µn)ϕ−1p (h∞n − ε)γ ∫
1−σ

σ
G(sn, sn)ϕ−1p (∫

sn

0
qn(ωn)dωn)κ1(sn)dsn

≥ ϕ−1p (µn)ϕ−1p (h∞n − ε)γσ∫
1−σ

σ
G(sn, sn)ϕ−1p (∫

sn

0
qn(ωn)dωn)dsn∥κ1∥

≥ ∥κ1∥ =K2 for 0 ≤ sn−1 ≤ 1.

We now consider the case i = n − 1 and show that κn−1 >K2 . Following the approach used

in Lemmas 2.5 and 2.6, and using the selected ε , we obtain

∫
1

0
G(sn−2, sn−1)ϕ−1p (µn−1 ∫

sn−1

0
qn−1(ωn−1)hn−1(∫

1

0
G(ωn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn

+
k

∑
m=1

Hnm(ωn−1, tm))dωn−1)dsn−1 +
k

∑
m=1

Hn−1,m(sn−2, tm)

≥ ϕ−1p (h∞n−1 − ε)γ ∫
1−σ

σ
G(sn−2, sn−1)ϕ−1p (µn−1 ∫

sn−1

0
qn−1(ωn−1)dωn−1)dsn−1K2

≥ ϕ−1p (µn−1)ϕ−1p (h∞n−1 − ε)γσ∫
1−σ

σ
G(sn−1, sn−1)ϕ−1p (∫

sn−1

0
qn−1(ωn−1)dωn−1)dsn−1K2

≥K2 for 0 ≤ sn−2 ≤ 1.

Once more, employing a bootstrapping argument leads us to conclude that

∫
1

0
G(t, s1)ϕ−1p (µ1 ∫

s1

0
q1(ω1)h1 (∫

1

0
⋯)dω1)ds1 +

k

∑
m=1

H1m(t, tm) ≥K2.

Thus, Tκ1(t) ≥K2 = ∥κ1∥.

176



Döndü Öz / FCMS

Therefore, ∥Tκ1∥ ≥ ∥κ1∥ . Putting Ω2 = {κ ∈ B ∶ ∥κ∥ <K2}, then

∥Tκ1∥ ≥ ∥κ1∥, κ1 ∈ P ∩ ∂Ω2. (16)

Applying Lemma 2.1 to (15) and (16), we can conclude that T has a fixed point κ1 ∈

P ∩ (Ω̄2/Ω1) . In conclusion, setting κn+1 = κ1 yields a positive solution (κ1, κ2,⋯, κn) for the

3rd -order IBVP (1)’s iterative system, where iteratively,

κr(t) = ∫
1

0
G(t, s)ϕ−1p (µr ∫

s

0
qr(ω)hr(κr+1(ω))dω)ds +

k

∑
m=1

Hrm(t, tm), r ∈ {n,n − 1,⋯,1}.

◻

Example 3.2 Assume that k = 4, n = 4 and p = 2, qi(t) = 1 for 1 ≤ i ≤ 4, a1 = a3 = 4, a2 = a4 =

2, σ = 1

4
in the IBVP (1)’s iterative system, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ1(κ′′i (t)))′ + µihi(κi+1(t)) = 0, t ≠ tm, t ∈ I = [0,1], t ≠ tm, i ∈ {1,2,3,4}
κn+1(t) = κ1(t)
△κi∣t=tm = µiIim(κi+1(tm)), m = 1,2
△κ′i∣t=tm = −µiJim(κi+1(tm)), m = 1,2
3κi(0) − 2κ′i(0) = 0
3κi(1) + 2κ′i(1) = 0
κ′′i (0) = 0,

(17)

where

h1(κ2) = κ2(3 ⋅ 104 −
29999

ln(e + κ2)
) , h2(κ3) = 2κ3(104 − 9999e−5κ3) ,

h3(κ4) = κ4(4 ⋅ 104 − 39999
e−4κ4

ln(e + κ4)
) , h4(κ1) =

κ1

5
κ1(105 − (99995)e−κ1) ,

I1m(κ2) =
6κ2

2 + 4κ2

3 + κ2
, I2m(κ3) =

2κ3
3 + 4κ3

8 + κ2
3

, I3m(κ4) =
8κ3

4 + 4κ4

7 + 4κ2
4

, I4m(κ1) =
10κ2

1 + 2κ1

11 + κ1
,

J1m(κ2) =
9κ2

2 + 6κ2

2 + κ2
, J2m(κ3) =

3κ3
3 + 6κ3

5 + κ2
3

, J3m(κ4) =
12κ3

4 + 6κ4

5 + 4κ2
4

, J4m(κ1) =
15κ2

1 + 3κ1

8 + κ1
.

Using the definitions of the functions hi, Iim and Jim for i ∈ {1,2,3,4} , we achieve the

following numbers:

h0
1 = 1 , h0

2 = 2 , h0
3 = 1 and h0

4 = 1 , h∞1 = 3 ⋅ 104 , h∞2 = 2 ⋅ 104 , h∞3 = 4 ⋅ 104 and h∞4 = 2 ⋅ 104 ,

I01m =
4

3
, I02m =

1

2
, I03m =

4

7
and I04m =

2

11
, J0

1m = 3 , J0
2m =

6

5
, J0

3m =
6

5
and J0

4m =
3

8
.

It is easy to see that conditions (C1)-(C5) are satisfied. With the help of some basic
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computations, for 1 ≤ i ≤ 4 , we obtain ρ = 21, γ = 11

20
and

G(t, s) = 1

21

⎧⎪⎪⎨⎪⎪⎩

(2 + 3s)(5 − 3t), s ≤ t
(2 + 3t)(5 − 3s), t ≤ s.

Additionally, if we use descriptions, we get N1 = 0,025322 and N2 = 0,081632. With the help of

the Theorem 3.1, we determine that the optimal eigenvalue interval is

0,025322 < µi < 0,081632 for i = 1,2,3,4

ensuring a positive solution of the 3rd -order IBVP (17)’s iterative system.

4. Conclusion

This study explores eigenvalue intervals for third-order impulsive boundary value problems (IBVPs)

with p -Laplacian and iterative structures, addressing a previously underexplored area. By applying

the Guo–Krasnosel’skii fixed point theorem [12], we establish the existence of positive solutions

for the iterative system (1) and determine the eigenvalue intervals of parameters µ1, µ2,⋯, µn .

Beginning with the initial solution κ1(t) of the third-order IBVP (2), the iterative construction of

the solution set (κ1(t),⋯, κn(t)) provides a robust analytical framework for understanding such

systems’ dynamics.

Beyond theoretical contributions, this work has significant practical implications. In me-

chanical engineering, it aids in analyzing vibrational modes of structures subjected to impulsive

forces (e.g., seismic events or explosions), contributing to safer designs [17, 32]. In biological model-

ing, these intervals reveal oscillatory patterns in drug delivery systems, optimizing dosing strategies

[30]. For control theory, they enhance stability algorithms in robotics and signal processing where

abrupt changes occur [1, 15].

Our study advances the field by unifying third-order impulsive systems with iterative

structures-a gap in existing literature. Unlike prior work on second-order impulsive BVPs [19, 31]

or non-iterative third-order systems [6, 32], we incorporate eigenvalue intervals and higher-order

dynamics, offering novel perspectives for complex impulsive systems.

Future research could extend this framework to higher-order systems or complex boundary

conditions – for instance, the boundary parameters a′is could be generalized from positive constants

to functions. Furthermore, combining numerical solution methods may enhance computational

efficiency, stability analyses under parameter variations [15, 16, 23] will provide critical insights for

engineering applications.

In summary, this study comprehensively advances the theory and applications of third-order
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iterative IBVPs. By elucidating eigenvalue intervals and their cross-disciplinary relevance, we pave

the way for mathematical and practical breakthroughs.
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