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Abstract. We propose an algorithmic framework for dataset normalization in data augmentation

pipelines that preserves topological stability under non-uniform scaling transformations. Given a finite

metric space X ⊂ Rn with Euclidean distance dX , we consider scaling transformations defined by
scaling factors s1, s2, . . . , sn > 0. Specifically, we define a scaling function S that maps each point

x = (x1, x2, . . . , xn) ∈ X to
S(x) = (s1x1, s2x2, . . . , snxn).

Our main result establishes that the bottleneck distance dB(D,DS) between the persistence diagrams
D of X and DS of S(X) satisfies:

dB(D,DS) ≤ (smax − smin) · diam(X),

where smin = min1≤i≤n si, smax = max1≤i≤n si, and diam(X) is the diameter of X. Based on

this theoretical guarantee, we formulate an optimization problem to minimize the scaling variability

∆s = smax − smin under the constraint dB(D,DS) ≤ ε, where ε > 0 is a user-defined tolerance.
We develop an algorithmic solution to this problem, ensuring that data augmentation via scaling

transformations preserves essential topological features. We further extend our analysis to higher-

dimensional homological features, alternative metrics such as the Wasserstein distance, and iterative
or probabilistic scaling scenarios. Our contributions provide a rigorous mathematical framework for

dataset normalization in data augmentation pipelines, ensuring that essential topological characteristics
are maintained despite scaling transformations.
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1. Introduction

Data augmentation is a popular technique in machine learning for enhancing model generalization by
artificially increasing the diversity of training data. Common augmentation methods include geometric
transformations such as rotations, translations, and scaling [1]. In particular, scaling transformations
are widely used due to their simplicity and effectiveness [2]. However, non-uniform scaling, where each
coordinate axis is scaled by a distinct factor, can introduce anisotropic distortions that significantly alter
the intrinsic geometry and topology of datasets [3].

Topological Data Analysis (TDA) provides an approach to capture the intrinsic shape of data in a
way that is robust to noise and deformation [4]. Critical to TDA is the concept of persistent homology,
which summarizes topological features of data across multiple scales using persistence diagrams D. A key
property of persistence diagrams is their stability under perturbations of the input data, as quantified
by the bottleneck distance dB [5].

In prior work [6], we have investigated the effects of non-uniform scaling transformations defined by:

S(x) = (s1x1, s2x2, . . . , snxn),

where si > 0 for all i. Our primary goal was to establish explicit bounds on the bottleneck distance
dB(D,DS) between the persistence diagrams before and after scaling. Specifically, we showed that:

dB(D,DS) ≤ δ =
1

2
∆s · diam(X),

where ∆s = smax − smin. This inequality provides a direct relationship between the scaling variability
∆s and the topological perturbation measured by dB(D,DS).

Based on this theoretical guarantee, we formulate an optimization problem to minimize ∆s under
the constraint dB(D,DS) ≤ ε, where ε > 0 is a user-defined tolerance. The solution to this problem
yields scaling factors that minimize anisotropic distortions while preserving the topological features of
the dataset. We further extend our analysis to consider higher homology dimensions [7], alternative
distance metrics such as the Wasserstein distance [8], and scenarios involving iterative or probabilistic
scaling [6].

2. Preliminaries

2.1. Metric Spaces and Scaling Transformations. Let X = {x1, x2, . . . , xN} ⊂ Rn be a finite
metric space with the Euclidean distance dX : X ×X → R, defined by:

dX(p, q) = ‖p− q‖2 =

(
n∑
i=1

(pi − qi)2
)1/2

.

Consider a scaling transformation S : Rn → Rn given by:

S(x) = (s1x1, s2x2, . . . , snxn),

where si > 0 for 1 ≤ i ≤ n. The scaled dataset is S(X) = {S(x) | x ∈ X}, and the scaled distance dS
between points p, q ∈ X is:

dS(p, q) = ‖S(p)− S(q)‖2 =

(
n∑
i=1

s2i (pi − qi)2
)1/2

.



TOPOLOGY-PRESERVING SCALING IN DATA AUGMENTATION 11

2.2. Persistence Diagrams and Bottleneck Distance. A filtration {Kε}ε≥0 is a nested sequence of
simplicial complexes built on X, such that Kε ⊆ Kε′ whenever ε ≤ ε′. Common filtrations include the
Vietoris–Rips and Čech complexes.

The persistent homology of X captures the birth and death times of topological features (e.g., con-
nected components, loops, voids) as the scale parameter ε varies. The collection of these features is
summarized in the persistence diagram D, which is a multiset of points (b, d) ∈ R2, where b is the birth
time and d is the death time of a feature.

The bottleneck distance dB(D,D′) between two persistence diagrams D and D′ is defined as:

dB(D,D′) = inf
γ

sup
x∈D
‖x− γ(x)‖∞,

where γ : D → D′ is a bijection (allowing for matching points to the diagonal b = d), and ‖ · ‖∞ denotes
the L∞-norm.

2.3. Stability of Persistence Diagrams. The stability theorem [5] states that small perturbations
in the input data lead to small changes in the persistence diagrams. Specifically, for two functions
f, g : X → R, the bottleneck distance between their persistence diagrams satisfies:

dB(Df , Dg) ≤ ‖f − g‖∞.
When considering metric spaces, if dX and dX′ are distance functions on X satisfying |dX(p, q) −

dX′(p, q)| ≤ δ for all p, q ∈ X, then the bottleneck distance between the persistence diagrams D and D′

computed from dX and dX′ satisfies:

dB(D,D′) ≤ δ.

3. Problem Formulation

Our primary objective is to design an algorithmic framework that minimizes the scaling variability
∆s = smax − smin, while ensuring that the topological perturbation dB(D,DS) remains within a user-
defined tolerance ε > 0. Formally, we seek scaling factors si > 0 that solve the optimization problem:

min
s1,s2,...,sn

∆s = smax − smin

subject to dB(D,DS) ≤ ε,
smin ≤ si ≤ smax, ∀i = 1, . . . , n.

To proceed, we need to establish a relationship between ∆s and dB(D,DS), which will allow us to convert
the topological constraint into a constraint on ∆s.

4. Theoretical Guarantees

4.1. Lemma 1 (Scaling Distance Bounds). For all p, q ∈ X, the scaled distance dS(p, q) satisfies:

smin · dX(p, q) ≤ dS(p, q) ≤ smax · dX(p, q).

This result provides upper and lower bounds for dS(p, q) in terms of smin and smax. It establishes the
scaling behavior of pairwise distances, forming a basis for subsequent analysis of scaled metrics.

Proof. Let p, q ∈ X. We recall that the Euclidean distance between p and q is defined as

dX(p, q) =

√√√√ n∑
i=1

(pi − qi)2.

Under the scaling transformation S, each coordinate xi is scaled by si. Therefore, the scaled distance
dS(p, q) is

dS(p, q) =

√√√√ n∑
i=1

(sipi − siqi)2 =

√√√√ n∑
i=1

s2i (pi − qi)2.

Since smin ≤ si ≤ smax for all i = 1, 2, . . . , n, it follows that

s2min ≤ s2i ≤ s2max.
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Multiplying both sides of the inequality by (pi − qi)2, which is non-negative for all i, we obtain

s2min(pi − qi)2 ≤ s2i (pi − qi)2 ≤ s2max(pi − qi)2.
We continue by summing these inequalities over all i from 1 to n

n∑
i=1

s2min(pi − qi)2 ≤
n∑
i=1

s2i (pi − qi)2 ≤
n∑
i=1

s2max(pi − qi)2.

Simplify the left-hand side and right-hand side

s2min

n∑
i=1

(pi − qi)2 ≤
n∑
i=1

s2i (pi − qi)2 ≤ s2max

n∑
i=1

(pi − qi)2.

Thus, we have the following inequality involving the squares of distances

s2min · dX(p, q)2 ≤ dS(p, q)2 ≤ s2max · dX(p, q)2.

Since all terms are non-negative, we can take the square roots of the inequality. The square root
function is monotonic increasing on the interval [0,∞), so the direction of the inequalities is preserved√

s2min · dX(p, q)2 ≤ dS(p, q) ≤
√
s2max · dX(p, q)2.

Simplify the square roots

smin · dX(p, q) ≤ dS(p, q) ≤ smax · dX(p, q).

Therefore, the scaled distance dS(p, q) is bounded above and below by the original distance dX(p, q)
scaled by smax and smin, respectively. This completes the proof. �

4.2. Lemma 2 (Distance Perturbation Bound). For all p, q ∈ X, the difference between the scaled
distance dS(p, q) and the original distance dX(p, q) is bounded by:

|dS(p, q)− dX(p, q)| ≤ δ′ · dX(p, q),

where δ′ = smax − smin.
This lemma bounds |dS(p, q) − dX(p, q)| ≤ δ′ · dX(p, q), where δ′ = smax − smin. It relates scaling-

induced perturbations to ∆s and enables control of metric distortions.

Proof. From Lemma 1, we have established that for all p, q ∈ X
smin · dX(p, q) ≤ dS(p, q) ≤ smax · dX(p, q).

Our goal is to bound |dS(p, q)− dX(p, q)| in terms of δ′ · dX(p, q).
We first consider the difference dS(p, q)− dX(p, q). Subtract dX(p, q) from the inequality

smin · dX(p, q)− dX(p, q) ≤ dS(p, q)− dX(p, q) ≤ smax · dX(p, q)− dX(p, q).

Simplify the expressions

(smin − 1) · dX(p, q) ≤ dS(p, q)− dX(p, q) ≤ (smax − 1) · dX(p, q).

We now consider two cases based on the values of smin and smax.
Case 1: smin ≤ 1 ≤ smax

In this case, smin − 1 ≤ 0 and smax − 1 ≥ 0. The maximum of |smin − 1| and |smax − 1| is max{1 −
smin, smax − 1}.

The absolute difference is then bounded by:

|dS(p, q)− dX(p, q)| ≤ max{1− smin, smax − 1} · dX(p, q).

Case 2: Either smin ≥ 1 or smax ≤ 1
If smin ≥ 1, then both smin − 1 ≥ 0 and smax − 1 ≥ 0, so:

|dS(p, q)− dX(p, q)| ≤ (smax − 1) · dX(p, q).

If smax ≤ 1, then both smin − 1 ≤ 0 and smax − 1 ≤ 0, so:

|dS(p, q)− dX(p, q)| ≤ (1− smin) · dX(p, q).

Observe that in all cases, we have

|dS(p, q)− dX(p, q)| ≤ max{smax − 1, 1− smin} · dX(p, q).

Moreover, we note that
max{smax − 1, 1− smin} ≤ smax − smin = δ′.
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This is because smax ≥ smin, and the largest of smax − 1 and 1− smin cannot exceed smax − smin.
We continue by justifying the results
- If smax ≥ 1 ≥ smin:

smax − 1 + 1− smin = smax − smin.

Therefore, max{smax − 1, 1− smin} ≤ smax − smin.
- If smax, smin ≥ 1:

smax − 1 ≤ smax − smin.

Since smin ≥ 1, smax − smin ≥ smax − 1.
- If smax, smin ≤ 1:

1− smin ≤ smax − smin.

Since smax ≤ 1, smax − smin ≥ 1− smin.
Therefore, in all cases:

|dS(p, q)− dX(p, q)| ≤ δ′ · dX(p, q).

We have shown that the absolute difference between the scaled distance and the original distance is
bounded by δ′ · dX(p, q), where δ′ = smax − smin. This completes the proof. �

4.3. Theorem 1 (Stability of Persistence Diagrams Under Scaling). The bottleneck distance
between the persistence diagrams D and DS satisfies:

dB(D,DS) ≤ δ = δ′ · diam(X) = (smax − smin) · diam(X).

This demonstrates that dB(D,DS) ≤ δ = ∆s · diam(X). The result establishes a direct relationship
between ∆s and topological stability under bottleneck distance. It links metric bounds to persistence
diagrams.

Proof. Our goal is to bound the bottleneck distance dB(D,DS) between the persistence diagrams com-
puted from the original dataset X and the scaled dataset S(X).

Recall that the stability theorem for persistence diagrams [5] states that for two tame Lipschitz func-
tions f, g : X → R, the bottleneck distance between their corresponding persistence diagrams Df and
Dg satisfies

dB(Df , Dg) ≤ ‖f − g‖∞,
where

‖f − g‖∞ = sup
x∈X
|f(x)− g(x)|.

In our setting, we consider the distance functions induced by the metrics dX and dS on X

dX(p) = dX(p, x0), dS(p) = dS(p, x0),

for a fixed base point x0 ∈ X. However, since the distance functions depend on the choice of x0, and we
are interested in the maximum difference over all pairs (p, q) ∈ X×X, we consider the extended distance
functions defined on X ×X

dX(p, q), dS(p, q).

To apply the stability theorem, we need to bound the supremum norm of the difference between dX
and dS over X ×X

‖dS − dX‖∞ = sup
p,q∈X

|dS(p, q)− dX(p, q)|.

From Lemma 2, we have established that for all p, q ∈ X
|dS(p, q)− dX(p, q)| ≤ δ′ · dX(p, q),

where δ′ = smax − smin.
Since dX(p, q) ≤ diam(X) for all p, q ∈ X, it follows that

|dS(p, q)− dX(p, q)| ≤ δ′ · diam(X).

Therefore, the supremum norm is bounded by

‖dS − dX‖∞ = sup
p,q∈X

|dS(p, q)− dX(p, q)| ≤ δ′ · diam(X).

By applying the stability theorem for persistence diagrams to the functions dX and dS , we obtain

dB(D,DS) ≤ ‖dS − dX‖∞ ≤ δ′ · diam(X).

Substituting δ = δ′ · diam(X) = (smax − smin) · diam(X), we have

dB(D,DS) ≤ δ.
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We continue by justification by bounding the difference in distance functions.
From Lemma 2,

|dS(p, q)− dX(p, q)| ≤ δ′ · dX(p, q).

Since dX(p, q) ≤ diam(X), we have

|dS(p, q)− dX(p, q)| ≤ δ′ · diam(X).

Then,

‖dS − dX‖∞ ≤ δ′ · diam(X).

The stability theorem applies to functions on a metric space. In our case, we consider the distance
functions dX and dS as functions defined on X×X. The persistence diagrams D and DS are constructed
from filtrations based on these distance functions.

The stability theorem states that

dB(D,DS) ≤ ‖dS − dX‖∞.

Substitute the bound from step 1 into the inequality from step 2

dB(D,DS) ≤ δ′ · diam(X).

We define

δ = δ′ · diam(X) = (smax − smin) · diam(X).

Therefore, the bottleneck distance between the persistence diagrams before and after scaling is
bounded by

dB(D,DS) ≤ δ.
This completes the proof.

�

4.4. Corollary 1. To ensure that dB(D,DS) ≤ ε, it suffices to require

δ = (smax − smin) · diam(X) ≤ ε.

Therefore, the scaling variability ∆s = smax − smin must satisfy

∆s ≤
ε

diam(X)
.

This ensures dB(D,DS) ≤ ε if ∆s ≤ ε
diam(X) . It provides a design constraint for ∆s to control dB and

facilitates algorithmic scaling selection.

4.5. Theorem 2 (Extension to Higher Homology Dimensions). Let Dk and Dk
S denote the per-

sistence diagrams corresponding to the k-th homology group Hk before and after scaling. Then:

dB(Dk, Dk
S) ≤ δk = (smax − smin) · diamk(X),

where diamk(X) is the maximum diameter among all (k + 1)-tuples in X.
This extends Theorem 1 to higher homology groups Hk, proving dB(Dk, Dk

S) ≤ δk = ∆s · diamk(X).
It generalizes stability bounds to k-simplices and higher-dimensional features.

Proof. Our goal is to establish that the bottleneck distance between the k-th persistence diagrams Dk

and Dk
S satisfies

dB(Dk, Dk
S) ≤ δk = (smax − smin) · diamk(X).

To achieve this, we need to analyze how the scaling transformation S affects the distances relevant to
k-dimensional homology features.

In persistent homology, k-simplices are formed from (k + 1)-tuples of points in X. For a k-simplex
σ = {p0, p1, . . . , pk}, the diameter of σ is defined as

diam(σ) = max
0≤i<j≤k

dX(pi, pj).

The maximum diameter among all k-simplices in X is

diamk(X) = max
σ

diam(σ) = max
p0,...,pk∈X

max
i,j

dX(pi, pj).

Under the scaling transformation S, the distance between any two points p, q ∈ X changes as per
Lemma 1

smin · dX(p, q) ≤ dS(p, q) ≤ smax · dX(p, q).
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The construction of simplicial complexes (e.g., Vietoris–Rips complexes) depends on distances between
points. In the Vietoris–Rips complex VRε(X), a k-simplex σ is included if all pairwise distances among
its vertices are less than or equal to ε.

After scaling, the inclusion of simplices may change due to altered distances. Specifically, the filtration
values (birth and death times) of k-dimensional features are affected by the changes in simplex diameters.

We consider a k-simplex σ in X with diameter diam(σ). Under S, the diameter becomes:

diamS(σ) = max
0≤i<j≤k

dS(pi, pj).

Use Lemma 1, for each pair (pi, pj)

smin · dX(pi, pj) ≤ dS(pi, pj) ≤ smax · dX(pi, pj).

Therefore, for the simplex diameter,

smin · diam(σ) ≤ diamS(σ) ≤ smax · diam(σ).

The change in the diameter of σ due to scaling is then

|diamS(σ)− diam(σ)| ≤ (smax − smin) · diam(σ).

Since diam(σ) ≤ diamk(X) for all σ, we have

|diamS(σ)− diam(σ)| ≤ (smax − smin) · diamk(X) = δk.

The stability theorem for persistence diagrams extends to higher homology dimensions (see [5])

dB(Dk, Dk
S) ≤ sup

σ
|f(σ)− g(σ)|,

where

• f(σ) is the filtration value (e.g., diameter) assigned to simplex σ in X.
• g(σ) is the filtration value assigned to σ in S(X).

In our case,
f(σ) = diam(σ), g(σ) = diamS(σ).

Therefore,
dB(Dk, Dk

S) ≤ sup
σ
|diamS(σ)− diam(σ)| ≤ δk.

Combining the above results, we have:

dB(Dk, Dk
S) ≤ δk = (smax − smin) · diamk(X).

This shows that the bottleneck distance between the k-th persistence diagrams before and after scaling
is bounded by δk, which depends on the scaling variability smax − smin and the maximal diameter
diamk(X) of k-simplices in X.

�

4.6. Theorem 3 (Stability Under Wasserstein Distance). For the p-Wasserstein distanceWp(D,DS)
between the persistence diagrams D and DS , we have:

Wp(D,DS) ≤ δ,
where δ = (smax − smin) · diam(X).

This proves Wp(D,DS) ≤ δ and links Wp-stability to ∆s · diam(X). It establishes robustness across
alternative metrics for comparing persistence diagrams.

Proof. Our goal is to show that the p-Wasserstein distance between the persistence diagrams before and
after scaling is bounded by δ.

First, we recall the definitions:
The bottleneck distance dB(D,DS) between two persistence diagrams D and DS is defined as:

dB(D,DS) = inf
γ

sup
x∈D
‖x− γ(x)‖∞,

where γ : D → DS ranges over all bijections (including matching points to the diagonal).
The p-Wasserstein distance Wp(D,DS) is defined as:

Wp(D,DS) =

(
inf
γ

∑
x∈D
‖x− γ(x)‖p∞

)1/p

,

where γ is as above, and p ≥ 1.
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It is a well-known fact that the bottleneck distance is the limit of the p-Wasserstein distances as
p→∞, and for any p ≥ 1:

Wp(D,DS) ≤ dB(D,DS).

This inequality holds because the sup (essentially the maximum over x ∈ D) in the bottleneck distance
is greater than or equal to the Lp-norm used in the Wasserstein distance.

From Theorem 1, we have established that:

dB(D,DS) ≤ δ = (smax − smin) · diam(X).

Combining these two inequalities, we get:

Wp(D,DS) ≤ dB(D,DS) ≤ δ.
We continue with justifications.
The bottleneck distance considers the largest difference between matched points in the diagrams. In

addition, the p-Wasserstein distance considers the sum (or integral, in the continuous case) of the p-th
powers of the distances between matched points, taking the p-th root at the end.

We now bound the p-Wasserstein distance by using the bottleneck distance. Since ‖x − γ(x)‖∞ ≤
dB(D,DS) for all x ∈ D under the optimal matching γ, we have

‖x− γ(x)‖p∞ ≤ dB(D,DS)p.

Therefore ∑
x∈D
‖x− γ(x)‖p∞ ≤ N · dB(D,DS)p,

where N is the number of points in D.
Take the p-th root

Wp(D,DS) =

(∑
x∈D
‖x− γ(x)‖p∞

)1/p

≤ N1/p · dB(D,DS).

As N1/p → 1 as p→∞, and dB(D,DS) ≤ δ, we conclude

Wp(D,DS) ≤ δ.
The p-Wasserstein distance Wp(D,DS) is bounded by δ, which depends on the scaling variability

smax − smin and the diameter diam(X) of the dataset. Then,

Wp(D,DS) ≤ δ.
This completes the proof.

�

4.7. Theorem 4 (Iterative Scaling Transformations). Suppose we apply a sequence of scaling trans-

formations S(1), S(2), . . . , S(m), where each S(j) is defined by scaling factors s
(j)
i > 0 for i = 1, 2, . . . , n.

Let the scaling variability of the j-th transformation be ∆
(j)
s = s

(j)
max − s(j)min, where

s(j)max = max
1≤i≤n

s
(j)
i , s

(j)
min = min

1≤i≤n
s
(j)
i .

Then, the cumulative bottleneck distance between the original persistence diagram D and the persistence
diagram after the m-th transformation DS(m) satisfies:

dB(D,DS(m)) ≤ δtotal =

 m∏
j=1

s(j)max −
m∏
j=1

s
(j)
min

 · diam(X).

This establishes dB(D,DS(m)) ≤ δtotal = (
∏m
j=1 s

(j)
max −

∏m
j=1 s

(j)
min) · diam(X). It then quantifies

cumulative perturbations under sequential transformations.

Proof. Our goal is to find an upper bound on dB(D,DS(m)), the bottleneck distance between the per-
sistence diagram D of the original dataset X and the persistence diagram DS(m) of the dataset after
applying m scaling transformations sequentially.

For each coordinate i, the cumulative scaling factor after m transformations is

stotali =

m∏
j=1

s
(j)
i .
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The maximum and minimum cumulative scaling factors are

stotalmax =

m∏
j=1

s(j)max, stotalmin =

m∏
j=1

s
(j)
min.

This is because the product of the maximum (or minimum) scaling factors across all transformations
gives the maximum (or minimum) cumulative scaling factor.

The cumulative scaling variability is defined as

∆total
s = stotalmax − stotalmin =

 m∏
j=1

s(j)max

−
 m∏
j=1

s
(j)
min

 .

Consider the cumulative scaling transformation Stotal = S(m) ◦ · · · ◦ S(1), which applies all m trans-
formations in sequence. Since scaling transformations are linear and commutative in this context, the
order of application does not affect the cumulative scaling factors.

From Lemma 1, for any pair p, q ∈ X, the scaled distance under Stotal satisfies

stotalmin · dX(p, q) ≤ dStotal(p, q) ≤ stotalmax · dX(p, q).

By using a similar argument as in Lemma 2, the difference between the scaled and original distances
is bounded by

|dStotal(p, q)− dX(p, q)| ≤ ∆total
s · dX(p, q).

Since dX(p, q) ≤ diam(X), it follows that

|dStotal(p, q)− dX(p, q)| ≤ ∆total
s · diam(X).

From the stability theorem for persistence diagrams, we have

dB(D,DStotal) ≤ ‖dStotal − dX‖∞ ≤ ∆total
s · diam(X).

Therefore,

dB(D,DS(m)) ≤

 m∏
j=1

s(j)max −
m∏
j=1

s
(j)
min

 · diam(X) = δtotal.

Suppose m = 2 transformations with the following scaling factors:
- First transformation:

s
(1)
min = a1, s(1)max = b1, ∆(1)

s = b1 − a1.
- Second transformation:

s
(2)
min = a2, s(2)max = b2, ∆(2)

s = b2 − a2.
Then,

stotalmin = a1a2, stotalmax = b1b2, ∆total
s = b1b2 − a1a2.

The cumulative bottleneck distance is then

dB(D,DS(2)) ≤ (b1b2 − a1a2) · diam(X).

By treating the sequence of scaling transformations as a single cumulative transformation, we derive
a bound on the bottleneck distance that depends only on the products of the maximum and minimum
scaling factors. This bound provides a clear understanding of how sequential scaling transformations
affect the persistence diagrams.

�

4.8. Theorem 5 (Expected Stability Under Random Scaling). Let the scaling factors si be ran-
dom variables with distributions si ∼ Dist(µi, σi), where µi = E[si] and σ2

i = V[si]. Then the expected
bottleneck distance satisfies

E[dB(D,DS)] ≤ (E[smax]− E[smin]) · diam(X).

Proof. Our goal is to find an upper bound on the expected bottleneck distance E[dB(D,DS)] when the
scaling factors si are random variables.

From Theorem 1, we know that for any fixed scaling factors si > 0

dB(D,DS) ≤ (smax − smin) · diam(X),

where
smax = max

1≤i≤n
si, smin = min

1≤i≤n
si.
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Now, let si be random variables. Consequently, smax and smin become random variables as well, since
they depend on the si. Define

∆s = smax − smin.

Thus, ∆s is a random variable representing the scaling variability in the random setting.
We are interested in the expected value E[dB(D,DS)]. Using the deterministic bound

dB(D,DS) ≤ ∆s · diam(X),

taking expectations on both sides gives

E[dB(D,DS)] ≤ E[∆s] · diam(X).

Since ∆s = smax − smin, we have

E[∆s] = E[smax − smin] = E[smax]− E[smin].

If si are Independent and identically distributed random variables with distribution Dist(µ, σ2), we
can approximate the expectations E[smax] and E[smin] using results from order statistics.

For example, if si are drawn uniformly from [a, b], then

E[smax] = b− b− a
n+ 1

, E[smin] = a+
b− a
n+ 1

.

Thus

E[∆s] = E[smax]− E[smin] = (b− a)

(
1− 2

n+ 1

)
.

For large n, E[∆s]→ b− a, aligning with the deterministic variability of the uniform distribution.
If the si are not identically distributed, then E[smax] and E[smin] depend on the individual distribu-

tions. While exact computation may require detailed knowledge of the joint distribution of smax and
smin, the bound:

E[smax]− E[smin] ≥ 0

remains valid under all circumstances.
Suppose si ∼ N (µ, σ2), truncated to positive values. Using properties of truncated normal distribu-

tions:

E[si] = µ′ and E[s2i ] = (σ′)2 + (µ′)2,

where µ′ and σ′ depend on the truncation range.
The expected maximum E[smax] and minimum E[smin] can then be computed using approximations

for the extrema of truncated normal distributions.
The expected bottleneck distance is bounded as:

E[dB(D,DS)] ≤ (E[smax]− E[smin]) · diam(X).

This result highlights the dependence of the expected perturbation on the statistical properties of the
scaling factors.

�

5. Optimization Problem

Based on the theoretical results, we can now formulate the optimization problem explicitly:

min
s1,s2,...,sn

∆s = smax − smin

subject to ∆s ≤
ε

diam(X)
,

smin ≤ si ≤ smax, ∀i = 1, . . . , n,

si > 0, ∀i = 1, . . . , n.

This is a convex optimization problem since the objective function ∆s is convex, and the constraints are
linear in the variables si.
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Solution Approach. Our goal is to find the scaling factors si > 0 that minimize the scaling variability
∆s = smax − smin while ensuring that the bottleneck distance between the persistence diagrams satisfies
dB(D,DS) ≤ ε.

We first note that smax and smin are functions of the variables si:

smax = max
1≤i≤n

si, smin = min
1≤i≤n

si.

Our optimization problem can be rewritten as

min
s1,s2,...,sn,smax,smin

∆s = smax − smin

subject to smax − smin ≤ δ, δ =
ε

diam(X)
,

smin ≤ si ≤ smax, ∀i,
smin > 0, smax > 0.

We are making the following observations.
With regard to the uniform scaling solutions, - If ∆s = 0 satisfies ∆s ≤ δ, then setting si = s for all

i is optimal. - In this case, the scaling factors are uniform, and the scaling variability is minimized to
zero.

With regard to the minimum variability solutions, - If ∆s = 0 does not satisfy ∆s ≤ δ (i.e., if δ = 0
is required but not possible), we need to find smax and smin such that ∆s = smax − smin = δ.

Our objective is to minimize ∆s = smax− smin, subject to the constraints. The optimization problem
is convex and can be approached using the following steps

We set ∆s to its minimum possible value. Since we are minimizing ∆s and it must satisfy ∆s ≤ δ,
the optimal value is

∆∗s = min{δ,∆min
s },

where ∆min
s is the minimum possible scaling variability (which could be zero).

We then determine smax and smin. Choose smax and smin such that

smax − smin = ∆∗s.

We have the freedom to choose smax and smin as long as they are positive and satisfy the constraints.
We then assign si values. We need to assign values to si within the interval [smin, smax]. To minimize

∆s, it is optimal to set as many si as possible to either smin or smax. This is because any intermediate
values of si do not help in reducing ∆s.

We now proceed to formalize this strategy.
Case 1: Uniform Scaling is Feasible. If δ ≥ 0, and setting ∆s = 0 satisfies the constraint ∆s ≤ δ, then: -
Set ∆∗s = 0. - Choose any positive s, for example, s = 1. - Set si = s for all i. - The scaling factors are
uniform, and the persistence diagrams are unaffected (dB(D,DS) = 0).
Case 2: Uniform Scaling is Not Feasible. If δ is very small or zero, and uniform scaling does not satisfy
the constraint (e.g., when some variability is required), we need to find smin and smax such that:

smax − smin = δ.

We can proceed as follows:
1. Choose smin > 0 arbitrarily (e.g., smin = 1). 2. Then, set:

smax = smin + δ.

3. Assign si values: - Decide on the number k of si to set to smax and n−k to smin. - Since the objective
is to minimize ∆s, any distribution of si within [smin, smax] is acceptable, provided the constraints are
met.

We can then formulate the problem as a linear program.
Variables. - si for i = 1, . . . , n - smax - smin - ∆s

Objective Function. Minimize ∆s = smax − smin.
Constraints. 1. smax − smin = ∆s

2. ∆s ≤ δ
3. smin ≤ si ≤ smax for all i
4. si > 0 for all i
5. smin > 0, smax > 0.
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Linear Program Formulation. Express the problem in standard linear programming (LP) form.

Minimize ∆s

Subject to smax − smin −∆s = 0,

∆s − δ ≤ 0,

smin − si ≤ 0, ∀i,
si − smax ≤ 0, ∀i,
− si ≤ −ε, ∀i (to ensure si ≥ ε > 0),

− smin ≤ −ε,
− smax ≤ −ε,

where ε is a small positive constant to ensure positivity.
Solving the Linear Program. Since the objective and constraints are linear, this problem can be efficiently
solved using standard LP solvers.

Given the simplicity of the problem, we can derive an explicit solution.
Set ∆s = δ. Since we are minimizing ∆s and ∆s ≤ δ, the optimal value is ∆∗s = δ.
Choose smin and smax. We can set smin to any positive value. A reasonable choice is smin = 1.

Then, smax = smin + δ = 1 + δ.
Assign si Values. To minimize the variability among si, we can set all si to either smin or smax. Since our
objective is to minimize ∆s, and any distribution satisfies the constraints, we can set: - si = smin = 1
for all i.

This results in smax = smin = 1, and ∆s = 0, which is less than δ.
However, if ∆s = 0 does not satisfy dB(D,DS) ≤ ε, we need to have ∆s = δ.
Therefore, we can proceed as
- Set si = smin for i = 1, . . . , n− 1. - Set sn = smax.
This assignment ensures that smax − smin = δ and that the constraints are satisfied.
We now verify the following properties of the solution.
1. Scaling Variability:

∆s = smax − smin = (1 + δ)− 1 = δ.

2. Constraints: - smin ≤ si ≤ smax holds for all i. - si > 0 for all i.
3. Bottleneck Distance: From Theorem 1, we have

dB(D,DS) ≤ ∆s · diam(X) = δ · diam(X) = ε.

Therefore, the topological constraint is satisfied.

Optimal Solution

The optimal solution is then:

• Set smin = 1.
• Set smax = 1 + δ.
• Assign si such that:

si =

{
smin, for i = 1, . . . , n− 1,

smax, for i = n.

• This results in ∆s = δ and satisfies all constraints.

If desired, we can distribute the si values differently, as long as:
- All si ∈ [smin, smax]. - ∆s = smax − smin = δ.
For example, we could assign:
- k variables to smax and n− k variables to smin, where k is any integer between 1 and n.

6. Algorithmic framework

We present an algorithmic framework designed to determine optimal scaling factors si that minimize
the scaling variability ∆s = smax − smin while ensuring the topological stability of the dataset under
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scaling transformations. The framework ensures that the bottleneck distance between the original per-
sistence diagram D and the scaled persistence diagram DS does not exceed a user-defined tolerance
ε.

6.1. Algorithm Outline. Step 1: Input data and parameters
We start with the input dataset X ⊂ Rn and a tolerance ε > 0, which specifies the maximum allowable

topological perturbation measured by the bottleneck distance dB(D,DS).
Step 2: Compute the dataset diameter
Calculate the diameter of the dataset X, denoted by diam(X), which is the maximum Euclidean

distance between any pair of points in X

diam(X) = max
p,q∈X

‖p− q‖2.

This value is critical because it directly influences the upper bound on the bottleneck distance due to
scaling variability, as established in Theorem 1.

Step 3: Determine the maximum allowed scaling variability
Using the result from Theorem 1, we know that the bottleneck distance between D and DS is bounded

by

dB(D,DS) ≤ ∆s · diam(X).

To ensure that the topological perturbation does not exceed the tolerance ε, we solve for the maximum
allowed scaling variability

∆max
s =

ε

diam(X)
.

This value represents the upper limit for ∆s to satisfy the topological constraint.
Step 4: Formulate the optimization problem
Our objective is to find scaling factors si > 0 that minimize ∆s while adhering to the constraint

∆s ≤ ∆max
s . The optimization problem is formulated as

min
s1,...,sn

∆s = smax − smin,

subject to ∆s ≤ ∆max
s ,

smin ≤ si ≤ smax, ∀i,
si > 0, ∀i.

Step 5: Solve the optimization problem
To minimize ∆s, we consider two cases:
Case 1: Uniform scaling is feasible.
If setting ∆s = 0 (i.e., smax = smin) satisfies ∆s ≤ ∆max

s , then the optimal solution is to use uniform
scaling:

si = s, ∀i,
where s > 0 is any positive constant. This results in no scaling variability and ensures dB(D,DS) = 0,
thus preserving the dataset’s topology perfectly.

Case 2: Uniform scaling is not feasible.
If ∆s = 0 does not satisfy the constraint ∆s ≤ ∆max

s , we must set ∆s = ∆max
s . We proceed by

1. Choosing smin > 0, commonly set to smin = 1 for simplicity. 2. Setting smax = smin + ∆max
s . 3.

Distributing the si values within the interval [smin, smax]. To minimize variability, we assign si to either
smin or smax.

Step 6: Assign scaling factors
Based on the solution,
- Set si = smin for i = 1, 2, . . . , n− 1. - Set sn = smax.
This assignment ensures that ∆s = smax−smin = ∆max

s and all scaling factors are within the required
bounds.

Step 7: Verify constraints and topological stability
We verify that
- ∆s = ∆max

s satisfies the constraint ∆s ≤ ∆max
s . - All si ∈ [smin, smax] and si > 0. - The topological

constraint is satisfied since

dB(D,DS) ≤ ∆s · diam(X) = ∆max
s · diam(X) = ε.

Step 8: Output the optimal scaling factors
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The optimal scaling factors si are then used for the scaling transformation S in the data augmentation
process, ensuring that the essential topological features of the dataset are preserved within the specified
tolerance.

6.2. Pseudocode of the Algorithm. To formalize the algorithmic framework, we provide the following
pseudocode:

Algorithm: Optimal Scaling Factors

Algorithm OptimalScalingFactors(X, epsilon):

Input: Dataset X in R^n, tolerance epsilon > 0

Output: Optimal scaling factors s[1..n]

1. Compute diameter = max_{p, q in X} ||p - q||_2

2. delta_s_max = epsilon / diameter

3. Initialize s_min = 1

4. If delta_s_max >= 0:

Set delta_s = 0

Set s_max = s_min

For i from 1 to n:

s[i] = s_min

Else:

Set delta_s = delta_s_max

Set s_max = s_min + delta_s

For i from 1 to n-1:

s[i] = s_min

Set s[n] = s_max

5. Return s[1..n]

7. Applications

7.1. Case Study: Image Data Augmentation. In image processing, each pixel is represented as a
vector in R3, corresponding to the Red, Green, and Blue (RGB) color channels [9]. Non-uniform scaling
of these channels can be used as a data augmentation technique to introduce variations in color while
preserving spatial structures [10]. However, improper scaling can distort color relationships and alter
the topological features of the image, potentially impacting tasks like object recognition [11].

Using our mathematical framework, we aim to determine optimal scaling factors for the RGB channels
that minimize the scaling variability ∆s while ensuring that the topological perturbation, measured by
the bottleneck distance dB(D,DS), remains within a specified tolerance ε.

Objective. Find scaling factors s1, s2, s3 > 0 for the RGB channels that minimize ∆s = smax − smin and
ensure dB(D,DS) ≤ ε.

Analysis. Consider an image I composed of N pixels, where each pixel p is represented by its RGB values
(Rp, Gp, Bp). The dataset X consists of all pixel vectors in R3

X = {(Rp, Gp, Bp) | p is a pixel in I}.

The diameter of X is the maximum Euclidean distance between any two pixels in the RGB space

diam(X) = max
p,q∈X

‖(Rp, Gp, Bp)− (Rq, Gq, Bq)‖2.

Since RGB values range from 0 to 255, the maximum possible distance is

diam(X) ≤
√

(255− 0)2 + (255− 0)2 + (255− 0)2 = 255
√

3 ≈ 441.67.

Given a tolerance ε > 0, the maximum allowed scaling variability is

∆max
s =

ε

diam(X)
.

For example, if ε = 10, then

∆max
s =

10

441.67
≈ 0.0227.
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We aim to minimize ∆s = smax − smin subject to

∆s ≤ ∆max
s , smin ≤ si ≤ smax, si > 0, for i = 1, 2, 3.

We now solve the optimization problem.
Case 1: Uniform scaling is feasible.
If ∆max

s ≥ 0, setting s1 = s2 = s3 = s minimizes ∆s = 0 and satisfies the constraint ∆s ≤ ∆max
s .

Case 2: Uniform scaling is not feasible.
If ∆s = 0 does not satisfy the constraint dB(D,DS) ≤ ε, we set ∆s = ∆max

s . We choose smin = 1 and
smax = 1 + ∆max

s .
Assign scaling factors: - s1 = smin = 1 (e.g., Red channel). - s2 = smin = 1 (e.g., Green channel). -

s3 = smax = 1 + ∆max
s (e.g., Blue channel).

We now verify the topological constraint by using Theorem 1

dB(D,DS) ≤ ∆s · diam(X) = ∆max
s · diam(X) = ε.

Thus, the topological perturbation remains within the specified tolerance.
We then implement the scaling transformation. We apply the scaling transformation S to the RGB

values of each pixel p

S(Rp, Gp, Bp) = (s1Rp, s2Gp, s3Bp).

For instance, with s1 = s2 = 1 and s3 = 1 + ∆max
s , the Blue channel is slightly enhanced, introducing

variation while preserving the overall color relationships and topology.
The persistence diagrams D and DS capture the topological features of the images before and after

scaling, respectively. Features in images often correspond to edges, textures, and regions of uniform
color.

By ensuring dB(D,DS) ≤ ε, we guarantee that the significant topological features (e.g., objects and
shapes within the image) are preserved. Minor variations introduced by the scaling are controlled and
do not distort the essential structure of the image.

Detailed Numerical Example. Suppose we have an image with the following characteristics:
- Maximum RGB values observed in the image: (Rmax, Gmax, Bmax) = (200, 180, 220).
- Minimum RGB values observed in the image: (Rmin, Gmin, Bmin) = (50, 60, 40).
Compute the dataset diameter:

diam(X) =
√

(200− 50)2 + (180− 60)2 + (220− 40)2 ≈
√

1502 + 1202 + 1802 ≈ 263.02.

Given ε = 5, the maximum allowed scaling variability is

∆max
s =

5

263.02
≈ 0.019.

Set smin = 1 and smax = 1 + 0.019 = 1.019.
We assign scaling factors - s1 = 1 (Red channel).
- s2 = 1 (Green channel).
- s3 = 1.019 (Blue channel).
We now compute the upper bound on dB(D,DS):

dB(D,DS) ≤ ∆s · diam(X) = 0.019× 263.02 ≈ 5 ≤ ε.

The slight increase in the Blue channel intensifies blue hues in the image without significantly altering
the topological features. Edges, contours, and textures remain largely unaffected, ensuring that the
augmented image is still suitable for training object recognition models.

7.2. Case Study: Multimodal Data Normalization. In many modern machine learning applica-
tions, datasets consist of multimodal data, combining features from different sources or modalities, such
as text, images, audio, and numerical measurements. These modalities often have inherently different
scales and units, which can lead to imbalances in feature importance when training machine learning
models. Proper normalization across modalities is crucial to ensure that each feature contributes appro-
priately to the model’s learning process [12].

Using our mathematical framework, we aim to determine optimal scaling factors for features from each
modality to align their scales, minimize scaling variability ∆s, and preserve the topological structure of
the combined dataset.

Objective. Find scaling factors si > 0 for features across different modalities that minimize ∆s = smax−
smin while ensuring the topological stability of the multimodal dataset under scaling transformations.
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Context and Challenges. Consider a dataset X comprising features from two modalities:
1. Text Features: Represented using numerical vectors obtained from techniques like word embed-

dings (e.g., Word2Vec, GloVe) or sentence embeddings. These vectors typically reside in high-dimensional
spaces (e.g., R300) and have values in a range determined by the embedding method.

2. Image Features: Extracted using convolutional neural networks (CNNs), resulting in feature
vectors in Rn, where n depends on the network architecture and the layer from which features are
extracted.

The scales of these features can differ significantly due to the nature of the data and the extraction
methods used. If left unnormalized, features from one modality may dominate the learning process,
leading to suboptimal model performance.

Analysis. The combined dataset X consists of feature vectors x ∈ Rn, where n = ntext + nimage

x = (xtext, ximage),

where xtext ∈ Rntext and ximage ∈ Rnimage .
We then compute the range or variance of each feature to assess the scaling disparity between modal-

ities
- For text features, calculate Rangetext = maxi xtext,i −mini xtext,i.
- For image features, calculate Rangeimage = maxi ximage,i −mini ximage,i.
Suppose we find that Rangetext ≈ 1 (e.g., embeddings normalized to unit length), while Rangeimage ≈

100 (e.g., features with larger magnitudes).
We then calculate the diameter of the combined dataset X

diam(X) = max
p,q∈X

‖p− q‖2.

Given the disparity in feature scales, the diameter will be dominated by the modality with larger feature
ranges (in this case, image features).

We can select a tolerance ε > 0 representing the maximum acceptable topological perturbation.
Compute the maximum allowed scaling variability

∆max
s =

ε

diam(X)
.

For instance, if diam(X) = 200 and ε = 5, then:

∆max
s =

5

200
= 0.025.

We aim to find scaling factors si > 0 for each feature that minimize ∆s = smax − smin while ensuring
∆s ≤ ∆max

s . The optimization problem is

min
s1,...,sn

∆s = smax − smin,

subject to ∆s ≤ 0.025,

smin ≤ si ≤ smax, ∀i,
si > 0, ∀i.

Given the structure of the dataset, we can assign scaling factors based on modality:
- Text Features: Apply a scaling factor stext to all text features.
- Image Features: Apply a scaling factor simage to all image features.
Our variables reduce to stext and simage, simplifying the problem.
We now solve the optimization problem.
Case 1: Equalizing the Scales
Aim to adjust stext and simage to equalize the ranges of the modalities:
1. Compute the scaling factors required to normalize the ranges:

stext =
Rangeimage

Rangetext
, simage = 1.

For example, with Rangeimage = 100 and Rangetext = 1:

stext = 100, simage = 1.

2. Compute ∆s = smax − smin = stext − simage = 100− 1 = 99.
3. Check if ∆s ≤ ∆max

s :
99 ≤ 0.025 (False).

The scaling variability is too large, violating the constraint.
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Case 2: Minimizing ∆s Within Constraints
Set ∆s = ∆max

s = 0.025. Choose smin = 1 and smax = 1 + ∆max
s = 1.025.

Assign scaling factors: - stext = smin = 1. - simage = smax = 1.025.
Now, ∆s = smax − smin = 0.025, satisfying the constraint.
We now verify the topological constraint by using Theorem 1.

dB(D,DS) ≤ ∆s · diam(X) = 0.025× 200 = 5 ≤ ε.
Thus, the topological perturbation remains within the specified tolerance.

We now apply the scaling transformation. Begin scaling the features
- For text features: x′text = stext · xtext.
- For image features: x′image = simage · ximage.
By adjusting the scaling factors,
- The features from both modalities contribute more equally during model training.
- The topological features of the combined dataset are preserved, preventing distortion of the data’s

intrinsic structure.
- The model can learn meaningful relationships across modalities without bias toward one modality

due to scale differences.

8. Conclusion

Throughout the paper, we have shown that the bottleneck distance dB(D,DS) between persistence
diagrams under non-uniform scaling S satisfies:

dB(D,DS) ≤ ∆s · diam(X),

where ∆s = smax−smin. This establishes a direct relationship between scaling variability and topological
perturbation.

Our results extend to higher homology dimensions k, alternative metrics such as Wasserstein distances
Wp(D,DS), iterative transformations, and random scaling factors. Specifically, for the k-th homology,
we have:

dB(Dk, Dk
S) ≤ ∆s · diamk(X),

where diamk(X) is the maximum diameter among (k + 1)-tuples in X.
The proposed framework minimizes ∆s while maintaining dB(D,DS) ≤ ε, ensuring topological sta-

bility. This guarantees that data augmentation via scaling transformations preserves essential features,
providing a robust foundation for applications in machine learning and multimodal data analysis.
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