
DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

A Novel Deep Feature Extraction Approach Based on DenseNet201 and ResNet50

for Cotton Leaf Disease Detection

 Nursena BAYĞIN1*

1 Erzurum Technical University, Computer Engineering Department, nursena.baygin@erzurum.edu.tr, Orcid No: 0000-0003-4457-5503

Introduction

Sustainable agriculture is among the areas where

researchers are working intensively today. The efficient

execution of the life cycle of agricultural products is of

critical importance in terms of meeting the needs of the

increasing population. The economic gains of countries are

directly proportional to the quality and quantity of the

products. In this context, the cotton plant is one of the

products used in natural fiber production worldwide and

provides significant contribution to the economy. Cotton,

which is produced in approximately 100 countries, covers

about 2.5% of the world’s arable land [1].

Diseases in cotton leaves can reduce product productivity

and cause economic losses. Traditionally, lesions in cotton

leaves are evaluated by experts with the naked eye [2].

However, this method is time-consuming, costly and

sometimes misleading. In terms of product productivity,

monitoring large agricultural areas and detecting diseases

quickly and accurately at low cost are of great importance

[3-5]. Various approaches have been developed in the

literature for the detection of these diseases, and methods

such as image processing, machine learning and deep

learning are frequently used among these approaches. When

the diseases seen in cotton leaves are examined,

approximately 80-90% of these diseases consist of certain

species. These are diseases such as Cercospora, Bacterial

Blight, Red Spot, Ascochyta Blight, Target Spot, etc. [6-7].

Cotton plants are vulnerable to pathogens such as bacteria,

viruses, and fungi. In a study conducted by Parashar et al.,

diseases occurring on cotton leaves were detected and

labeled and divided into two classes as healthy and

diseased. In this study, a Convolutional Neural Network

(CNN) model was developed to improve cotton leaf

diseases and the MobileNetV2 model was used to optimize

it. With the 99.91% accuracy rate obtained, the proposed

model has the potential to be compatible with mobile

devices and is shown to be usable by farmers [8]. Artificial

intelligence-based applications can help increase cotton

production efficiency by detecting cotton leaf diseases

early. In a study conducted by Islam et al., the performances

of deep network architectures such as Xception, VGG-16,

VGG-19, and Inception-V3 were examined using the

transfer learning approach. As a result of the study, an

accuracy rate of 98.70% was achieved, and this accuracy

value was obtained with the Xception deep network

architecture [9].

As a result, meeting the needs of sustainable agriculture and

increasing population and maintaining environmental

balance are of critical importance today. Studies carried out

Research Article

ARTICLE INFO

Article history:

Received 6 January 2025

Received in revised form 5 February 2025

Accepted 20 February 2025

Available online 26 March 2025

Keywords:

Deep feature extraction, Cotton leaf

diseases, Feature selection,

Machine learning, Lightweight

classification model

ABSTRACT

In this study, a new deep feature extraction approach is proposed for automatic detection of diseases

observed on cotton plant leaves. In the proposed approach, feature extraction is performed using
DenseNet201 and ResNet50 deep learning architectures. and the obtained feature vectors are combined.

Then, the most informative features are selected with the Iterative Chi2 algorithm, and disease detection

is performed using the Support Vector Machine (SVM) classifier. The developed model is tested on an
open access dataset consisting of 2,137 cotton leaf images and 7 different classes (1 healthy, 6 diseased).

10-fold cross-validation and 80:20 hold-out cross-validation strategies are applied in the testing phase. As

a result of the tests performed without using any data augmentation technique, 97.29% and 96.96%
classification accuracies are obtained, respectively. The proposed approach makes significant

contributions to the literature in terms of showing high success on the imbalanced dataset and providing a

computationally lightweight architecture.

Doi: 10.24012/dumf.1614458

* Corresponding author

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

126

on plants such as cotton and developed technological

solutions have an important role in achieving these goals.

The widespread use of artificial intelligence techniques in

the agricultural sector will contribute to the creation of

efficient, sustainable systems in the future. In this study, a

new approach was proposed for the automatic detection of

diseases occurring on the cotton plant, which is of critical

importance today. With the proposed approach, a

classification performance of over 96% was achieved on a

six-class, unbalanced data.

Literature Survey

The use of machine learning for detecting cotton leaf

diseases is an important factor in improving agricultural

productivity. As seen in Table 1, when the studies in the

literature are examined, it is seen that different machine

learning techniques, especially deep learning models, have

been developed to increase the diagnosis and accuracy rates

of the disease.

Table 1. Recent studies on cotton leaf disease detection methods in the literature

Author (s)

and Year

Dataset

(s)

Disease Method (s) Result (s) (%) Key Points

Azath M. et

al. 2021 [10]

2400

image

4 class

-Bacterial blight

-Healthy

-Leaf miner

-Spider mite

CNN Acc. = 96.4 -Detection of cotton

leaf disease and pests

-Feature extraction

process

-K-fold cross-

validation

-Unbalanced dataset

Chitranjan K.

et al. 2023

[11]

2293

image

4 class

-Diseased cotton leaf

-Diseased cotton plant

-Fresh cotton leaf

-Fresh cotton plant

DCNN Acc. = 97.98 -Identify and predict

cotton plant disease

-Data augmentation

Kaur A. et al.

2024 [12]

1711

image

4 class

-Bacterial blight

-Curl virus

-Fusarium wilt

-Healthy

VGG16 Acc. = 95.5 -Disease

management of

cotton crops

-Small sample size

-Data augmentation

Kukadiya H.

et al. 2024

[13]

 4 class

-Bacterial blight

-Curl virus

-Fusarium wilt

-Healthy

VGG16

InceptionV3

DCNN

Acc. = 98 -Early detection of

diseases affecting

cotton leaves

-Small size dataset

Kavinandhan

B. et al. 2024

[14]

1786

image

4 class

-Bacterial blight,

-Curl virus,

-Fusarium wilt

-Healthy

DCGAN

InceptionV3

VGG16

ResNet 50

MobileNet V2

Acc. = 99 -Automated

computer vision

detection for cotton

leaf diseases

-Unbalanced dataset

-Data augmentation

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

127

CNN

Rai K. C. et

al. 2024 [15]

1700

image

2 class

-Diseased cotton plant

-Fresh cotton plants

4 class

-Blight

-Curl

-Healthy

-Wilt

InceptionV3,

InceptionResNetV2

VGG16

MobileNet

Xception

Acc. = 99.48 -Detection and

classification of

diseased cotton

leaves and plants

-Data augmentation

Saleh A. et al.

2024 [16]

2293

image

4 class

-Cotton leaf, diseased

-Cotton plant,

-Fresh cotton leaf,

-Fresh cotton plant

SVM-VGG16

MobileNet

Acc. = 91

Acc. = 99

-Detection cotton

diseases before they

spread to crops

-Data augmentation

When the studies given in Table 1 are examined, it is seen

that these studies generally focus on 4 classes [10,13]. In

addition, the majority of the studies use data

augmentation methods [11,14-16]. The most important

reason for this situation is that data sets are generally

small in size [12], have an unbalanced distribution

[10,14] and artificial intelligence methods require a large

amount of data. The aim of this study is to eliminate all

these deficiencies. In this context, it is aimed to classify

an unbalanced data set without using any data

augmentation technique. A multi-class, unbalanced data

set was classified with the developed model and a

classification result of over 96% was obtained.

Literature Gap

Some literature gaps observed as a result of the

literature studies given in Table 1 are listed below:

➢ Methods performed in the literature on image

classification generally use deep learning

approaches. However, these studies generally

prefer the end-to-end training solution.

➢ Deep learning approaches require a lot of data

and a balanced data set due to their structure. For

this reason, researchers generally need methods

such as data augmentation and balance the data

set with this approach.

➢ Since researchers generally use the end-to-end

training approach, the computational complexity

of these architectures is quite high.

This study aimed to fill the literature gaps listed above.

In this context, an open access data set was used and the

classification process was performed directly on the data

set without any preprocessing.

Motivation and Proposed Model

In this study, a new machine learning approach has been

developed for automatic detection of diseases occurring

in cotton plants. The developed architecture was tested

on an open access cotton leaf disease dataset and a

classification accuracy of over 96% was achieved. The

dataset used in the study has 7 classes and is basically

unbalanced. The researchers who shared the dataset

applied data augmentation techniques to balance the

dataset. However, in this study, the classification process

was performed using only raw leaf images.

Deep feature extraction was achieved in the study using

the transfer learning approach. For this process, some

pre-trained deep network architectures were tested and

the two deep network architectures with the highest

performance were preferred. Later, the feature vector

was obtained using the fully connected and pooling

layers of these networks. The feature selection algorithm

was applied to reduce the size of the obtained feature

vector and to reduce the computational complexity of the

architecture. In this step where the Iterative Chi2 method

was preferred, the optimum number of features was

selected and thus the selected feature vector was

obtained. In the last stage of the system, the SVM method

[17], a well-known classification algorithm in the

literature, was preferred. An accuracy value of over 96%

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

128

was achieved with the SVM algorithm, which is basically

a lightweight classification approach.

Although DenseNet201 and ResNet50 are deep learning

architectures with high computational complexity, our

approach does not perform end-to-end training. Instead,

we use these networks in a transfer learning manner,

extracting feature vectors from pre-trained models. This

significantly reduces the computational burden

compared to full model training. Additionally, by

employing feature selection using the Iterative Chi2

algorithm, we minimize the number of features

processed in the classification phase, making our model

more efficient. The feature selection step reduces the

final input size to the classifier, thereby improving both

inference speed and memory efficiency.

Dataset

In this study, two open-access datasets for cotton leaf

disease detection were utilized to enhance the robustness

and generalizability of the proposed model. The first

dataset was obtained from the National Cotton Research

Institute field in Gazipur, Bangladesh, while the second

dataset was collected from cotton fields in India. These

datasets contain images of cotton leaves affected by

various diseases, as well as healthy leaves, captured

under different environmental conditions.

The first dataset consists of a total of 2137 original

images, which are divided into 7 different classes:

bacterial blight, curl virus, herbicide growth damage, leaf

hopper jassids, leaf reddening, leaf variegation, and

healthy leaves [18]. The images were systematically

collected over the course of approximately one year

using a Redmi Note 11s model smartphone under

varying lighting conditions. Additionally, the dataset

contains 7000 augmented images created through data

augmentation techniques. However, in this study, only

the original images were used, and the augmented images

were excluded to evaluate the classification performance

on raw data. The images corresponding to the first dataset

are shown in Figure 1.

The second dataset comprises 980 images of cotton

leaves affected by various diseases, as well as healthy

leaves. The images are meticulously organized into

different disease categories and collected under diverse

environmental conditions to improve the robustness of

machine learning models. Similar to the first dataset, this

dataset also exhibits an imbalanced distribution, with

certain disease categories having significantly fewer

images than others. The dataset includes images of

healthy cotton leaves, as well as leaves affected by

bacterial blight, fusarium wilt, and curl virus. The images

corresponding to the second dataset are shown in Figure

2. By incorporating two datasets from different

geographical regions, this study aims to improve the

generalization ability of the model and evaluate its

robustness against varying environmental factors.

(a) Healthy Leaf (b) Bacterial Blight (c) Curl Virus

(d) Herbicide Growth

Damage
(e) Leaf Hopper Jassids (f) Leaf Redding

(g) Leaf Variegation

Figure 1. Cotton leaf diseases for Dataset-1

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

129

(a) Healthy Leaf (b) Bacterial Blight

(c) Herbicide Growth Damage (d) Leaf Hopper Jassids

Figure 2. Cotton leaf diseases for Dataset-2

Proposed Method

In this study, a new deep feature extraction approach is

proposed for automatic identification and classification

of cotton leaf disease. The deep feature extraction-based

architecture developed for this unbalanced dataset, where

no data augmentation method is applied, is given in

Figure 3.

Figure 3. DenseNet201 [19] and ResNet50 [20] based deep feature extraction

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

130

As given in Figure 3, the system first takes the cotton leaf

dataset as input. Then, it gives these images as input to

both deep network architectures. In this phase, pre-

trained networks are used and deep feature extraction is

performed. In this way, instead of end-to-end training,

previously determined weights of the networks are used

and an approach with lower computational complexity is

obtained. In this phase, features are extracted using the

last fully connected layers and the last pooling layers of

the networks. After this phase, the feature vectors

obtained using both networks are combined and a feature

vector representing the performance of both networks is

obtained. In the next phase of the system, feature

selection is performed using the iterative Chi2 algorithm.

The most informative features are selected with this

method. The reason for using the iterative approach is to

determine the optimum number of feature vectors. The

selected features in this phase are given as input to SVM

[17], a shallow classifier. The selected feature vectors are

classified with the SVM algorithm and the estimated

values are obtained. These steps are explained in detail

in the subsections.

Feature Extraction and Concatenation

The most important phase of the developed architecture

is features extraction. In this phase, where the deep

feature extraction approach is adopted, feature extraction

is performed using the final pooling and fully connected

layers of DenseNet201[19] and ResNet50 [20]

architectures. In this context, the pseudo codes of

DenseNet201 and ResNet50 architectures are given in

Algorithms 1 and 2, respectively.

Algorithm 1. Pseudocode of DenseNet201 Architecure

No DenseNet201 Architecture

1: def DenseNet201():

2: x = Conv(64, 7x7, stride=2) # Initial Conv

3: x = MaxPool(3x3, stride=2) # Initial Pool

4: # Dense Blocks with Transition Layers

5: for layers, growth_rate in [(6, 32), (12, 32), (48, 32), (32, 32)]:

6: x = DenseBlock(x, layers, growth_rate)

7: if layers != 32: # No transition after the last DenseBlock

8: x = TransitionLayer(x, 0.5)

9: # Classification

10: x = GlobalAvgPool(x) # Global Average Pooling

11: x = FullyConnected(x, num_classes, activation=softmax) # Fully Connected Layer

12: return x

13: def DenseBlock(x, layers, growth_rate):

14: for _ in range(layers):

15: x = Concatenate([x, Conv(growth_rate, 3x3, padding=same, activation=ReLU, batch_norm=True)])

16: return x

17: def TransitionLayer(x, reduction):

18: return AvgPool(Conv(int(x.filters * reduction), 1x1, activation=ReLU, batch_norm=True), 2x2,

stride=2)

19: def FullyConnected(x, units, activation):

20: return Dense(x, units, activation=activation)

Algorithm 2. Pseudocode of ResNet50 Architecure

No ResNet50 Architecture

1: def ResNet50():

2: x = Conv(64, 7x7, stride=2, activation=ReLU, batch_norm=True) # Initial Conv

3: x = MaxPool(3x3, stride=2) # Initial Pool

4: # Residual Blocks

5: for filters, blocks, strides in [(64, 3, 1), (128, 4, 2), (256, 6, 2), (512, 3, 2)]:

6: x = ResidualGroup(x, filters, blocks, strides)

7: # Classification

8: x = GlobalAvgPool(x)

9: return FullyConnected(x, num_classes, activation=softmax)

10: def ResidualGroup(x, filters, blocks, strides):

11: x = ResidualBlock(x, filters, strides) # First block with downsampling

12: for _ in range(1, blocks):

13: x = ResidualBlock(x, filters) # Remaining blocks

14: return x

15: def ResidualBlock(x, filters, strides=1):

16: shortcut = Conv(filters * 4, 1x1, stride=strides, batch_norm=True) if strides > 1 or x.filters != filters *

4 else x

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

131

17: x = Conv(filters, 1x1, stride=strides, activation=ReLU, batch_norm=True)

18: x = Conv(filters, 3x3, activation=ReLU, batch_norm=True)

19: x = Conv(filters * 4, 1x1, batch_norm=True)

20: return ReLU(Add(x, shortcut))

21: def FullyConnected(x, units, activation):

22: return Dense(x, units, activation=activation)

The developed model performs deep feature extraction

using two pre-trained networks. These networks are

DenseNet201 and ResNet50 architectures, respectively.

In the feature generation phase, features are extracted

using the final pooling and fully connected layer. The

system uses the “fc1000” and “avg_pool” layers of the

DenseNet201 architecture. These layers represent the

fully connected and pooling layers, respectively. Again,

1000 and 1920 features are produced from these layers,

respectively. In this way, a feature vector of 2920

(=1000+1920) length is obtained per image in total using

the DenseNet201 architecture. A similar situation is valid

for the ResNet50 architecture, and features are produced

from the “fc1000” and “avg_pool” layers in this

architecture. Similar to the DenseNet201 architecture,

1000 and 1920 features are produced from these layers,

respectively, and thus a feature vector of 2920

(=1000+1920) length is obtained. In the next stage of the

architecture, the feature vectors obtained using both deep

networks are combined and a new feature vector of 5840

(=2920 from DenseNet201 + 2920 from ResNet50)

length is provided, which uses the power of the two

networks. A block diagram summarizing these process

steps is given in Figure 4.

Figure 4. Deep features extraction and features concatenation

As given in Figure 4, the system uses two separate pre-

trained deep network architectures to extract features

from final pooling (avg_pool) and fully connected layers

(fc1000). Then, 2920 features are produced by each

network and these produced features are combined to

obtain a new feature vector with a total length of 5840.

Feature Selection

Iterative Chi2 (IChi2) [21] algorithm is an advanced

version of Chi2 algorithm which is frequently used in

literature. With this method, the most informative

features are selected iteratively. The algorithm takes the

generated deep features and prediction values as input.

Then, the weights of all features are determined using

Chi2 algorithm and the features are ranked according to

these weight values. After this process, the features are

selected and classified iteratively in order. The point

where the highest classification accuracy is obtained is

determined as the optimum number of features. kNN

algorithm is used as classifier in IChi2 algorithm. The

selected features are classified with this method in each

iteration and the number of features for which the highest

classification result is calculated is determined. The

pseudo code of IChi2 algorithm used to select the most

informative features in the developed architecture is

given in Algorithm 3.

Algorithm 3. Iterative Chi2 approach

No IChi2 procedures

1: def IterativeChi2(data, target, max_features):

2: # Step 1: Initialize variables

3: index = FeatureSelector(data, target) # Qualified feature indices

4: selected_features = []

5: # Step 2: Iteratively select features

6: for i in range(max_features):

7: losses = []

8: for j in index:

9: temp_features = selected_features + [data[:, j]]

10: loss = ComputeLoss(temp_features, target)

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

132

11: losses.append(loss)

12: # Step 3: Select feature with minimum loss

13: min_loss_index = ArgMin(losses)

14: selected_features.append(data[:, index[min_loss_index]])

15: index.remove(index[min_loss_index])

16: # Step 4: Return final selected features

17: return selected_features

18: def FeatureSelector(data, target):

19: # Implement feature selection logic based on Chi2 criteria

20: return QualifiedIndices(data, target)

21: def ComputeLoss(features, target):

22: # Calculate the loss value for the selected feature vector

23: return LossFunction(features, target)

24: def ArgMin(values):

25: # Find the index of the minimum value in the list

26: return values.index(min(values))

Classification

The last phase of the developed model is classification.

For this process, a shallow classifier, the SVM [17]

algorithm, was used. In this algorithm, which works very

well on high-dimensional data sets, the 3rd degree

polynomial kernel (Cubic SVM) was preferred. Two

different strategies were applied to verify the developed

model. These are 10-fold CV and hold-out (80:20) CV

techniques, respectively.

Experimental Results and Discussion

Experimental Setup

The model developed in this research consists of three

main phases. These phases are deep feature extraction,

iterative feature selection and classification, respectively.

DenseNet201[19] and ResNet50 [20] architectures were

used for deep feature extraction. Feature extraction was

provided from these pre-trained networks through

transfer learning. Feature vectors were obtained using the

last fully connected layer and the last pooling layers. In

the feature selection phase of the model, the IChi2 [21]

algorithm, an advanced version of the Chi2 method, was

used. In the last phase of the architecture, the SVM [17]

algorithm, a well-known method in the literature, was

preferred.

The developed model was coded on the MATLAB 2021b

platform. In addition, the MATLAB Classification

Learner Toolbox was used for the classification process.

The model was developed on a basic server and no GPU

card was used. All operations were carried out on the

CPU. The computer used in the test process has an Intel

Xeon 2.7 GHz processor, 256 GB RAM and 500 GB hard

disk, respectively, and there is no GPU card among the

hardware. In the testing phase of the model, 10-fold CV

and 80:20 hold-out CV strategies were applied. To

evaluate the classification performance of the model,

accuracy, precision, recall and F1-Score values were

calculated. In order to calculate these values, a confusion

matrix was created for each validation strategy.

Results

The developed model was tested on a dataset consisting

of 7 classes and containing open access images of cotton

plant diseases. In the test phase, 10-fold and 80:20 hold-

out CV strategies were applied. Confusion matrix was

calculated for both strategies and performance metric

values were determined using this matrix. Confusion

matrices calculated for 10-fold and 80:20 hold-out CV

techniques as a result of the test processes are given in

Figure 5.

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

133

(a) (b)

(c) (d)

Figure 5. Confusion matrices obtained as a result of the test operations (a) 80:20 hold-out CV for Dataset-1 (b) 80:20

hold-out CV for Dataset-2 (c) 10-fold CV for Dataset-1 (d) 10-fold CV for Dataset-2

Confusion matrices obtained for both verification

techniques are given in Figure 5. The classes in these

matrices (Figure 4-(a) and (c)) are as follows: 1- Healthy

Leaf, 2- Bacterial Blight, 3- Curl Virus, 4- Herbicide

Growth Damage, 5- Leaf Hopper Jassids, 6- Leaf

Redding and 7- Leaf Variegation (for Dataset-1). In

addition, for Dataset-2, classes are as follows: 1- Healthy

Leaf, 2- Bacterial Blight, 3- Curl Virus and 4- Fussarium

Wilt, respectively. In this context, the performance

metric values calculated using the matrices given in

Figure 4 are given in Table 2.

Table 2. Performance metric values

Metric 80:20 Hold-out CV 10-fold CV 80:20 Hold-out CV 10-fold CV

Accuracy 96.96 97.29 96.94 91.73

Average Precision 97.37 97.45 98.09 91.23

Unweighted Average Recall 96.14 97.00 87.95 63.09

Average F1 Score 96.69 97.21 92.47 71.38

Geometric Mean 96.08 96.99 87.57 57.67

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

134

When the results given in Table 2 are examined, it is seen

that the developed method reaches an accuracy value

higher than 96% on both verification techniques for

Dataset-1. In addition, this situation is valid for all metric

values. When the similar situation is analyzed for

Dataset-2, it is seen that the accuracy values are 96.94%

and 91.73% for 80:20 hold-out CV and 10-fold CV,

respectively. The obtained results show that the proposed

method can classify cotton plant diseases with high

accuracy. Both of the open access datasets used in this

research have an unbalanced distribution and contains a

limited amount of raw images. However, the developed

model has managed to overcome all these problems.

Discussion

The dataset used in the study is shared as open access and

basically contains 2137 images. This dataset, which

contains images of disease types of cotton plants, has 7

classes including healthy class images. These classes are

Healthy Leaf, Bacterial Blight, Curl Virus, Herbicide

Growth Damage, Leaf Hopper Jassids, Leaf Redding and

Leaf Variegation, respectively. In this context, the

comparison results with other studies using the same

dataset are given in Table 3.

Table 3. Comparison results (for Dataset-1)

Author(s) and Year Dataset Method Validation Result(s)

Bishshash et al., 2024 7000 augmented

images, 7 class

Data augmentation

and Inception V3

80:20 hold-out CV Acc.=96.03

Our Method
2137 raw images,

7 class

DenseNet201,

ResNet50, IChi2,

SVM

80:20 hold-out CV

Acc.=96.96

APre.=97.37

UAR.=96.14

AF1.=96.69

Gm.=96.08

10-fold CV

Acc.=97.29

APre.=97.45

UAR.=97.00

AF1.=97.21

Gm.=96.99

*Acc.=Accuracy, Apre.=Average Precision, UAR.=Unweighted Average Recall, AF1.=Average F1 Score,

Gm.=Geometric Mean

The studies given in Table 3 are the studies that used the

same dataset as the dataset used in this research. As can

be seen from the table, Bishhash et al. [18] applied only

the 80:20 hold-out CV strategy as the verification

technique. Two different verification techniques were

used in our research, and the classification performance

in both approaches was higher than the other research. In

addition, Bishhash et al. [18] trained the InceptionV3

architecture they used in their research end-to-end. Deep

learning architectures need a lot of data to perform well.

For this reason, the data augmentation approach was used

in their research, and thus both the number of images was

increased and a balanced dataset was obtained. In our

research, the raw image dataset was used directly without

using any data augmentation approach. Despite this

situation, high classification success was achieved in all

performance metric values. As stated in other sections,

the IChi2 [21] approach was used in this study, and thus

the most informative features were selected. An

advanced version of the Chi2 algorithm was used in the

feature selection procedure. This approach, called

Iterative Chi2, aims to determine the optimum number of

features to be selected. In the test operations performed,

the IChi2 algorithm selected a total of 788 features from

the feature vector of length 5840. In the process of

selecting the feature vector, the iteration range was

determined to be between 100-1000. In other words, the

first 100 features with the highest weight were directly

selected and then the remaining features were tested

iteratively to determine the optimum point. A graph of

this test operation is given in Figure 6.

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

135

Figure 6. Changes in the classification accuracies obtained with the IChi2 [21] method

As given in Figure 6, the developed model showed an

increase from 94% to approximately 97%. In the test

process given here, the 10-fold CV method was used as

a verification technique and a total of 788 features were

selected according to the accuracy values obtained in

Figure 6. In the last test phase of the model, classification

algorithms were considered. At this stage, Decision Tree

(DT), SVM, kNN and Neural Network (NN) algorithms

were tested respectively. The results of this test process

are as given in Figure 7.

Figure 7. Performance of classification algorithms on the Dataset-1

As given in Figure 7, the highest classification accuracy

was obtained with the SVM algorithm, and the results

given in this graph were obtained by applying the 10-fold

CV strategy. In this test process, where a total of 788

features were classified, the lowest accuracy value of

67.1% was obtained with the DT algorithm.

The proposed model is particularly designed to

address computational efficiency concerns by avoiding

full model training and instead leveraging pre-trained

deep networks for feature extraction. This approach is

computationally much lighter compared to fine-tuning or

training a deep model from scratch. Additionally, after

feature extraction, the feature selection process further

optimizes the model by reducing the number of

dimensions fed into the classifier. To evaluate the

feasibility of real-time applications, the inference time

per image was measured, showing that the feature

extraction and classification pipeline can process an

image in approximately 2.75 seconds on a standard CPU

configuration. This demonstrates that the model can be

adapted for real-world applications with further

optimizations, such as hardware acceleration via GPUs

or edge AI solutions. To further evaluate the

effectiveness of the proposed approach, additional

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

136

experiments were conducted using DenseNet201 and

ResNet50 separately, without deep feature

concatenation. In these scenarios, deep features were

extracted from each network individually, followed by

feature selection with the IChi2 algorithm and

classification using the SVM classifier. This experiment

was designed to determine whether the integration of

DenseNet201 and ResNet50 significantly contributes to

classification performance or if a single network is

sufficient for accurate disease detection. The

comparative results of these experiments are presented in

Figure 8.

Figure 8. Performance of classification algorithms on the Dataset

As shown in the figure, DenseNet201 alone achieved an

accuracy of approximately 94.2%, while ResNet50 alone

reached 93.5%. Although both architectures performed

well individually, their accuracy was notably lower than

the 97.29% achieved when using their combined feature

representations. This highlights the complementary

nature of the features extracted from both networks,

reinforcing that their integration enables a more

comprehensive and discriminative feature

representation. Furthermore, despite the datasets being

imbalanced and no data augmentation being applied, the

proposed approach successfully achieved high accuracy

across both datasets. These findings confirm that the

combination of deep feature extraction and feature

selection plays a critical role in maximizing classification

performance while maintaining computational

efficiency.

One of the key contributions of this study is

demonstrating that high classification accuracy can be

achieved without the use of data augmentation

techniques. Although data augmentation is commonly

employed to balance datasets and improve model

performance, the proposed approach successfully

classified imbalanced datasets from two different regions

with high accuracy rates, achieving over 97%

classification success. This result is particularly

significant as it shows that the method can effectively

extract discriminative features without artificially

increasing the number of training samples.

The fact that both datasets were imbalanced yet still

yielded high classification performance further

emphasizes the strength of the proposed model. Instead

of relying on data augmentation, this study focused on

feature selection and efficient model design to enhance

classification performance. This approach ensures that

the model is not overly dependent on synthetic data

generation and can generalize well to real-world

scenarios. The ability to classify raw images with high

accuracy is a valuable outcome, as it demonstrates the

potential for real-world applicability without the need for

complex preprocessing techniques.

Conclusion

Ensuring continuity in the agricultural sector is a very

important issue for today's world. In particular, it is

necessary to use scientific approaches to protect the

ecological balance, obtain high-yield products and

transfer soils efficiently to future generations. Today,

artificial intelligence technologies are actively used by

many different disciplines and very successful results are

obtained. In this study, it was aimed to detect the diseases

of the cotton plant, which has a very important place

among agricultural plants.

Within the scope of this research, two open-access

datasets were tested with the developed model, and

multi-class classification was performed. The first

dataset consists of 7 classes, including 1 healthy and 6

diseased categories, and contains a total of 2137 images

collected using a simple phone camera. Similarly, the

second dataset includes 980 images, covering both

healthy and diseased cotton leaves with an imbalanced

class distribution. The images in both datasets were

collected under diverse environmental conditions to

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

137

enhance model robustness. With the proposed

architecture, deep feature extraction was performed on

these datasets, and classification was conducted using the

SVM algorithm. The developed model was designed

within a lightweight framework, avoiding

computationally expensive end-to-end training. As

artificial intelligence-based methods typically require

large amounts of data for optimal performance, this study

aimed to classify raw images without applying any data

augmentation techniques. Despite the challenges posed

by imbalanced datasets, the proposed approach

successfully achieved classification accuracy exceeding

97%. The results obtained in this research demonstrate

that the developed method can be effectively utilized for

detecting cotton plant diseases across different datasets

and environmental conditions.

Ethics committee approval and conflict of

interest statement

Ethics committee approval is not required for this study.

The author declares that there is no conflict of interest

with any person/institution in the prepared article.

Authors’ Contributions

The author designed the model and processes, created

the analysis methods, developed the software code to

implement the processes, performed the tests, evaluated

the results and contributed to manuscript preparation.

References

[1] R. F. Caldeira, W. E. Santiago, and B. Teruel,

“Identification of cotton leaf lesions using deep

learning techniques,” Sensors, vol. 21, no. 9, 2021,

doi: 10.3390/s21093169.

[2] P. R. Rothe and R. V. Kshirsagar, “Cotton leaf

disease identification using pattern recognition

techniques,” 2015 Int. Conf. Pervasive Comput.

Adv. Commun. Technol. Appl. Soc. ICPC 2015,

vol. 00, no. c, pp. 1–6, 2015, doi:

10.1109/PERVASIVE.2015.7086983.

[3] B.-A. S. Bashish Al Dheeb,Braik Malik,

“Detection and Classification of Leaf Diseases

using K-means-based Segmentation and Neural-

networks-based Classification,” vol. 10, 2011.

[4] T. Rumpf, A. K. Mahlein, U. Steiner, E. C. Oerke,

H. W. Dehne, and L. Plümer, “Early detection and

classification of plant diseases with Support Vector

Machines based on hyperspectral reflectance,”

Comput. Electron. Agric., vol. 74, no. 1, pp. 91–

99, 2010, doi: 10.1016/j.compag.2010.06.009.

[5] C. Hillnhütter and A. K. Mahlein, “Neue Ansätze

zur frühzeitigen Erkennung und Lokalisierung von

Zuckerrübenkrankheiten,” Gesunde Pflanz., vol.

60, no. 4, pp. 143–149, 2008, doi: 10.1007/s10343-

008-0196-0.

[6] A. Jenifa, R. Ramalakshmi, and V. Ramachandran,

“Cotton Leaf Disease Classification using Deep

Convolution Neural Network for Sustainable

Cotton Production,” 2019 Int. Conf. Clean Energy

Energy Effic. Electron. Circuit Sustain. Dev.

INCCES 2019, pp. 19–21, 2019, doi:

10.1109/INCCES47820.2019.9167715.

[7] B. S. Prajapati, V. K. Dabhi, and H. B. Prajapati,

“A survey on detection and classification of cotton

leaf diseases,” Int. Conf. Electr. Electron. Optim.

Tech. ICEEOT 2016, pp. 2499–2506, 2016, doi:

10.1109/ICEEOT.2016.7755143.

[8] N. Parashar and P. Johri, “Deep Learning for

Cotton Leaf Disease Detection,” Proc. - 2nd IEEE

Int. Conf. Device Intell. Comput. Commun.

Technol. DICCT 2024, no. Dl, pp. 158–162, 2024,

doi: 10.1109/DICCT61038.2024.10533021.

[9] M. M. Islam et al., “A deep learning model for

cotton disease prediction using fine-tuning with

smart web application in agriculture,” Intell. Syst.

with Appl., vol. 20, no. January, p. 200278, 2023,

doi: 10.1016/j.iswa.2023.200278.

[10] M. Azath, M. Zekiwos, and A. Bruck, “Deep

Learning-Based Image Processing for Cotton Leaf

Disease and Pest Diagnosis,” J. Electr. Comput.

Eng., vol. 2021, 2021, doi: 10.1155/2021/9981437.

[11] C. K. Rai and R. Pahuja, “Classification of

Diseased Cotton Leaves and Plants Using

Improved Deep Convolutional Neural Network,”

Multimed. Tools Appl., vol. 82, no. 16, pp. 25307–

25325, 2023, doi: 10.1007/s11042-023-14933-w.

[12] A. Kaur, V. Kukreja, M. Kumar, A. Choudhary,

and R. Sharma, “A Fine-tuned Deep Learning-

based VGG16 Model for Cotton Leaf Disease

Classification,” 2024 5th Int. Conf. Emerg.

Technol. INCET 2024, pp. 1–6, 2024, doi:

10.1109/INCET61516.2024.10593164.

[13] H. Kukadiya, N. Arora, D. Meva, and S.

Srivastava, “An ensemble deep learning model for

automatic classification of cotton leaves diseases,”

Indones. J. Electr. Eng. Comput. Sci., vol. 33, no.

3, pp. 1942–1949, 2024, doi:

10.11591/ijeecs.v33.i3.pp1942-1949.

[14] B. Kavinandhan, R. Pranav, and M. Ganesan, “A

Hybrid Approach for Cotton Leaf Disease

Detection using DCGAN and Diverse CNN

Models,” 2024 5th Int. Conf. Innov. Trends Inf.

Technol. ICITIIT 2024, pp. 1–8, 2024, doi:

10.1109/ICITIIT61487.2024.10580758.

DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138

138

[15] C. K. Rai and R. Pahuja, An ensemble transfer

learning-based deep convolution neural network

for the detection and classification of diseased

cotton leaves and plants, no. 0123456789.

Springer US, 2024. doi: 10.1007/s11042-024-

18963-w.

[16] A. Saleh et al., “Machine Learning-based

classification of cotton diseases using mobilenet

and Support Vector Machine,” 2024 Int.

Telecommun. Conf. ITC-Egypt 2024, pp. 165–171,

2024, doi: 10.1109/ITC-

Egypt61547.2024.10620532.

[17] W. S. Noble, “What is a support vector machine?,”

Nat. Biotechnol., vol. 24, no. 12, pp. 1565–1567,

2006.

[18] P. Bishshash, M. A. S. Nirob, M. H. Shikder, M.

A. H. Sarower, D. T. Bhuiyan, and S. R. H. Noori,

“A Comprehensive Cotton Leaf Disease Dataset

for Enhanced Detection and Classification,” Data

Br., vol. 57, p. 110913, 2024, doi:

10.1016/j.dib.2024.110913.

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.

Weinberger, “Densely connected convolutional

networks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017,

pp. 4700–4708.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” in

Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 770–778.

[21] M. Erten and T. Tuncer, “Automated differential

diagnosis method for iron deficiency anemia and

beta thalassemia trait based on iterative Chi2

feature selector,” Int. J. Lab. Hematol., vol. 44, no.

2, pp. 430–436, 2022.

