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Abstract
Anomalies and ill-conditioned predictors present considerable obstacles to reliable param-
eter estimation in regression models. This paper presents an innovative approach that
combines principal component regression with approximate Bayesian computation to ad-
dress these issues. Principal component regression mitigates the effects of ill-conditioned
variables by transforming highly correlated predictors into orthogonal components. Mean-
while, approximate Bayesian computation enhances robustness by approximating the pos-
terior distribution of error variance (σ2). This flexible framework models uncertainty and
noise effectively. The integration of these methods improves both parameter estimation
and anomaly detection. By assigning probabilistic scores to potential outliers, the method
provides a more accurate and nuanced identification of anomalies. Extensive validation
through simulated and real-world datasets demonstrates the favorable performance of the
proposed technique over existing robust methods. These findings highlight the potential
of approximate Bayesian computation as a powerful tool to improve the robustness and
precision of regression analyzes in noisy and complex data environments.
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1. Introduction
Anomalous data and ill-conditioned variables are common statistical challenges that

are well-documented in fields such as finance [42], healthcare [3], economics [18], damage
detection [56], and the social sciences [43, 44], especially in prediction tasks. These issues
can severely distort the results of regression analysis. Anomalies are the data points that
deviate substantially from the rest of the data. They often arise due to measurement errors
or natural variability [7, 52]. On the other hand, ill-conditioned predictors occur when
independent variables in regression are nearly collinear, leading to inflated standard errors
and unreliable parameter estimates [1, 51]. This condition makes it difficult to isolate the
individual contributions of predictors to the response variable [36]. Both anomalous data
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and ill-conditioned variables can mislead statistical inference and lead to flawed conclusions
if not appropriately addressed.

Anomalies and ill-conditioned predictors present considerable obstacles to reliable pa-
rameter estimation in regression models. This paper presents an innovative approach that
combines Principal Component Regression (PCR) with Approximate Bayesian Computa-
tion (ABC) to address these issues. PCR mitigates the effects of ill-conditioned variables
by transforming highly correlated predictors into orthogonal components. Meanwhile,
ABC enhances robustness by approximating the posterior distribution of error variance
(σ2). This flexible framework models uncertainty and noise effectively. The integration of
these methods improves both parameter estimation and anomaly detection. By assigning
probabilistic scores to potential outliers, the method provides a more accurate and nuanced
identification of anomalies. Extensive validation through simulated and real-world datasets
demonstrates the favourable performance of the proposed technique over existing robust
methods. These findings highlight the potential of ABC as a powerful tool for improving
the robustness and accuracy of regression analyses in noisy and complex data environ-
ments. The PCR offers a solution to an ill-conditioned predictor matrix by transforming
correlated predictors into orthogonal principal components [15,36,40]. These components
serve as new predictors, effectively reducing the multicollinearity problem. However, while
PCR mitigates collinearity, it remains vulnerable to outliers, which can still skew results.
To address this, various robust PCR techniques have been emerged. Walczak and Mas-
sart [54] combined robust Principal Component Analysis (PCA) using the least median
of squares regression [47] with PCR to handle outliers. Pell [45] introduced a "resampling
by halfmeans" method [20] that excludes outliers before PCA is conducted. Filzmoser
[21] proposed a robust PCR using projection pursuit proposed by Li and Chen [38]. This
technique obtains robust principal components, integrating them into the Least Trimmed
Square (LTS) regression [47] for prediction. Hubert and Verboven [32] introduced two ver-
sions of robust PCR. One for low-dimensional data (p < n) using the Minimum Covariance
Determinant (MCD) [47]. Another for high-dimensional data (p > n), incorporating the
ROBPCA method [33]. Hubert et al. [33] proposed the ROBPCA technique to cope with
high-dimensional data, including the n = p setting by integrating projection pursuit and
robust covariance estimation. Zhang et al. [62] suggested using principal sensitive vectors
[46] to detect outliers before applying classical PCR. A comparative study between robust
PCR and robust PLS was conducted by Engelen [19], focusing on efficiency, robustness,
goodness of fit and predictive power. Further innovations include functional logistic re-
gression proposed by Denhere and Billor [16] and the Bayesian framework proposed by
Gagnon et al. [22]. Recently, several robust estimators for PCR have been developed
to address multicollinearity, outliers, and high-dimensional data simultaneously. Notable
contributions include the works of Tahir and Ilyas [53], Ebiwonjumi et al. [18], Arum et
al. [5], and Dong et al. [17].

Within the Bayesian framework, various robust estimators have been developed to man-
age the influence of outliers and influential observations. One group of methods employs
probabilistic measures such as γ-divergences (e.g., [28, 58]), Kullback-Leibler divergences
[34], conditional predictive density [13], and posterior probability density function of resid-
uals [12, 61], along with measures of surprise [8]. A second group relies on heavy-tailed
likelihood functions to accommodate outliers, such as the t-distribution [9, 37], mixtures
of normal distributions [55], and robust error distributions [23], as well as more recent
approaches like the revisited two-component mixture model [27]. However, these methods
typically focus on robust parameter estimation without explicitly addressing outlier detec-
tion. A third category assumes outlier generation models, such as the mixture model [35],
the mean-shift model [25, 26], and the variance-inflation model [14]. Yuen and Mu [59]
proposed a probabilistic approach for robust parameter estimation and outlier detection in
linear regression, leveraging Bayes theorem. Recently, Xiao et al. [57] introduced a robust
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regression model combining the Bayesian selection model with LTS to improve anomaly
detection and predictive accuracy.

Despite the effectiveness of these Bayesian approaches, many rely on analytically tractable
likelihood functions, which can limit their applicability when the model becomes complex.
In cases where the likelihood function is difficult to express analytically or computationally
expensive, simulation-based methods such as ABC offer a more flexible alternative. By
simulating summary statistics from prior distributions, ABC can infer parameters with-
out requiring an explicit likelihood, making it particularly valuable for addressing complex
models accommodating anomalies and ill-conditioned predictors. Building on this frame-
work, this paper introduces a novel approach integrating ABC with PCR to handle the dual
challenges in regression models. The method estimates optimal parameter values while
accounting for uncertainties in outlier detection, offering a robust and flexible solution to
these pervasive issues. To evaluate its effectiveness, a comparative analysis is conducted
against several existing robust techniques, including the Huber estimator [30, 31], LTS
[47, 48], and Robust PCR (RobPCR). The proposed method leverages the strengths of
these existing techniques while offering a more comprehensive framework by using ABC
for robust parameter estimation and outlier identification. Specifically, RobPCR, which
employs ROBPCA [33] for robust principal component extraction followed by regression,
serves as a key benchmark for comparison.

The structure of the paper is as follows: Section 2 provides a detailed overview of
Bayesian inference, ABC, maximum trimmed likelihood estimation, and PCR. Section 3
outlines the proposed method. Section 4 discusses the simulation settings, data generation
process, and performance measures. Section 5 presents results that compare the proposed
method with existing techniques. Section 6 applies the methods to real-life data, and
Section 7 offers concluding remarks.

2. Preliminaries
2.1. Bayesian linear regression

In Bayesian linear regression [11], consider a linear regression model as described in Eq.
2.1. Here, y is the vector (n × 1) of the response variable, and X is a matrix of predictors
of order (n × p). β is the (p × 1) vector of regression coefficients corresponding to the
predictors (X). The error term (ε) is (n×1) vector that follows a normal distribution with
zero mean and variance σ2.

y = Xβ + ε (2.1)

The likelihood function for the response variable is defined in Eq.(2.2). The posterior
distribution of β and σ2 is then determined using Eq. (2.3). In this context, p(β, σ2)
represents the prior distribution of β and σ2, which encapsulates prior knowledge about
the parameters, typically based on expert experience. The term p(y|X)−1 denotes a
normalizing constant ensuring the integral of the posterior distribution is unity over the
whole parametric space Θ.

p(y|β, σ2, X) = (2πσ2)−n/2 exp [ −1
2σ2 (y − Xβ)T (y − Xβ)] (2.2)

p(β, σ2|y, X) = p(y|X)−1 p(β, σ2) p(y|β, σ2, X) (2.3)
The prior distributions of β and σ2 are assumed to be independent of each other. Thus,

the term p(β, σ2) can be factored into p(β)p(σ2). The prior distribution for β is assumed
to follow an independent uniform distribution with a specified range. Meanwhile, the prior
for σ2 is supposed to follow an inverse Gamma distribution, denoted as IG(a∗, b∗), and is
defined in Eq. (2.4). Here, Γ(.) represents the Gamma function, and a∗ and b∗ are shape
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and scale parameters, respectively. The posterior distribution in Eq. (2.3) is transformed
into Eq. (2.5) by substituting the prior distribution as follows:

p(σ2) = (b∗)a∗

Γ(a∗) (σ2)−a∗−1 exp (− b∗

σ2 ) (2.4)

p(β, σ2|y, X) ∝ p(β) p(σ2) p(y|β, σ2, X)

p(β, σ2|y, X) ∝ p(β) (σ2)−( n
2 +a∗+1) exp [ −1

2σ2 {2b∗ + (y − Xβ)T (y − Xβ)}] (2.5)

The marginal posterior distribution of σ2 is calculated by integrating p(β, σ2|y, X) with
respect to β. The result is an inverse Gamma distribution with parameters â and b̂ defined
in Eq. (2.6). Similarly, integrating the posterior distribution with respect to σ2 gives the
marginal posterior distribution of β. This posterior follows a Student-t distribution with
mean (β̂), precision matrix (Λ) and degrees of freedom (ν). Here, Λ = (XT X)( â

b̂
)−1 and

ν = 2â.
â = n − p

2 + a∗, b̂ = 1
2(y − Xβ̂)T (y − Xβ̂) + b∗ (2.6)

2.2. Approximate Bayesian Computation
ABC is a computational technique grounded in Bayesian statistics [10, 50]. In stan-

dard Bayesian inference, the likelihood function plays a central role in determining the
parameter estimates. Although simple Bayesian models often allow for tractable analyti-
cal solutions, complex models can make likelihood integration difficult or computationally
expensive. ABC provides a framework for likelihood-free inference, bypassing the need
to compute the likelihood directly. ABC is particularly well-suited for models defined by
a stochastic data-generating process. Instead of working with the full posterior distri-
bution p(θ|D), ABC focuses on the partial posterior distribution p(θ|sobs). Here, sobs is
a summary statistic vector derived from the observed data (D). This partial posterior
distribution is given in Eq. (2.7).

p(θ|sobs) = p(sobs|θ)π(θ)
p(sobs) (2.7)

ABC works by simulating m values of θi from the prior distribution π(θ). For each θi,
corresponding summary statistics si is computed based on the data model p(s|θi). The
partial posterior distribution is then approximated by conditional density estimation based
on the simulated pairs (θi, si).

2.3. Maximum Trimmed Likelihood Estimation
In Maximum Trimmed Likelihood Estimation (MTLE), the likelihood function p(y|β, σ2, X)

is replaced by a likelihood based on a subset of the data, that is, p(yH |β, σ2, yH). Specifi-
cally, the likelihood is computed for a trimmed dataset UH = Ui = (Xi, yi), i ∈ H. Here,
H denotes an index set having h different data points from 1, 2, . . . , n. The modified
likelihood is defined in Eq. (2.8).

p(yH |β, σ2, XH) = (2πσ2)−h/2 exp [ −1
2σ2 (yH − XHβ)T (yH − XHβ)] (2.8)

The MTLE (β̂MT LE) and the corresponding MTLE data set (UH
MT LE) are obtained

by maximizing the likelihood or, equivalently, by minimizing the trimmed error function
E(β, UH). This error function is defined by

β̂MT LE = argmin
β,UH

E(β, UH) (2.9)

E(β, UH) = (yH − XHβ)T (yH − XHβ) (2.10)
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The efficient estimates of βMT LE and UH
MT LE are computed using the methodology

proposed by Rousseeuw and Van Driessen, [49]. In the LTS approach, the efficiency and
robustness of the estimation are controlled by the parameter h. Selecting the appropriate
value for h is critical to achieve a balance between robustness and efficiency. A larger h
brings the trimmed likelihood closer to the full likelihood, thereby reducing the robustness
to outliers. In contrast, a smaller h increases robustness by excluding more data points,
but this can result in a significant loss of information. Therefore, the choice of h requires
careful consideration. Typically, the value of h depends on the expected number of outliers
in the data set. It is set as a fixed fraction of the total sample size n, often assumed to be
at least n/2. In this study, h is selected to be 70% of the total number of observations.
This choice helps to ensure that any suspicious or anomalous entries can be effectively
identified and removed from βMT LE , while maintaining a sufficient amount of data for
reliable parameter estimation.

2.4. Detection of leverage points
A leverage point in linear regression, as defined by Rousseeuw and Leroy [47] and

Hoaglin and Welsch [29], is a data point that deviates significantly from the rest of the
data in the predictor space. These points can have a strong influence on Ordinary Least
Squares (OLS) estimates, particularly when they are associated with large residuals. To
identify leverage points, the Mahalanobis distance is commonly used [47] and is expressed
in Eq. 2.11. Here, xT

i denotes the ith row of the data matrix (X), x̄ is the mean row
vector, and ΣX represents the covariance matrix of the row vectors of the data matrix (X)
as follows:

MD(xi) =
√

(xi − x̄)Σ−1
X (xi − x̄)T (2.11)

Rousseeuw and Leroy [47] proposed a threshold to identify leverage points using the chi-
square distribution quantile. The threshold is defined as

√
Φ−1

χ2 (0.95). Here, Φ−1
χ2 (.) is the

quantile function of the chi-square distribution. The degrees of freedom correspond to the
number of non-intercept terms in the model. Based on this threshold, the set of leverage
points L is determined using the Eq. (2.12). This approach helps isolate points that
may exert an undue influence on the regression model, ensuring more reliable parameter
estimates as

L = {Ui = (xi, yi) : MD(xi) >
√

Φ−1
χ2 (0.95), i = 1, 2, . . . , n} (2.12)

2.5. Principal component regression
PCA, as described by Anderson [2], transforms the original correlated predictor variables

into a set of uncorrelated variables called principal components (PCs). These PCs are
linear combinations of the original predictors. Let X be the n × p matrix of predictors,
where n is the sample size and p is the number of predictors. The principal components
are represented as z1 = eT

1 x1, z2 = eT
2 x2, . . . , zp = eT

p xp. Here, e1, e2, . . . , ep are the
eigenvectors of the covariance matrix (Σ = cov(X)) , corresponding to the eigenvalues
λ1, λ2, . . . , λp. The matrix E = [e1, e2, . . . , ep] contains these eigenvectors and is of size
p × p.

In PCR, the response variable (y) is regressed to a subset of the first q-PCs (Zq), where
q < p. This subset captures most of the variance in the original data, while mitigating the
problem of ill-conditioned predictors. The PCR model is expressed in Eq. 2.13. Here, γq

is (q × 1) vector of regression coefficients for the q-PCs (Zq), and ε is the (n × 1) vector
of error terms. The regression coefficients γq are estimated using Eq. 2.14 following the
least squares estimation method. Once γq is estimated, the corresponding coefficients for
the original predictors, β̂, are recovered by transforming back to the original predictor
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space using the eigenvector matrix (E) in Eq. 2.15. In PCR, only the first few principal
components are retained for regression, thereby mitigating the effects of multicollinearity.

y = Zqγq + ε (2.13)

γ̂q = (ZT
q Zq)−1ZT

q y (2.14)

β̂ = Ep×qγ̂q (2.15)

3. Proposed Probabilistic Robust Principal Component Regression (PRPCR)
This method is proposed to address robust parameter estimation and outlier identifi-

cation in the presence of anomalies, leverage points, ill-conditioned predictors and high-
dimensional data settings. It encompasses several distinct steps, which are outlined in the
following subsections. Subsection 3.1 presents the algorithm for creating initial-suspicious
sub-datasets. Subsection 3.2 elaborates on the computation of outlier probability. Sub-
section 3.3 discusses the ABC rejection sampler algorithm. Lastly, subsection 3.4 details
the computational procedure of the proposed method.

3.1. Initial-suspicious sub-datasets
Parameter estimation is significantly affected by ill-conditioned regressors, outliers, and

leverage points. The proposed technique aims to achieve robust parameter identification
by overcoming the influence of outliers and mitigating multicollinearity. This subsection
outlines the process of selecting the initial regular and suspicious subdatasets. Initially, the
reliable subset of data, termed the initial regular dataset (UR), is identified from the com-
plete dataset (U). The selection of data points for UR involves maximizing the trimmed
likelihood while excluding leverage points, as defined in Eq. 2.12. The complement of the
set of leverage points in UH

MT LE constitutes UR. Furthermore, parameter identification
is based on UR, excluding leverage points. In contrast, the initial suspicious subdataset,
(US), is derived by removing UR from the entire dataset (U).

3.2. Probability of outlier
Existing anomaly detection methods typically rely on a predefined threshold for the

identification of outliers, often determined based on expert knowledge. Typically, a cri-
terion such as (|ε|)/σ > 2.5 is used to flag anomalies. Here, ε denotes the (n × 1) vector
of residual terms. However, the choice of this threshold can significantly affect outlier
detection outcomes. In this study, we adopt an alternative criterion proposed by Yuen
and Mu [59], which computes the probability of an outlier for each suspicious data point,
providing a more nuanced approach to outlier identification.

It is important to note that the initial suspicious data set can include regular data points,
particularly when a small value of h is selected in the trimmed likelihood estimation. To
enhance outlier detection, each data point in the initial suspicious subset is assigned a
probability of being an outlier. Data points in this subset with a probability less than 0.5
are reclassified as regular data points. This detecting criteria was adopted by Yuen and
Mu (2012).

For instance, consider a suspicious data point (US
k ) with its corresponding residual (εS

k ),
where US

k = (XS
k , yS

k ) and εS
k = yS

k − XS
k β. To determine whether this data point is an

outlier, we calculate the probability of a data point relative to the total number of data
points with a certain error. The probability of an outlier is described as the probability
that the residuals of all n data entries lie within the interval (−|εS

k |, |εS
k |) assuming that

the prediction error follows the distribution, ie G(0, σ2).
In simpler terms, this measure quantifies the probability of obtaining a data point

under the assumed error distribution. The conditional probability is defined in Eq. 3.1,
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representing that all n data entries fall in the interval (−|εS
k |, |εS

k |) given εS
k and σ2. Here,

n is the total number of data points in the whole dataset (U), and Φ is the cumulative
distribution function of the standard normal distribution.

Po(US
k |εS

k , σ2) = [1 − 2Φ(−|εS
k |/σ)]n (3.1)

Moreover, the uncertainty of εS
k is derived by the posterior uncertainty of the regression

parameters (β). The posterior uncertainty of β and σ2 is accommodated by utilizing
the theory of total probability. Consequently, each suspicious data point contains the
probability of an outlier defined in Eq. 3.2. Here, the posterior pdf (p(εS

k , σ2|UR)) serves
as a weighting function, as Eq. 3.2 is defined by the weighted average of Po(US

k |εS
k , σ2).

Po(US
k |UR) =

∫ +∞

−∞
[1 − 2Φ(−|εS

k |/σ)]n × p(εS
k , σ2|UR)dβdσ2 (3.2)

Depending on the regular subdataset (UR), the regression coefficients (βR) are estimated
using equation. 2.15 following least square estimation. The shape parameter (aR) and the
scale parameter (bR) are updated using Eq. 2.6. Since the integral in Eq. 3.2 does not
produce a closed form solution. Therefore, the probability of an outlier is computed using
the Monte Carlo (MC) simulation technique.

To compute the probability of an outlier, the samples of σ2 are first drawn from a
prior distribution, and the posterior distribution of σ2 is approximated using the ABC
rejection sampling algorithm, as described in subsection 3.3. In this method, the ABC
algorithm refines the prior samples by comparing simulated data with observed data and
retaining only those samples that closely match. Once the posterior distribution of σ2

has been approximated, the posterior distribution of the residual εS
k can be expressed as

the product of the conditional posterior of εS
k given σ2 and the posterior of σ2. Specifi-

cally, the posterior pdf (p(εS
k , σ2|UR)) can be factorized as p(εS

k |σ2, UR) p(σ2|UR). Here,
p(εS

k |σ2, UR) represents a normal distribution with mean (ε̂S
k = yS

k − XS
k β̂

R) and variance
(PS

k = σ2XS
k [(XR)T XR]−1(XS

k )T ). Using this approximated posterior distribution of σ2,
the corresponding samples of εS

k are generated from a normal distribution with estimated
mean ε̂S

k and variance PS
k . Finally, the probability of an outlier for each suspicious data

point is estimated by using Eq. (3.3) as follows:

Po(US
k |UR) = E(p(εS

k , σ2|UR))[1 − 2Φ(−|εS
k |/σ)]n ≈ 1

M
ΣM

i [1 − 2Φ(−|εS(i)
k |/σ2(i))]n (3.3)

Here, M denotes the number of MC runs. After computing the probability of an outlier
(Po(US

k |UR)) for each suspicious point (US
k ), it is compared to a threshold of 0.5. If

Po(US
k |UR) > 0.5, the data point US

k is considered an outlier. Otherwise, it is reclassified
as a regular data point.

3.3. ABC rejection sampler
Techniques based on the approximate likelihood function of ABC through simulations,

comparing the results of these simulated samples with observed data. ABC rejection
sampling is a basic form of this approach. In this method, we first simulate the candidate
parameter θ∗ from a prior distribution π(θ). This candidate parameter (θ∗) is used to
simulate the synthetic dataset (W ) from the assumed model, which matches the dimensions
of the observed data (Q).

Comparisons between the synthetic and observed data sets are made using a distance
metric, such as the squared distance between the summary statistics of the data sets. The
summary statistic S(.) is defined as the sample mean. The distance function d(W, Q) is
then represented as (W̄ − Q̄)2. If d(W, Q) ≤ εo, the candidate parameter (θ∗) is retained
as a posterior sample. If d(W, Q) > εo, the candidate parameter (θ∗) is discarded. Here, εo
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Figure 1. The flowchart of the algorithm of the ABC rejection sampler.

denotes the tolerance value for accepting simulated parameters based on the discrepancy
between the simulated and observed data. A lower value of εo leads to a better poste-
rior approximation but a lower acceptance rate and high computational cost. However,
the larger value of εo yields computational efficiency but may compromise the posterior
approximation. An appropriate value is chosen to balance these trade-offs, following the
standard practice in ABC literature. The ABC rejection sampler algorithm is discussed
in Figure 1.

3.4. Algorithm of the proposed technique
The proposed technique aims to obtain the uncertainty of the parameters after elimi-

nating the anomalies and the problem of ill-conditioned explanatory variables. Firstly, it
chooses the reliable portion of the data, termed the regular subset (UR) from the complete
dataset (U). Subsequently, the suspicious subset (US) is investigated by considering the
probability of outliers. Data points with a probability of outliers less than 0.5 are returned
to regular data points (UR). The algorithm of this technique can be found below and its
flow chart can be seen in Figure 2.
1. Obtain the initial regular data set (UR) in two steps.

(a) Identify the subset (UH
MT LE) of the entire data (U) by choosing a conservatively

small value of h in MTLE following the procedure described in sub-section 2.3.
(b) Subsequently, remove the leverage points (L) from UH

MT LE using Eq. 2.12 to
obtain UR.

2. Determine the initial suspicious subset (US) by excluding UR from the entire data
matrix (U) i.e., US = U\UR.

3. Estimate the regression parameter vector (βR) using PCR.
(a) Perform PCR on UR to address multicollinearity.
(b) Retain principal components that explain at least 80% of the data variability.
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(c) Estimate βR using the least squares method taking the principal components as
explanatory variables (See, Eq. 2.14 and Eq. 2.15).

4. Approximate the posterior distribution of σ2 using the ABC rejection sampler.
(a) Draw samples of σ2 from the prior distribution π(σ2) (e.g., inverse Gamma distri-

bution with parameters â and b̂ defined in Eq. 2.6, taking a∗ = b∗ = 1).
(b) For each σ2, simulate the synthetic response variable (ysn).
(c) Compute the squared difference between the summary statistics (e.g., sample

mean) of the synthetic response (ysn) and the observed response (y).
(d) Retain that candidate of σ2 if the distance d(ysn, y) is less than the predefined

threshold εo i.e., (ȳsn − ȳ)2 ≤ εo.
(e) Repeat this process to approximate the posterior distribution of σ2.

5. For each suspicious data point (US
k ), generate corresponding residual εS

k from a Gaussian
distribution with mean (ε̂S

k = yS
k −XS

k β̂
R) and variance (PS

k = σ2XS
k [(XR)T XR]−1(XS

k )T ).
Here, σ2 is sampled from the approximated posterior distribution defined in step 4.

6. Calculate the probability of outliers Po(US
k |UR) for each suspicious observation (US

k )
considering Eq. 3.3, which incorporates the approximated posterior distribution of σ2

and its corresponding residual εS
k .

7. If Po(US
k |UR) ≥ 0.5, retain US

k in the suspicious data set US . Otherwise, reclassify US

as a regular data point and move it to UR.
8. Update the regular and suspicious data sets UR and US . Repeat steps 37 until all

suspicious data points satisfy Po(US
k |UR) ≥ 0.5. Convergence is typically achieved in

two or three iterations.
9. The final regression parameters (βR) are based on the final regular data set (UR). Any

data point that remains in the final suspicious dataset US is considered a potential
outlier, with an outlier probability Po(US

k |UR).

4. Simulation study
4.1. Data generation

This subsection presents various data simulation scenarios designed to assess the perfor-
mance of the proposed technique against existing methods, including the Huber estimator,
LTS, and RobPCR. The data generation process is structured to simulate challenging con-
ditions that include high levels of contamination, high correlation fractions, and different
types of outliers. The goal is to demonstrate that the proposed technique outperforms
baseline counterparts under extreme outlier conditions and in the presence of collinear
predictors.

Two types of outliers are introduced in the simulations. The first type arises from a
high level of measurement noise, and the other one from modelling errors. Both types of
outliers lead to abnormally large errors, but the second type introduces more substantial
bias compared to the first. To model these outliers, two sub-datasets are generated. The
contaminated set (U1) consists of the regular sub-dataset mixed with the outliers of the
first type, while the disordered dataset (U2) comprise outliers of the second type. The
total data set U combines both U1 and U2, simulating the coexistence of both types of
outliers.

The contaminated set (U1) is generated using a weighted mixture model, as defined
in Eq. (4.1) to simulate the error terms of data points in U1. Here, the contamination
level α controls the proportion of outliers in the data set. The error terms in U1 follow a
mixture distribution defined in Eq. 4.1. Here, regular data points are generated from a
Gaussian distribution (G(ẽ|0, σ̃2)), while the outliers are drawn from a mixture of trian-
gular distribution (f(ẽ), as defined in Eq. (4.2). The triangular distribution T (ẽ|a, b, c) is
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Figure 2. The flowchart of the algorithm of the proposed PRPCR.
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defined in Eq. 4.3 and approaches its maximum at ẽ = b.

p(ẽ) = (1 − α) G(ẽ|0, σ̃2) + αf(ẽ) (4.1)

f(ẽ) = 0.5 T (ẽ| − 5σ̃, −4σ̃, −3σ̃) + 0.5 T (ẽ|5σ̃, 4σ̃, 3σ̃) (4.2)

T (ẽ|a, b, c) =
{

2(ẽ − a)/(c − a)(b − a) a ≤ ẽ ≤ b

2(c − ẽ)/(c − a)(c − b) b ≤ ẽ ≤ c
(4.3)

To simulate the disordered data set (U2), a substantial bias is introduced into the data.
The response variable (yi) and explanatory variables (xT

i ) in U2 are generated from a
Gaussian distribution with mean (µi) and covariance (σ2I). The total number of outliers
(No) in the whole data set is defined in Eq. (4.4). Here, N1 and N2 denotes number of
observations in U1 and U2, respectively. Then, we have

No = αN1 + N2 (4.4)

The explanatory variables in U1 are simulated using Eq.4.5 following [5]. Here, ρ repre-
sents the correlation between two explanatory variables and Dij are independent pseudo-
random numbers derived from the standard normal distribution. This introduces control
multicollinearity, which varies between scenarios to assess its effect on the robustness of
the proposed method. The response variable (yi) for the observations in U1 is generated
according to Eq. (4.6). Here, ẽi has the weighting mixture distribution, as defined in Eq.
(4.1). Then, we obtain

xij = (1 − ρ2)1/2Dij + ρD(i,p+1), i = 1, 2, 3, . . . , N1 and j = 1, 2, 3, . . . , p (4.5)

yi = Σp
j=1βjxij + ẽi, i = 1, 2, 3, . . . , N1 (4.6)

To assess the performance of the proposed technique over baseline counterparts, four
simulation scenarios are designed, each of which tests specific aspects of robustness against
anomalous data and ill-conditioned predictors.

Scenario I involves a sample size n = 40, with 33 observations in U1 (including 4 outliers
of the first type with contamination fraction α = 0.1) and 7 outliers of the second type
in U2. The number of predictors is p = 3, and the correlation between the predictors is
set to ρ = 0.8. The regression coefficients for U1 are β1 = 1, β2 = 2 and β3 = 3. The
disordered data set U2 = (X, y) is normally distributed with mean µ = [70, 50, 40, −10]
and covariance matrix Σ = 25I. This scenario tests the ability of the method to handle
small sample sizes and strong multicollinearity. Scenario II is similar to scenario I but
with an increased level of multicollinearity, setting the correlation between predictors at
ρ = 0.9. This scenario evaluates how the method compares with baseline techniques
under high multicollinearity. Scenario III modifies scenario I by increasing the sample
size to n = 70, with N1 = 63 (including 4 outliers of the first type with α = 0.06) and
N2 = 7. This scenario examines the scalability of the proposed method as the sample
size increases, with a focus on robustness to outliers and leverage points. Scenario IV
introduces five predictors, with regression coefficients β = (1, 2, 3, 1, 2)T . The mean vector
for U2 = (X, y) is µ = [70, 50, 40, 30, 60, −10], while the other settings remain the same
as in scenario I. This scenario tests the performance of the proposed method with an
increased number of predictors, compared to the baseline methods. Scenarios V and VI
are modified versions of Scenario IV, which incorporate correlation levels of ρ = 0.9 and
ρ = 0.95, respectively.

4.2. Performance evaluation measures
We use the Mean Square Error (MSE) of the estimated regression parameters to evaluate

the effectiveness of the proposed technique in terms of robust parameter identification.
The MSE is defined in Eq. (4.7) and has been widely used by researchers ([24, 39]) as an
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Table 1. The estimates of regression parameters with their respective MSE for
different techniques regarding scenario I.

Method PRPCR Huber LTS RobPCR
β1 1.41604 -0.53815 -0.63383 -0.20220
β2 2.19267 0.12232 1.36812 -0.00760
β3 2.60138 0.55802 1.97541 0.12904
MSE(β̂) 2.20821 4.29534 6.08967 4.65631

evaluation criterion. A lower MSE value indicates a more accurate and reliable estimator.
Then, we have

MSE(β̂) = 1
p

Σp
l=1(β̂l − βl)2 (4.7)

In addition, three metrics are used to compare the performance of the proposed technique
in outlier detection. These metrics are masking percentage, swamping percentage, and
percentage of correctly identified outliers. Masking occurs when an actual outlier is not
identified correctly, leading to it being missed. The masking percentage is calculated by
dividing the number of masked outliers by the total number of actual outliers. Swamping,
on the other hand, refers to cases in which a regular observation is mistakenly classi-
fied as an outlier. The percentage of swamping is computed by dividing the number of
swamped observations by the total number of regular observations. Finally, the percentage
of correctly identified outliers is determined by dividing the number of correctly detected
outliers by the total number of actual outliers. Lower values of the masking and swamping
percentages are desirable. This is because they indicate fewer errors in missing outliers
or incorrectly identifying regular observations as outliers. On the other hand, a higher
percentage of correctly identified outliers is preferred. This reflects a more accurate and
reliable outlier detection process. Conventional techniques, such as the Huber estimator,
LTS, and RobPCR, generally use a simple threshold to detect outliers. Specifically, they
are based on a rule in which an observation is flagged as an outlier if |ε|

σ > 2.5. How-
ever, the proposed method takes a more refined approach. It employs a sophisticated
algorithm, described in subsection , which enhances both the accuracy and robustness of
outlier identification and parameter estimation.

5. Results and discussion
This section presents the results for scenarios I-VI as discussed earlier. The performance

of the proposed technique, PRPCR, is compared to classical methods such as Huber
estimator, LTS, and RobPCR. For parameter identification, the comparison is made using
the MSE of the estimated regression coefficients, denoted as MSE(β̂). In addition, the
performance of outlier detection is evaluated using metrics such as masking, swamping,
and the percentage of correct outlier identification. All results are based on 100 Monte
Carlo simulations, with average MSE values (β̂) presented in Tables 1 to 6 and Figure 3.
All computations are performed using the R programming language.

Tables 1 to 6 provide estimates of regression parameters along with their respective
MSE values for the different techniques. In all scenarios, the proposed method (PRPCR)
consistently demonstrates favorable performance compared to the baseline methods. It
achieves the lowest MSE values, reflecting more accurate parameter estimation. In scenario
I in Table 1, PRPCR exhibits significantly lower MSE than the Huber estimator, LTS,
and RobPCR. This pattern continues in Scenarios II (Table 2), III (Table 3), IV (Table 4),
V (Table 5) and VI (Table 6). These results suggest that PRPCR is particularly robust
across a range of challenging conditions, including multicollinearity, outliers and small
sample sizes.
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Table 2. The estimates of regression parameters with their respective MSE for
different techniques regarding scenario II.

Method PRPCR Huber LTS RobPCR
β1 1.62498 -0.50272 -1.47959 -0.05938
β2 2.02728 0.11117 1.51853 -0.06612
β3 2.41077 0.49982 2.86190 -0.05546
MSE(β̂) 2.78721 4.45396 9.95846 4.91042

Table 3. The estimates of regression parameters with their respective MSE for
different techniques regarding scenario III.

Method PRPCR Huber LTS RobPCR
β1 1.09499 -0.74040 -0.21586 -0.26198
β2 2.01070 0.14153 1.41100 0.00055
β3 2.80065 0.88914 2.63472 0.23407
MSE(β̂) 0.88033 4.07584 4.32620 4.58448

As the sample size increases in scenario III, the MSE decreases for all methods. However,
PRPCR shows the most significant improvement. This sharp reduction in MSE indicates
the scalability of PRPCR, which becomes more efficient as the size of the dataset grows.
In contrast, the Huber estimator, LTS, and RobPCR exhibit more modest improvements,
as their MSE values remain relatively high despite the increase in sample size.

In scenario IV-VI, where the number of predictors is increased and the levels of corre-
lation between predictors are high, PRPCR continues to perform well. It maintains a low
MSE even in this more complex, high-dimensional setting and ill-conditioned predictors.
However, the baseline methods struggle to cope with the increased complexity, as evidenced
by their much higher MSE values. The ability of PRPCR to handle high-dimensional and
collinear data effectively highlights its robustness and versatility.

Figure 3 reports the results for the outlier detection performance. The metrics evaluated
include the percentages of swamping, masking, and correct outlier identification. PRPCR
consistently outperforms baseline methods in outlier detection in all scenarios. In Scenario
I (see Figure 3 (a)), PRPCR correctly identifies the majority of true outliers, performing
much better than the Huber estimator and RobPCR. These methods detect only a small
fraction of the outliers. LTS performs slightly better than the other baseline methods, but
is still less effective compared to PRPCR.

As multicollinearity increases in scenario II, PRPCR continues to perform robustly. It
maintains a high percentage of correct outlier identification, despite the stronger correla-
tion between predictors (See, Figure 3 (b)). In contrast, the Huber estimator and RobPCR
continue to struggle with masking and misidentification. LTS shows a slight improvement
in scenario II but remains less effective than PRPCR in detecting outliers. The resilience
of PRPCR to multicollinearity is particularly noteworthy, as it maintains its accuracy
under conditions that typically challenge other techniques.

In scenario III, the increase in sample size further highlights the scalability of PRPCR
(See, Figure 3 (c)). As the data set grows, PRPCR continues to correctly identify most
outliers. In contrast, baseline methods show limited improvement, with the Huber estima-
tor and RobPCR missing a significant number of outliers. LTS also improves slightly but
remains less effective than PRPCR in both detecting outliers and minimizing masking.

One notable observation is that PRPCR exhibits slightly higher flood percentages than
some of the other techniques in specific scenarios. For instance, in scenario I, PRPCR
incorrectly classifies a small portion of regular observations as outliers (See, Figure 3 (a)).



A Robust Probabilistic Framework for Principal Component Regression 1701

Table 4. The estimates of regression parameters with their respective MSE for
different techniques regarding scenario IV.

Method PRPCR Huber LTS RobPCR
β1 1.02538 -0.90464 -1.31541 -0.19590
β2 1.91603 0.13745 1.15565 0.03341
β3 2.61959 0.84009 2.80794 -0.11644
β4 1.12684 0.98245 2.18452 0.12609
β5 1.97761 -0.24281 0.57275 -0.03875
MSE(β̂) 1.92190 4.53691 8.66796 3.88487

Table 5. The estimates of regression parameters with their respective MSE for
different techniques regarding scenario V.

Method PRPCR Huber LTS RobPCR
β1 1.44945 -1.13963 -1.81763 -0.05728
β2 1.70711 0.21365 1.30130 -0.02774
β3 2.48359 0.90165 3.61647 -0.00615
β4 1.53601 1.43184 2.62697 -0.00997
β5 1.82448 -0.31031 0.67037 -0.05544
MSE(β̂) 2.01708 5.49700 16.86565 3.91835

Table 6. The estimates of regression parameters with their respective MSE for
different techniques regarding scenario VI.

Method PRPCR Huber LTS RobPCR
β1 1.39977 -1.16495 -3.80404 -0.03744
β2 1.53073 0.49822 1.69527 -0.03752
β3 2.43001 0.96838 4.77208 -0.03821
β4 1.38702 1.462437 4.10974 -0.03785
β5 2.11703 -0.57633 0.51420 -0.03787
MSE(β̂) 3.64084 5.57154 36.87591 3.93777

However, this slight increase in swamping is outweighed by PRPCRs much lower masking
rates and its consistently high rate of correctly identifying actual outliers. In Scenario
IV-IV, where the number of predictors and correlation levels increases, PRPCR reduces
its swamping percentage to its lowest level (see Figure 3 (d-f)). This shows that PRPCR
adapts effectively to more complex models with additional predictors.

6. Application
The performance of the proposed method is demonstrated using the pollution dataset,

which reflects the issues discussed in this study. This data set has been used by various
researchers (e.g. [5, 6]) and consists of fifteen predictors. The goal is to predict the age-
adjusted mortality rate per 100,000 population (y). Detailed descriptions of the covariates
can be found in previous studies (e.g.[41, 60]). Previous studies have identified severe
multicollinearity and outliers in this data set [5], evidenced by variance inflation factors
that reach 98.6 for x12 and 104.9 for x13. The correlation concentration between the
predictors is presented in Figure 4.

As this paper proposes a robust approach for parameter identification and outlier de-
tection, the outliers in this dataset are identified using the proposed method and also
their competing techniques. The proposed method also provides the probability that each
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Figure 3. The percentages of correct identification, masking and swamping of
outliers for the proposed technique and existing ones regarding scenario I (a),
scenario II (b), scenario III (c), scenario IV (d), scenario V (e) and scenario VI
(f).

Figure 4. The graphical representation of the correlation matrix of fifteen pre-
dictors of pollution data.
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Table 7. The identified outliers through several studied techniques.

Method outliers
PRPCR 29 (0.8339903)
Huber 2, 28, 37, 59
LTS 32, 59
RobPCR No outlier

Table 8. The estimates of regression parameters with their respective MVB for
different techniques regarding the pollution dataset.

Method PRPCR Huber LTS RobPCR
β1 0.10609 0.29701 0.36944 0.03579
β2 0.08648 -0.24200 -0.31981 0.07411
β3 0.04368 -0.2230519 -0.23401 0.02691
β4 -0.01592 -0.20577 -0.28303 -0.07177
β5 0.02457 -0.19382 -0.31532 0.08479
β6 -0.19678 -0.20987 -0.23938 -0.20654
β7 -0.09023 -0.11700 0.034223 -0.08505
β8 0.20569 0.14191 0.28674 0.12361
β9 0.18117 0.57831 0.44908 0.12018
β10 -0.07083 -0.04725 -0.03868 -0.14046
β11 0.13785 -0.08816 0.24593 0.11929
β12 0.04174 -0.78242 -1.14211 0.02727
β13 0.07745 0.76737 1.12630 0.05206
β14 0.25770 0.12681 0.02428 0.21179
β15 0.04765 -0.02347 0.02395 -0.02112
MVB(β̂) 0.00370 0.04575 0.43073 0.00403

suspicious data point is an outlier. It can be seen from Table 7, that RobPCR does not
detect outliers, despite their presence in the data. LTS identifies observations 32 and 59
as outliers, while the Huber estimator identifies observations 2, 28, 37 and 59 as outliers.
The proposed method detects an outlier in observation 29, with its respective probability
reported in parentheses.

Additionally, the parameter identification calculated using the proposed method and
existing techniques are presented in Table 8. The bootstrap variance of each regression
coefficient is also calculated. The median bootstrap variations of all regression parame-
ters MBV(β̂) for all studied estimators are discussed in Table 8. The proposed method
outperforms competing techniques, achieving the lowest value of MBV(β̂).

7. Conclusion
In conclusion, this paper proposes a probabilistic approach that combines principal

component regression and approximate Bayesian computation to address outliers, leverage
points, and multicollinearity issues in linear regression problems. The proposed method,
PRPCR, enhances the efficiency of parameter estimation and the capability of outlier
detection. Extensive simulations demonstrate PRPCR’s favorable performance over base-
line counterparts in both parameter identification and outlier detection. The technique
proves to be robust even in challenging scenarios characterized by high correlation, a large
number of predictors, and the presence of significant leverage points with large residuals.
The application of PRPCR to the pollution data set further validates its effectiveness,
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consistent with the results of the empirical study.
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