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Introduction 

Sustainable agriculture is among the areas where 

researchers are working intensively today. The efficient 

execution of the life cycle of agricultural products is of 

critical importance in terms of meeting the needs of the 

increasing population. The economic gains of countries are 

directly proportional to the quality and quantity of the 

products. In this context, the cotton plant is one of the 

products used in natural fiber production worldwide and 

provides significant contribution to the economy. Cotton, 

which is produced in approximately 100 countries, covers 

about 2.5% of the world’s arable land [1].  

Diseases in cotton leaves can reduce product productivity 

and cause economic losses. Traditionally, lesions in cotton 

leaves are evaluated by experts with the naked eye [2]. 

However, this method is time-consuming, costly and 

sometimes misleading. In terms of product productivity, 

monitoring large agricultural areas and detecting diseases 

quickly and accurately at low cost are of great importance 

[3-5]. Various approaches have been developed in the 

literature for the detection of these diseases, and methods 

such as image processing, machine learning and deep 

learning are frequently used among these approaches. When 

the diseases seen in cotton leaves are examined, 

approximately 80-90% of these diseases consist of certain 

species. These are diseases such as Cercospora, Bacterial 

Blight, Red Spot, Ascochyta Blight, Target Spot, etc. [6-7]. 

Cotton plants are vulnerable to pathogens such as bacteria, 

viruses, and fungi. In a study conducted by Parashar et al., 

diseases occurring on cotton leaves were detected and 

labeled and divided into two classes as healthy and 

diseased. In this study, a Convolutional Neural Network 

(CNN) model was developed to improve cotton leaf 

diseases and the MobileNetV2 model was used to optimize 

it. With the 99.91% accuracy rate obtained, the proposed 

model has the potential to be compatible with mobile 

devices and is shown to be usable by farmers [8]. Artificial 

intelligence-based applications can help increase cotton 

production efficiency by detecting cotton leaf diseases 

early. In a study conducted by Islam et al., the performances 

of deep network architectures such as Xception, VGG-16, 

VGG-19, and Inception-V3 were examined using the 

transfer learning approach. As a result of the study, an 

accuracy rate of 98.70% was achieved, and this accuracy 

value was obtained with the Xception deep network 

architecture [9]. 

As a result, meeting the needs of sustainable agriculture and 

increasing population and maintaining environmental 

balance are of critical importance today. Studies carried out 
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on plants such as cotton and developed technological 

solutions have an important role in achieving these goals. 

The widespread use of artificial intelligence techniques in 

the agricultural sector will contribute to the creation of 

efficient, sustainable systems in the future. In this study, a 

new approach was proposed for the automatic detection of 

diseases occurring on the cotton plant, which is of critical 

importance today. With the proposed approach, a 

classification performance of over 96% was achieved on a 

six-class, unbalanced data. 

Literature Survey 

The use of machine learning for detecting cotton leaf 

diseases is an important factor in improving agricultural 

productivity. As seen in Table 1, when the studies in the 

literature are examined, it is seen that different machine 

learning techniques, especially deep learning models, have 

been developed to increase the diagnosis and accuracy rates 

of the disease. 

Table 1. Recent studies on cotton leaf disease detection methods in the literature 

Author (s) 

and Year 

Dataset 

(s) 

Disease Method (s) Result (s) (%) Key Points 

Azath M. et 

al. 2021 [10]  

2400 

image 

4 class 

-Bacterial blight 

-Healthy 

-Leaf miner 

-Spider mite 

CNN Acc. = 96.4 -Detection of cotton 

leaf disease and pests 

-Feature extraction 

process 

-K-fold cross-

validation 

-Unbalanced dataset 

Chitranjan K. 

et al. 2023 

[11] 

2293 

image 

4 class 

-Diseased cotton leaf 

-Diseased cotton plant 

-Fresh cotton leaf 

-Fresh cotton plant 

DCNN Acc. = 97.98 -Identify and predict 

cotton plant disease 

-Data augmentation 

Kaur A. et al. 

2024 [12] 

1711 

image 

4 class 

-Bacterial blight 

-Curl virus 

-Fusarium wilt 

-Healthy 

VGG16 Acc. = 95.5 -Disease 

management of 

cotton crops 

-Small sample size 

-Data augmentation 

 

Kukadiya H. 

et al. 2024 

[13] 

 4 class 

-Bacterial blight 

-Curl virus 

-Fusarium wilt 

-Healthy 

VGG16 

InceptionV3 

DCNN 

Acc. = 98 -Early detection of 

diseases affecting 

cotton leaves 

-Small size dataset 

 

Kavinandhan 

B. et al. 2024 

[14] 

1786 

image 

4 class 

-Bacterial blight, 

-Curl virus,  

-Fusarium wilt  

-Healthy 

DCGAN  

InceptionV3 

VGG16 

ResNet 50  

MobileNet V2 

Acc. = 99 -Automated 

computer vision 

detection for cotton 

leaf diseases 

-Unbalanced dataset  

-Data augmentation 
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CNN  

Rai K. C. et 

al. 2024 [15] 

1700 

image 

2 class 

-Diseased cotton plant 

-Fresh cotton plants 

 

4 class 

-Blight 

-Curl 

-Healthy 

-Wilt 

InceptionV3, 

InceptionResNetV2 

VGG16 

MobileNet 

Xception 

Acc. = 99.48 -Detection and 

classification of 

diseased cotton 

leaves and plants 

-Data augmentation 

 

Saleh A. et al. 

2024 [16] 

2293 

image 

4 class 

-Cotton leaf, diseased  

-Cotton plant,  

-Fresh cotton leaf,  

-Fresh cotton plant 

SVM-VGG16 

MobileNet 

Acc. = 91 

Acc. = 99 

-Detection cotton 

diseases before they 

spread to crops 

-Data augmentation 

 

When the studies given in Table 1 are examined, it is seen 

that these studies generally focus on 4 classes [10,13]. In 

addition, the majority of the studies use data 

augmentation methods [11,14-16]. The most important 

reason for this situation is that data sets are generally 

small in size [12], have an unbalanced distribution 

[10,14] and artificial intelligence methods require a large 

amount of data. The aim of this study is to eliminate all 

these deficiencies. In this context, it is aimed to classify 

an unbalanced data set without using any data 

augmentation technique. A multi-class, unbalanced data 

set was classified with the developed model and a 

classification result of over 96% was obtained.  

Literature Gap 

Some literature gaps observed as a result of the 

literature studies given in Table 1 are listed below: 

➢ Methods performed in the literature on image 

classification generally use deep learning 

approaches. However, these studies generally 

prefer the end-to-end training solution. 

➢ Deep learning approaches require a lot of data 

and a balanced data set due to their structure. For 

this reason, researchers generally need methods 

such as data augmentation and balance the data 

set with this approach. 

➢ Since researchers generally use the end-to-end 

training approach, the computational complexity 

of these architectures is quite high. 

This study aimed to fill the literature gaps listed above. 

In this context, an open access data set was used and the 

classification process was performed directly on the data 

set without any preprocessing. 

Motivation and Proposed Model 

In this study, a new machine learning approach has been 

developed for automatic detection of diseases occurring 

in cotton plants. The developed architecture was tested 

on an open access cotton leaf disease dataset and a 

classification accuracy of over 96% was achieved. The 

dataset used in the study has 7 classes and is basically 

unbalanced. The researchers who shared the dataset 

applied data augmentation techniques to balance the 

dataset. However, in this study, the classification process 

was performed using only raw leaf images. 

Deep feature extraction was achieved in the study using 

the transfer learning approach. For this process, some 

pre-trained deep network architectures were tested and 

the two deep network architectures with the highest 

performance were preferred. Later, the feature vector 

was obtained using the fully connected and pooling 

layers of these networks. The feature selection algorithm 

was applied to reduce the size of the obtained feature 

vector and to reduce the computational complexity of the 

architecture. In this step where the Iterative Chi2 method 

was preferred, the optimum number of features was 

selected and thus the selected feature vector was 

obtained. In the last stage of the system, the SVM method 

[17], a well-known classification algorithm in the 

literature, was preferred. An accuracy value of over 96% 
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was achieved with the SVM algorithm, which is basically 

a lightweight classification approach.  

Although DenseNet201 and ResNet50 are deep learning 

architectures with high computational complexity, our 

approach does not perform end-to-end training. Instead, 

we use these networks in a transfer learning manner, 

extracting feature vectors from pre-trained models. This 

significantly reduces the computational burden 

compared to full model training. Additionally, by 

employing feature selection using the Iterative Chi2 

algorithm, we minimize the number of features 

processed in the classification phase, making our model 

more efficient. The feature selection step reduces the 

final input size to the classifier, thereby improving both 

inference speed and memory efficiency. 

Dataset 

In this study, two open-access datasets for cotton leaf 

disease detection were utilized to enhance the robustness 

and generalizability of the proposed model. The first 

dataset was obtained from the National Cotton Research 

Institute field in Gazipur, Bangladesh, while the second 

dataset was collected from cotton fields in India. These 

datasets contain images of cotton leaves affected by 

various diseases, as well as healthy leaves, captured 

under different environmental conditions. 

The first dataset consists of a total of 2137 original 

images, which are divided into 7 different classes: 

bacterial blight, curl virus, herbicide growth damage, leaf 

hopper jassids, leaf reddening, leaf variegation, and 

healthy leaves [18]. The images were systematically 

collected over the course of approximately one year 

using a Redmi Note 11s model smartphone under 

varying lighting conditions. Additionally, the dataset 

contains 7000 augmented images created through data 

augmentation techniques. However, in this study, only 

the original images were used, and the augmented images 

were excluded to evaluate the classification performance 

on raw data. The images corresponding to the first dataset 

are shown in Figure 1. 

The second dataset comprises 980 images of cotton 

leaves affected by various diseases, as well as healthy 

leaves. The images are meticulously organized into 

different disease categories and collected under diverse 

environmental conditions to improve the robustness of 

machine learning models. Similar to the first dataset, this 

dataset also exhibits an imbalanced distribution, with 

certain disease categories having significantly fewer 

images than others. The dataset includes images of 

healthy cotton leaves, as well as leaves affected by 

bacterial blight, fusarium wilt, and curl virus. The images 

corresponding to the second dataset are shown in Figure 

2. By incorporating two datasets from different 

geographical regions, this study aims to improve the 

generalization ability of the model and evaluate its 

robustness against varying environmental factors. 

 

   
(a) Healthy Leaf (b) Bacterial Blight (c) Curl Virus 

   

(d) Herbicide Growth 

Damage 
(e) Leaf Hopper Jassids (f) Leaf Redding 

 
(g) Leaf Variegation 

Figure 1. Cotton leaf diseases for Dataset-1 
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(a) Healthy Leaf (b) Bacterial Blight 

  
(c) Herbicide Growth Damage (d) Leaf Hopper Jassids 

Figure 2. Cotton leaf diseases for Dataset-2 

 

Proposed Method 

In this study, a new deep feature extraction approach is 

proposed for automatic identification and classification 

of cotton leaf disease. The deep feature extraction-based 

architecture developed for this unbalanced dataset, where 

no data augmentation method is applied, is given in 

Figure 3. 

 

 

 

Figure 3. DenseNet201 [19] and ResNet50 [20] based deep feature extraction 
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As given in Figure 3, the system first takes the cotton leaf 

dataset as input. Then, it gives these images as input to 

both deep network architectures. In this phase, pre-

trained networks are used and deep feature extraction is 

performed. In this way, instead of end-to-end training, 

previously determined weights of the networks are used 

and an approach with lower computational complexity is 

obtained. In this phase, features are extracted using the 

last fully connected layers and the last pooling layers of 

the networks. After this phase, the feature vectors 

obtained using both networks are combined and a feature 

vector representing the performance of both networks is 

obtained. In the next phase of the system, feature 

selection is performed using the iterative Chi2 algorithm. 

The most informative features are selected with this 

method. The reason for using the iterative approach is to 

determine the optimum number of feature vectors. The 

selected features in this phase are given as input to SVM 

[17], a shallow classifier. The selected feature vectors are 

classified with the SVM algorithm and the estimated 

values are obtained. These steps are explained in detail 

in the subsections. 

Feature Extraction and Concatenation 

The most important phase of the developed architecture 

is features extraction. In this phase, where the deep 

feature extraction approach is adopted, feature extraction 

is performed using the final pooling and fully connected 

layers of DenseNet201[19] and ResNet50 [20] 

architectures. In this context, the pseudo codes of 

DenseNet201 and ResNet50 architectures are given in 

Algorithms 1 and 2, respectively.  

Algorithm 1. Pseudocode of DenseNet201 Architecure 

No DenseNet201 Architecture 

1: def DenseNet201(): 

2:     x = Conv(64, 7x7, stride=2)  # Initial Conv 

3:     x = MaxPool(3x3, stride=2)   # Initial Pool 

4:     # Dense Blocks with Transition Layers 

5:     for layers, growth_rate in [(6, 32), (12, 32), (48, 32), (32, 32)]: 

6:         x = DenseBlock(x, layers, growth_rate) 

7:         if layers != 32:  # No transition after the last DenseBlock 

8:             x = TransitionLayer(x, 0.5) 

9:     # Classification 

10:     x = GlobalAvgPool(x)  # Global Average Pooling 

11:     x = FullyConnected(x, num_classes, activation=softmax)  # Fully Connected Layer 

12:     return x 

13: def DenseBlock(x, layers, growth_rate): 

14:     for _ in range(layers): 

15:         x = Concatenate([x, Conv(growth_rate, 3x3, padding=same, activation=ReLU, batch_norm=True)]) 

16:     return x 

17: def TransitionLayer(x, reduction): 

18:     return AvgPool(Conv(int(x.filters * reduction), 1x1, activation=ReLU, batch_norm=True), 2x2, 

stride=2) 

19: def FullyConnected(x, units, activation): 

20:     return Dense(x, units, activation=activation) 

Algorithm 2. Pseudocode of ResNet50 Architecure 

No ResNet50 Architecture 

1: def ResNet50(): 

2:     x = Conv(64, 7x7, stride=2, activation=ReLU, batch_norm=True)  # Initial Conv 

3:     x = MaxPool(3x3, stride=2)  # Initial Pool 

4:     # Residual Blocks 

5:     for filters, blocks, strides in [(64, 3, 1), (128, 4, 2), (256, 6, 2), (512, 3, 2)]: 

6:         x = ResidualGroup(x, filters, blocks, strides) 

7:     # Classification 

8:     x = GlobalAvgPool(x) 

9:     return FullyConnected(x, num_classes, activation=softmax) 

10: def ResidualGroup(x, filters, blocks, strides): 

11:     x = ResidualBlock(x, filters, strides)  # First block with downsampling 

12:     for _ in range(1, blocks): 

13:         x = ResidualBlock(x, filters)  # Remaining blocks 

14:     return x 

15: def ResidualBlock(x, filters, strides=1): 

16:   shortcut = Conv(filters * 4, 1x1, stride=strides, batch_norm=True) if strides > 1 or x.filters != filters * 

4 else x 
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17:     x = Conv(filters, 1x1, stride=strides, activation=ReLU, batch_norm=True) 

18:     x = Conv(filters, 3x3, activation=ReLU, batch_norm=True) 

19:     x = Conv(filters * 4, 1x1, batch_norm=True) 

20:     return ReLU(Add(x, shortcut)) 

21: def FullyConnected(x, units, activation): 

22:     return Dense(x, units, activation=activation) 

The developed model performs deep feature extraction 

using two pre-trained networks. These networks are 

DenseNet201 and ResNet50 architectures, respectively. 

In the feature generation phase, features are extracted 

using the final pooling and fully connected layer. The 

system uses the “fc1000” and “avg_pool” layers of the 

DenseNet201 architecture. These layers represent the 

fully connected and pooling layers, respectively. Again, 

1000 and 1920 features are produced from these layers, 

respectively. In this way, a feature vector of 2920 

(=1000+1920) length is obtained per image in total using 

the DenseNet201 architecture. A similar situation is valid 

for the ResNet50 architecture, and features are produced 

from the “fc1000” and “avg_pool” layers in this 

architecture. Similar to the DenseNet201 architecture, 

1000 and 1920 features are produced from these layers, 

respectively, and thus a feature vector of 2920 

(=1000+1920) length is obtained. In the next stage of the 

architecture, the feature vectors obtained using both deep 

networks are combined and a new feature vector of 5840 

(=2920 from DenseNet201 + 2920 from ResNet50) 

length is provided, which uses the power of the two 

networks. A block diagram summarizing these process 

steps is given in Figure 4. 

 

Figure 4. Deep features extraction and features concatenation 

 

As given in Figure 4, the system uses two separate pre-

trained deep network architectures to extract features 

from final pooling (avg_pool) and fully connected layers 

(fc1000). Then, 2920 features are produced by each 

network and these produced features are combined to 

obtain a new feature vector with a total length of 5840. 

Feature Selection 

Iterative Chi2 (IChi2) [21] algorithm is an advanced 

version of Chi2 algorithm which is frequently used in 

literature. With this method, the most informative 

features are selected iteratively. The algorithm takes the 

generated deep features and prediction values as input. 

Then, the weights of all features are determined using 

Chi2 algorithm and the features are ranked according to 

these weight values. After this process, the features are 

selected and classified iteratively in order. The point 

where the highest classification accuracy is obtained is 

determined as the optimum number of features. kNN 

algorithm is used as classifier in IChi2 algorithm. The 

selected features are classified with this method in each 

iteration and the number of features for which the highest 

classification result is calculated is determined. The 

pseudo code of IChi2 algorithm used to select the most 

informative features in the developed architecture is 

given in Algorithm 3. 

 

Algorithm 3. Iterative Chi2 approach 

No IChi2 procedures 

1: def IterativeChi2(data, target, max_features): 

2:     # Step 1: Initialize variables 

3:     index = FeatureSelector(data, target)  # Qualified feature indices 

4:     selected_features = [] 

5:     # Step 2: Iteratively select features 

6:     for i in range(max_features): 

7:         losses = [] 

8:         for j in index: 

9:             temp_features = selected_features + [data[:, j]] 

10:             loss = ComputeLoss(temp_features, target) 
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11:             losses.append(loss) 

12:         # Step 3: Select feature with minimum loss 

13:         min_loss_index = ArgMin(losses) 

14:         selected_features.append(data[:, index[min_loss_index]]) 

15:         index.remove(index[min_loss_index]) 

16:     # Step 4: Return final selected features 

17:     return selected_features 

18: def FeatureSelector(data, target): 

19:     # Implement feature selection logic based on Chi2 criteria 

20:     return QualifiedIndices(data, target) 

21: def ComputeLoss(features, target): 

22:     # Calculate the loss value for the selected feature vector 

23:     return LossFunction(features, target) 

24: def ArgMin(values): 

25:     # Find the index of the minimum value in the list 

26:     return values.index(min(values)) 

Classification 

The last phase of the developed model is classification. 

For this process, a shallow classifier, the SVM [17] 

algorithm, was used. In this algorithm, which works very 

well on high-dimensional data sets, the 3rd degree 

polynomial kernel (Cubic SVM) was preferred. Two 

different strategies were applied to verify the developed 

model. These are 10-fold CV and hold-out (80:20) CV 

techniques, respectively. 

 

Experimental Results and Discussion 

Experimental Setup 

The model developed in this research consists of three 

main phases. These phases are deep feature extraction, 

iterative feature selection and classification, respectively. 

DenseNet201[19] and ResNet50 [20] architectures were 

used for deep feature extraction. Feature extraction was 

provided from these pre-trained networks through 

transfer learning. Feature vectors were obtained using the 

last fully connected layer and the last pooling layers. In 

the feature selection phase of the model, the IChi2 [21] 

algorithm, an advanced version of the Chi2 method, was 

used. In the last phase of the architecture, the SVM [17] 

algorithm, a well-known method in the literature, was 

preferred.  

The developed model was coded on the MATLAB 2021b 

platform. In addition, the MATLAB Classification 

Learner Toolbox was used for the classification process. 

The model was developed on a basic server and no GPU 

card was used. All operations were carried out on the 

CPU. The computer used in the test process has an Intel 

Xeon 2.7 GHz processor, 256 GB RAM and 500 GB hard 

disk, respectively, and there is no GPU card among the 

hardware. In the testing phase of the model, 10-fold CV 

and 80:20 hold-out CV strategies were applied. To 

evaluate the classification performance of the model, 

accuracy, precision, recall and F1-Score values were 

calculated. In order to calculate these values, a confusion 

matrix was created for each validation strategy.  

Results 

The developed model was tested on a dataset consisting 

of 7 classes and containing open access images of cotton 

plant diseases. In the test phase, 10-fold and 80:20 hold-

out CV strategies were applied. Confusion matrix was 

calculated for both strategies and performance metric 

values were determined using this matrix. Confusion 

matrices calculated for 10-fold and 80:20 hold-out CV 

techniques as a result of the test processes are given in 

Figure 5. 
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(a) (b) 

  

(c) (d) 

Figure 5. Confusion matrices obtained as a result of the test operations (a) 80:20 hold-out CV for Dataset-1 (b) 80:20 

hold-out CV for Dataset-2 (c) 10-fold CV for Dataset-1 (d) 10-fold CV for Dataset-2 

Confusion matrices obtained for both verification 

techniques are given in Figure 5. The classes in these 

matrices (Figure 4-(a) and (c)) are as follows: 1- Healthy 

Leaf, 2- Bacterial Blight, 3- Curl Virus, 4- Herbicide 

Growth Damage, 5- Leaf Hopper Jassids, 6- Leaf 

Redding and 7- Leaf Variegation (for Dataset-1).  In 

addition, for Dataset-2, classes are as follows: 1- Healthy 

Leaf, 2- Bacterial Blight, 3- Curl Virus and 4- Fussarium 

Wilt, respectively. In this context, the performance 

metric values calculated using the matrices given in 

Figure 4 are given in Table 2. 

Table 2. Performance metric values 

Metric 80:20 Hold-out CV 10-fold CV 80:20 Hold-out CV 10-fold CV 

Accuracy 96.96 97.29 96.94 91.73 

Average Precision 97.37 97.45 98.09 91.23 

Unweighted Average Recall 96.14 97.00 87.95 63.09 

Average F1 Score 96.69 97.21 92.47 71.38 

Geometric Mean 96.08 96.99 87.57 57.67 



DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 125-138 

 

134 
 

When the results given in Table 2 are examined, it is seen 

that the developed method reaches an accuracy value 

higher than 96% on both verification techniques for 

Dataset-1. In addition, this situation is valid for all metric 

values. When the similar situation is analyzed for 

Dataset-2, it is seen that the accuracy values are 96.94% 

and 91.73% for 80:20 hold-out CV and 10-fold CV, 

respectively. The obtained results show that the proposed 

method can classify cotton plant diseases with high 

accuracy. Both of the open access datasets used in this 

research have an unbalanced distribution and contains a 

limited amount of raw images. However, the developed 

model has managed to overcome all these problems. 

Discussion 

The dataset used in the study is shared as open access and 

basically contains 2137 images. This dataset, which 

contains images of disease types of cotton plants, has 7 

classes including healthy class images. These classes are 

Healthy Leaf, Bacterial Blight, Curl Virus, Herbicide 

Growth Damage, Leaf Hopper Jassids, Leaf Redding and 

Leaf Variegation, respectively. In this context, the 

comparison results with other studies using the same 

dataset are given in Table 3. 

Table 3. Comparison results (for Dataset-1) 

Author(s) and Year Dataset Method Validation Result(s) 

Bishshash et al., 2024 7000 augmented 

images, 7 class 

Data augmentation 

and Inception V3 

80:20 hold-out CV Acc.=96.03 

Our Method 
2137 raw images, 

7 class 

DenseNet201, 

ResNet50, IChi2, 

SVM 

80:20 hold-out CV 

Acc.=96.96 

APre.=97.37 

UAR.=96.14 

AF1.=96.69 

Gm.=96.08 

10-fold CV 

Acc.=97.29 

APre.=97.45 

UAR.=97.00 

AF1.=97.21 

Gm.=96.99 

*Acc.=Accuracy, Apre.=Average Precision, UAR.=Unweighted Average Recall, AF1.=Average F1 Score, 

Gm.=Geometric Mean 

 

The studies given in Table 3 are the studies that used the 

same dataset as the dataset used in this research. As can 

be seen from the table, Bishhash et al. [18] applied only 

the 80:20 hold-out CV strategy as the verification 

technique. Two different verification techniques were 

used in our research, and the classification performance 

in both approaches was higher than the other research. In 

addition, Bishhash et al. [18] trained the InceptionV3 

architecture they used in their research end-to-end. Deep 

learning architectures need a lot of data to perform well. 

For this reason, the data augmentation approach was used 

in their research, and thus both the number of images was 

increased and a balanced dataset was obtained. In our 

research, the raw image dataset was used directly without 

using any data augmentation approach. Despite this 

situation, high classification success was achieved in all 

performance metric values. As stated in other sections, 

the IChi2 [21] approach was used in this study, and thus 

the most informative features were selected. An 

advanced version of the Chi2 algorithm was used in the 

feature selection procedure. This approach, called 

Iterative Chi2, aims to determine the optimum number of 

features to be selected. In the test operations performed, 

the IChi2 algorithm selected a total of 788 features from 

the feature vector of length 5840. In the process of 

selecting the feature vector, the iteration range was 

determined to be between 100-1000. In other words, the 

first 100 features with the highest weight were directly 

selected and then the remaining features were tested 

iteratively to determine the optimum point. A graph of 

this test operation is given in Figure 6. 
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Figure 6. Changes in the classification accuracies obtained with the IChi2 [21] method 

As given in Figure 6, the developed model showed an 

increase from 94% to approximately 97%. In the test 

process given here, the 10-fold CV method was used as 

a verification technique and a total of 788 features were 

selected according to the accuracy values obtained in 

Figure 6. In the last test phase of the model, classification 

algorithms were considered. At this stage, Decision Tree 

(DT), SVM, kNN and Neural Network (NN) algorithms 

were tested respectively. The results of this test process 

are as given in Figure 7. 

 

Figure 7. Performance of classification algorithms on the Dataset-1 

As given in Figure 7, the highest classification accuracy 

was obtained with the SVM algorithm, and the results 

given in this graph were obtained by applying the 10-fold 

CV strategy. In this test process, where a total of 788 

features were classified, the lowest accuracy value of 

67.1% was obtained with the DT algorithm. 

The proposed model is particularly designed to 

address computational efficiency concerns by avoiding 

full model training and instead leveraging pre-trained 

deep networks for feature extraction. This approach is 

computationally much lighter compared to fine-tuning or 

training a deep model from scratch. Additionally, after 

feature extraction, the feature selection process further 

optimizes the model by reducing the number of 

dimensions fed into the classifier. To evaluate the 

feasibility of real-time applications, the inference time 

per image was measured, showing that the feature 

extraction and classification pipeline can process an 

image in approximately 2.75 seconds on a standard CPU 

configuration. This demonstrates that the model can be 

adapted for real-world applications with further 

optimizations, such as hardware acceleration via GPUs 

or edge AI solutions. To further evaluate the 

effectiveness of the proposed approach, additional 
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experiments were conducted using DenseNet201 and 

ResNet50 separately, without deep feature 

concatenation. In these scenarios, deep features were 

extracted from each network individually, followed by 

feature selection with the IChi2 algorithm and 

classification using the SVM classifier. This experiment 

was designed to determine whether the integration of 

DenseNet201 and ResNet50 significantly contributes to 

classification performance or if a single network is 

sufficient for accurate disease detection. The 

comparative results of these experiments are presented in 

Figure 8.

 

Figure 8. Performance of classification algorithms on the Dataset 

As shown in the figure, DenseNet201 alone achieved an 

accuracy of approximately 94.2%, while ResNet50 alone 

reached 93.5%. Although both architectures performed 

well individually, their accuracy was notably lower than 

the 97.29% achieved when using their combined feature 

representations. This highlights the complementary 

nature of the features extracted from both networks, 

reinforcing that their integration enables a more 

comprehensive and discriminative feature 

representation. Furthermore, despite the datasets being 

imbalanced and no data augmentation being applied, the 

proposed approach successfully achieved high accuracy 

across both datasets. These findings confirm that the 

combination of deep feature extraction and feature 

selection plays a critical role in maximizing classification 

performance while maintaining computational 

efficiency. 

One of the key contributions of this study is 

demonstrating that high classification accuracy can be 

achieved without the use of data augmentation 

techniques. Although data augmentation is commonly 

employed to balance datasets and improve model 

performance, the proposed approach successfully 

classified imbalanced datasets from two different regions 

with high accuracy rates, achieving over 97% 

classification success. This result is particularly 

significant as it shows that the method can effectively 

extract discriminative features without artificially 

increasing the number of training samples. 

The fact that both datasets were imbalanced yet still 

yielded high classification performance further 

emphasizes the strength of the proposed model. Instead 

of relying on data augmentation, this study focused on 

feature selection and efficient model design to enhance 

classification performance. This approach ensures that 

the model is not overly dependent on synthetic data 

generation and can generalize well to real-world 

scenarios. The ability to classify raw images with high 

accuracy is a valuable outcome, as it demonstrates the 

potential for real-world applicability without the need for 

complex preprocessing techniques. 

Conclusion 

Ensuring continuity in the agricultural sector is a very 

important issue for today's world. In particular, it is 

necessary to use scientific approaches to protect the 

ecological balance, obtain high-yield products and 

transfer soils efficiently to future generations. Today, 

artificial intelligence technologies are actively used by 

many different disciplines and very successful results are 

obtained. In this study, it was aimed to detect the diseases 

of the cotton plant, which has a very important place 

among agricultural plants. 

Within the scope of this research, two open-access 

datasets were tested with the developed model, and 

multi-class classification was performed. The first 

dataset consists of 7 classes, including 1 healthy and 6 

diseased categories, and contains a total of 2137 images 

collected using a simple phone camera. Similarly, the 

second dataset includes 980 images, covering both 

healthy and diseased cotton leaves with an imbalanced 

class distribution. The images in both datasets were 

collected under diverse environmental conditions to 
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enhance model robustness. With the proposed 

architecture, deep feature extraction was performed on 

these datasets, and classification was conducted using the 

SVM algorithm. The developed model was designed 

within a lightweight framework, avoiding 

computationally expensive end-to-end training. As 

artificial intelligence-based methods typically require 

large amounts of data for optimal performance, this study 

aimed to classify raw images without applying any data 

augmentation techniques. Despite the challenges posed 

by imbalanced datasets, the proposed approach 

successfully achieved classification accuracy exceeding 

97%. The results obtained in this research demonstrate 

that the developed method can be effectively utilized for 

detecting cotton plant diseases across different datasets 

and environmental conditions. 
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