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Abstract
The main goal is extending the concept of the core–EP orthogonality to the m-weak
group orthogonality for bounded linear Drazin invertible Hilbert space operators, using
the m-weak group inverse. Different properties and characterizations of m-weak group
orthogonal operators are proved as well as their operator matrix forms. The connection
between the m-weak group binary relation and the m-weak group orthogonality is given.
We also study additive properties for the m-weak group inverse. Consequently, we study
the weak group orthogonality for operators.
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1. Introduction
In this paper, X and Y are infinite-dimensional complex Hilbert spaces and B(X, Y )

represents the set of all bounded linear operators from X to Y . In the case that X = Y ,
we set B(X) = B(X, X). For A ∈ B(X, Y ), denote that A∗ is the adjoint of A, N(A) is
the null space of A and R(A) is the range of A.

For A ∈ B(X, Y ), where R(A) is closed in Y , there is unique B ∈ B(Y, X), which is
called the Moore-Penrose inverse of A, denoted by A†, like in [2], satisfying ABA = A,
BAB = B, (AB)∗ = AB and (BA)∗ = BA. An inner inverse of A is an operator B which
satisfies the condition ABA = A. Let A{1} denote the set of all inner inverses of A.

The Drazin inverse AD of A ∈ B(X) is unique solution to the next four equations
AB = BA, BAB = B and Ak+1B = Ak, for some non-negative integer k [2]. The smallest
such k is the index ind(A) = k of A. For ind(A) = 1, AD reduces to the group inverse of A.
B(X)D represents the set of Drazin invertible operators of B(X). The core–EP inverse of
A ∈ B(X)D, denoted by AD⃝ is unique solution to BAB = B and R(B) = R(A∗) = R(Ak),
where ind(A) = k. From [6,24], we know:

AD⃝ = ADAk(Ak)†.

Many other important results of the core–EP inverse can be found in [1, 3, 4, 12,13,21].

∗The author is supported by the Ministry of Science, Technological Development and Innovation of the
Republic of Serbia, grant no. 451-03-137/2025-03/200133.
Email addresses: olivera-stanimirovic@tf.ni.ac.rs
Received: 07.01.2025; Accepted: 10.05.2025

https://orcid.org/0000-0003-2151-9680


2 O. Stanimirović

One of the most important generalized inverses is the group inverse, which has been
applied in solving differential equations and many other problems, for example Markov
chains [2]. The weak group inverse (or WGI) for square matrices with arbitrary index was
defined as a generalization of the group inverse [22]. By [20,22], for A ∈ B(X)D, we have
the expression for the weak group inverse as: AW⃝ = (AD⃝)2A. Then, in the case when
ind(A) = 1, the WGI reduces to the group inverse. Many properties of the WGI inverse
are introduced in [23,25].

The m-weak group inverse is the extension of the weak group inverse, which is introduced
in [26]. For an arbitrary m ∈ N and A ∈ B(X)D, the m-weak group inverse of A is the
unique operator AW⃝,m satisfying the system of equations: AB = (AD⃝)mAm and AB2 = B.
Notice that the m-weak group inverse can be expressed by:

AW⃝,m = (AD⃝)m+1Am

and it is an outer inverse of A, i.e. AW⃝,mAAW⃝,m = AW⃝,m. Also, A(AW⃝,m)2 = AW⃝,m. If
m = 1, the m-weak group inverse reduces to weak group inverse. For the application and
properties of the m-weak group inverse see [8, 10,11,18,19].

Various pre-orders and partial orders are explained in terms of various generalized in-
verse. For A, B ∈ B(X)D the core–EP pre order [15] is defined as A ≤D⃝ B when the
following is satisfied: AAD⃝ = BAD⃝ and AD⃝A = AD⃝B.

The m-weak group binary relation is introduced for operators in [9] as an extension of
the core–EP pre-order for operators. For A, B ∈ B(X)D and m ∈ N , we say that A is
below to B with respect to the m-weak group relation (denoted by A ≤W⃝,m B) if

AW⃝,mB = AW⃝,mA and BAW⃝,m = AAW⃝,m.

Also, by [9], we say that A is below to B with respect to the weak group relation (denoted
by A ≤W⃝ B) if AW⃝B = AW⃝A and BAW⃝ = AAW⃝.

Let us remind the definition of orthogonality for A, B ∈ B(X). If AB = 0 and BA = 0,
the operators A and B are orthogonal which is denoted by A⊥B. Further, A and B are ∗-
orthogonal (denoted by A⊥∗B) if A∗B = 0 and BA∗ = 0 (range and domain orthogonality)
[7]. Also, A and B of index 1 are the core orthogonal (denoted by A⊥#⃝B) [5] if A#⃝B = 0
and BA#⃝ = 0, which is equivalent to A∗B = 0 and BA = 0.

In [16], the concept of the core–EP orthogonality is defined for a pair of Drazin invertible
bounded linear operators on a Hilbert space. Let us remind the definition of core–EP
orthogonality for two operators. Let A, B ∈ B(X)D. Then A is core–EP orthogonal to
B, denoted by A⊥D⃝B, if AD⃝B = 0 and BAD⃝ = 0. Thus, the core–EP orthogonality is a
generalization of the core orthogonality. The relation between the core–EP orthogonality
and the core–EP additivity (A + B)D⃝ = AD⃝ + B D⃝ is investigated in [16].

The main goal of this paper is to explore the orthogonality of bounded linear Drazin
invertible Hilbert space operators and extend earlier results for core–EP orthogonality.
Based on the m-weak group inverse as a generalization of the core–EP inverse, the notion
of the m-weak group orthogonality is introduced extending the core–EP orthogonality.
Different properties and characterizations of the m-weak group orthogonality are given.
The operator matrix forms of m-weak group orthogonal operators are developed. The m-
weak group binary relation is connected with the m-weak group orthogonality. For core–
EP orthogonal operators, we present equivalent conditions for additivity (A + B)W⃝,m =
AW⃝,m +BW⃝,m to be satisfied. As consequences, we obtain results related to the weak group
orthogonality, the weak group relation and the weak group additivity.

Our paper contains the following two sections. Exactly, the Section 2 contains all
new results. Here, we begin with the definition and characterizations of the m-weak
orthogonality for operators. Further, we consider the m-weak group relation and the m-
weak group additivity (A + B)W⃝,m = AW⃝,m + BW⃝,m. We conclude the paper in Section 3
with some final remarks.
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2. m-weak group orthogonality
The m-weak group orthogonality is introduced in this section for operators as an ex-

tension of the core–EP orthogonality for operators.

Definition 2.1. For A, B ∈ B(X) and m ∈ N, we say that A is m-weak group orthogonal
to B (denoted by A⊥W⃝,mB) if

AW⃝,mB = 0 and BAW⃝,m = 0.

In the case that m = 1 in Definition 2.1, we define the weak group orthogonality.

Definition 2.2. For A, B ∈ B(X), we say that A is weak group orthogonal to B (denoted
by A⊥W⃝B) if

AW⃝B = 0 and BAW⃝ = 0.

We start with the following characterizations of the m-weak group orthogonality.

Theorem 2.3. Let A, B ∈ B(X)D and m ∈ N. Then the following statements are equiv-
alent:

(i) A⊥W⃝,mB;
(ii) AW⃝,mB and BAW⃝,m are idempotents and AW⃝,m(A + B)AW⃝,m = AW⃝,m;
(iii) AW⃝,mB = BAW⃝,m and AW⃝,m(A + B)AW⃝,m = AW⃝,m;
(iv) B = (I − AAW⃝,m)G(I − AW⃝,mA), for arbitrary G ∈ B(X).

Proof. (i) =⇒ (ii) ∧ (iii): From A⊥W⃝,mB, we have that AW⃝,mB = 0 and BAW⃝,m = 0,
which implies that AW⃝,mB and BAW⃝,m are idempotents. Also, by AW⃝,mAAW⃝,m = AW⃝,m,
we get

AW⃝,m(A + B)AW⃝,m = AW⃝,mAAW⃝,m + AW⃝,mBAW⃝,m = AW⃝,m.

(ii) =⇒ (i): Since AW⃝,mAAW⃝,m = AW⃝,m, it follows AW⃝,m = AW⃝,m(A + B)AW⃝,m =
AW⃝,m + AW⃝,mBAW⃝,m. Hence, AW⃝,mBAW⃝,m = 0, which gives AW⃝,mB = (AW⃝,mB)2 = 0
and BAW⃝,m = (BAW⃝,m)2 = 0. So, A⊥W⃝,mB.

(iii) =⇒ (i): By the conditions in (iii), we have AW⃝,m = AW⃝,m(A + B)AW⃝,m = AW⃝,m +
(AW⃝,m)2B, which yields (AW⃝,m)2B = 0. Therefore, by A(AW⃝,m)2 = AW⃝,m, AW⃝,mB =
A(AW⃝,m)2B = 0 and BAW⃝,m = AW⃝,mB = 0.

(i) =⇒ (iv): The equation AW⃝,mB = 0 has a solution, by A ∈ AW⃝,m{1} and [2, p. 52],
in the form

B = (I − AAW⃝,m)H, (2.1)
for arbitrary H ∈ B(X). When (2.1) is substituted in BAW⃝,m = 0, it follows

(I − AAW⃝,m)HAW⃝,m = 0. (2.2)
Now, by I − AAW⃝,m ∈ (I − AAW⃝,m){1} and [2, p. 52],

H = G − (I − AAW⃝,m)GAW⃝,mA, (2.3)
for arbitrary G ∈ B(X). The equlities (2.1) and (2.3) give B = (I−AAW⃝,m)G(I−AW⃝,mA).

(iv) =⇒ (i): If B = (I − AAW⃝,m)M(I − AW⃝,mA), for arbitrary M ∈ B(X), we calculate
that AW⃝,mB = 0 and BAW⃝,m = 0. □

By Theorem 2.3, we obtain characterizations of the weak group orthogonality.

Corollary 2.4. Let A, B ∈ B(X)D. Then the following statements are equivalent:
(i) A⊥W⃝B;
(ii) AW⃝B and BAW⃝ are idempotents and AW⃝(A + B)AW⃝ = AW⃝;
(iii) AW⃝B = BAW⃝ and AW⃝(A + B)AW⃝ = AW⃝;
(iv) B = (I − AAW⃝)G(I − AW⃝A), for arbitrary G ∈ B(X).

Necessary and sufficient conditions for AW⃝,mB = 0 are presented now.
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Lemma 2.5. For A, B ∈ B(X)D, m ∈ N and ind(A) = k, the following statements are
equivalent:

(i) AW⃝,mB = 0;
(ii) AD⃝AmB = 0;
(iii) (Ak)†AmB = 0;
(iv) (Ak)∗AmB = 0;
(v) R(B) ⊆ N(AW⃝,m);
(vi) R(B) ⊆ N((Ak)∗Am).

Proof. (i) ⇐⇒ (ii): According to [19, Lemma 2.1], AW⃝,m = (AD)m+1Ak(Ak)†Am. Using
AD⃝ = ADAk(Ak)†, we have the following consequence:

AW⃝,mB = 0 ⇐⇒ (AD)m+1Ak(Ak)†AmB = 0

⇐⇒ ADAk(Ak)†AmB = 0
⇐⇒ AD⃝AmB = 0.

(ii) ⇐⇒ (iii): By the properties of the core–EP inverse, we have the next equivalences:
AD⃝AmB = 0 ⇐⇒ AADAk(Ak)†AmB = 0

⇐⇒ Ak(Ak)†AmB = 0

⇐⇒ (Ak)†AmB = 0.

(iii) ⇐⇒ (iv): It is clear by properties of the Moore-Penrose inverse.
(i) ⇐⇒ (v) ⇐⇒ (vi): Obviously because N(AW⃝,m) = N((Ak)∗Am) by [8]. □
We also study equivalent conditions for BAW⃝,m = 0.

Lemma 2.6. For A, B ∈ B(X)D, m ∈ N and ind(A) = k, the following statements are
equivalent:

(i) BAW⃝,m = 0;
(ii) BAD⃝ = 0;
(iii) BAD = 0;
(iv) BAk = 0;
(v) R(AW⃝,m) ⊆ N(B);
(vi) R(Ak) ⊆ N(B).

Proof. (i) =⇒ (ii): Applying AW⃝,m = (AD)m+1Ak(Ak)†Am, BAW⃝,m = 0 is equivalent to
B(AD)m+1Ak(Ak)†Am = 0, which gives

BADAk = B(AD)m+1AkAm = B(AD)m+1Ak(Ak)†AmAk = 0.

Since AD⃝ = ADAk(Ak)†, it follows BAD⃝ = BADAk(Ak)† = 0.
(ii) =⇒ (i): Note that BAD⃝ = 0 implies BAW⃝,m = B(AD⃝)m+1Am = 0.
(ii) ⇐⇒ (iii): These equivalence follows by AD⃝ = ADAk(Ak)†.
The rest is clear. □
If we combine the conditions of Lemma 2.5 and Lemma 2.6, we can characterize the

m-weak group orthogonality.

Theorem 2.7. Let A, B ∈ B(X)D, m ∈ N and ind(A) = k. Then the following state-
ments are equivalent:

(i) A⊥W⃝,mB;
(ii) AD⃝AmB = 0 and BAD⃝ = 0;
(iii) (Ak)†AmB = 0 and BAD = 0;
(iv) (Ak)∗AmB = 0 and BAk = 0;
(v) R(B) ⊆ N(AW⃝,m) and R(AW⃝,m) ⊆ N(B);
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(vi) R(B) ⊆ N((Ak)∗Am) and R(Ak) ⊆ N(B).

Consequently, we get characterizations for the weak group orthogonality.

Corollary 2.8. Let A, B ∈ B(X)D and ind(A) = k. Then the following statements are
equivalent:

(i) A⊥W⃝B;
(ii) AD⃝AB = 0 and BAD⃝ = 0;
(iii) (Ak)†AB = 0 and BAD = 0;
(iv) (Ak)∗AB = 0 and BAk = 0;
(v) R(B) ⊆ N(AW⃝) and R(AW⃝) ⊆ N(B);
(vi) R(B) ⊆ N((Ak)∗A) and R(Ak) ⊆ N(B).

The assumption A⊥W⃝,mB gives the next equalities related to products of some idem-
potents.

Lemma 2.9. Let A, B ∈ B(X)D, m ∈ N and A⊥W⃝,mB. Then the following statements
are valid:

(i) BDBADA = 0;
(ii) AAW⃝,mBBW⃝,m = 0;
(iii) BW⃝,mBAW⃝,mA = 0.

Proof. (i) BADBADA = 0 follows from BAD = 0, which is proved in Lemma 2.6.
(ii) AAW⃝,mBBW⃝,m = 0 which is following from AW⃝,mB = 0.
(iii) BW⃝,mBAW⃝,mA = 0 because of the statement BAW⃝,m = 0. □

The following operator matrix form of a Drazin invertible operator was presented in
[15], and its m-weak group inverse in [8].

Lemma 2.10. If A ∈ B(X)D, m ∈ N and ind(A) = k, there is the orthogonal sum
X = R(Ak) ⊕ N((Ak)∗) such that

A =
[

A1 A2
0 A3

]
, (2.4)

where A1 ∈ B(R(Ak)) is invertible and A3 ∈ B(N((Ak)∗)) is nilpotent. In addition,

(i) AW⃝,m =

 A−1
1 A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 0

;

(ii) AAW⃝,m =

 I A−m
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 0

;

(iii) AW⃝,mA =

 I A
−(m+1)
1

m∑
j=0

Aj
1A2Am−j

3

0 0

.

Proof. The equality (2.4) holds by [15, Corollary 2.2]. The statements (i), (ii) and (iii)
are presented and proved in [8]. □

The operator matrix forms of A and B which satisfy A⊥W⃝,mB are given.

Theorem 2.11. Let A, B ∈ B(X)D, m ∈ N and ind(A) = k. Then the following state-
ments are equivalent:

(i) A⊥W⃝,mB;



6 O. Stanimirović

(ii) there is the orthogonal sum X = R(Ak) ⊕ N((Ak)∗) such that

A =
[

A1 A2
0 A3

]
and B =

 0 −A−m
1

m−1∑
j=0

Aj
1A2Am−1−j

3 B4

0 B4

 ,

where A1 ∈ B(R(Ak)) is invertible, A3 ∈ B(N((Ak)∗)) is nilpotent and B4 ∈
B(N((Ak)∗))D.

Proof. (i) =⇒ (ii): Let A has the form as in (2.4) with respect to the orthogonal sum
X = R(Ak) ⊕ N((Ak)∗) and

B =
[

B1 B2
B3 B4

]
:

[
R(Ak)

N((Ak)∗

]
→

[
R(Ak)

N((Ak)∗

]
.

Then AW⃝,m is represented by Lemma 2.10(i). When the condition A⊥W⃝,mB is satisfied,

0 = BAW⃝,m =
[

B1 B2
B3 B4

]  A−1
1 A

−(m−1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 0



=


B1A−1

1 B1A
−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

B3A−1
1 B3A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

 ,

which implies B1 = 0 and B3 = 0. From

0 = AW⃝,mB =

 A−1
1 A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 0

 [
0 B2
0 B4

]

=

 0 A−1
1 B2 + A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3 B4

0 0

 ,

we get B2 = −A−m
1

m−1∑
j=0

Aj
1A2Am−1−j

3 B4. So, we can use matrix form of operator B as

equal to

B =

 0 −A−m
1

m−1∑
j=0

Aj
1A2Am−1−j

3 B4

0 B4

 .

(ii) =⇒ (i): It is clear by direct calculations. □
Theorem 2.11 gives the next equivalent condition for A⊥W⃝B.

Corollary 2.12. Let A, B ∈ B(X)D and ind(A) = k. Then the following statements are
equivalent:

(i) A⊥W⃝B;
(ii) there is the orthogonal sum X = R(Ak) ⊕ N((Ak)∗) such that

A =
[

A1 A2
0 A3

]
and B =

[
0 −A−1

1 A2B4
0 B4

]
,

where A1 ∈ B(R(Ak)) is invertible, A3 ∈ B(N((Ak)∗)) is nilpotent and B4 ∈
B(N((Ak)∗))D.

The following characterizations of the m-weak group relation can be verified as Lemma
2.5 and Lemma 2.6.
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Theorem 2.13. For A, B ∈ B(X)D, m ∈ N and ind(A) = k, the following statements
are equivalent:

(i) A ≤W⃝,m B;
(ii) AD⃝AmB = AD⃝Am+1 and BAD⃝ = AAD⃝;
(ii) (Ak)†AmB = (Ak)†Am+1 and BAD = AAD;
(iv) (Ak)∗AmB = (Ak)∗Am+1 and BAk = Ak+1;
(v) R(B − A) ⊆ N(AW⃝,m) and R(AW⃝,m) ⊆ N(B − A);
(vi) R(B − A) ⊆ N((Ak)∗Am) and R(Ak) ⊆ N(B − A).

Consequently, we get the result about the weak group relation.

Corollary 2.14. For A, B ∈ B(X)D and ind(A) = k, the following statements are equiv-
alent:

(i) A ≤W⃝ B;
(ii) AD⃝AB = AD⃝A2 and BAD⃝ = AAD⃝;
(ii) (Ak)†AB = (Ak)†A2 and BAD = AAD;
(iv) (Ak)∗AB = (Ak)∗A2 and BAk = Ak+1;
(v) R(B − A) ⊆ N(AW⃝) and R(AW⃝) ⊆ N(B − A);
(vi) R(B − A) ⊆ N((Ak)∗A) and R(Ak) ⊆ N(B − A).

We characterize A⊥W⃝,mB by the m-weak group relation.

Theorem 2.15. Let A, B ∈ B(X)D and m ∈ N. Then the following statements are
equivalent:

(i) A ≤W⃝,m A + B;
(ii) A⊥W⃝,mB;
(iii) A ≤W⃝,m A − B.

Proof. We observe that
A ≤W⃝,m A + B ⇐⇒ (A + B)AW⃝,m = AAW⃝,m and AW⃝,m(A + B) = AW⃝,mA

⇐⇒ BAW⃝,m = 0 and AW⃝,mB = 0 ⇐⇒ A⊥W⃝,mB

⇐⇒ AW⃝,m(A − B) = AW⃝,mA and (A − B)AW⃝,m = AAW⃝,m

⇐⇒ A ≤W⃝,m (A − B)
□

In the case that A ≤W⃝,m B, by [9], we have operator matrix forms of A and B and now
we investigate the form of BW⃝,m.

Theorem 2.16. Let A, B ∈ B(X)D and m ∈ N. Then the following statements are
equivalent:

(i) A ≤W⃝,m B;
(ii) there is the orthogonal sum X = R(Ak) ⊕ N((Ak)∗) such that

A =
[

A1 A2
0 A3

]
and B =

 A1 A2 + A−m
1

m−1∑
j=0

Aj
1A2Am−1−j

3 (A3 − B4)

0 B4

 ,

where A1 ∈ B(R(Ak)) is invertible, A3 ∈ B(N((Ak)∗)) is nilpotent and B4 ∈
B(N((Ak)∗))D.

Moreover,

BW⃝,m =

 A−1
1

m−1∑
i=0

A−i−2
1 B2Bi

4 −
m∑

i=0
A

−(m+1)+i
1 B2(B D⃝

4 )i+1Bm
4

0 B
W⃝,m
4

 .
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Proof. (i) =⇒ (ii): The operator A can be written by (2.4) with respect to the orthogonal
sum X = R(Ak) ⊕ N((Ak)∗) and AW⃝,m is represented by Lemma 2.10(i). By [9], we can
use the matrix form of operator B as equal to

B =
[

A1 B2
0 B4

]
,

where B2 = A2 + A−m
1

m−1∑
j=0

Aj
1A2Am−1−j

3 (A3 − B4). The hypothesis B ∈ B(X)D gives the

Drazin invertibility of B4.
Now, we calculate BW⃝,m. Applying [14, Lemma 2.3], we have that:

B D⃝ =
[

A−1
1 −A−1

1 B2B D⃝
4

0 B D⃝
4

]
.

Then we calculate:

(B D⃝)m+1 =

 A
−(m+1)
1 −

m∑
i=0

A
−(m+1)+i
1 B2(B D⃝

4 )i+1

0 (B D⃝
4 )m+1


and

Bm =

 Am
1

m−1∑
i=0

Am−i−1
1 B2Bi

4

0 Bm
4

 .

Therefore,

BW⃝,m = (B D⃝)m+1Bm =

 A−1
1

m−1∑
i=0

A−i−2
1 B2Bi

4 −
m∑

i=0
A

−(m+1)+i
1 B2(B D⃝

4 )i+1Bm
4

0 B
W⃝,m
4

 .

(ii) =⇒ (i): It follows by elementary computations. □
As a consequence of Theorem 2.16, we obtain the following result.

Corollary 2.17. Let A, B ∈ B(X)D. Then the following statements are equivalent:
(i) A ≤W⃝ B;
(ii) there is the orthogonal sum X = R(Ak) ⊕ N((Ak)∗ such that

A =
[

A1 A2
0 A3

]
and B =

[
A1 A2 + A−1

1 A2(A3 − B4)
0 B4

]
,

where A1 ∈ B(R(Ak)) is invertible, A3 ∈ B(N((Ak)∗)) is nilpotent and B4 ∈
B(N((Ak)∗))D.

Moreover,

BW⃝ =

 A−1
1 A−2

1 B2 −
1∑

i=0
A−2+i

1 B2(B D⃝
4 )i+1B4

0 BW⃝
4

 .

Under the assumption A⊥D⃝B, we consider necessary and sufficient conditions for (A +
B)W⃝,m = AW⃝,m + BW⃝,m.

Theorem 2.18. Let A, B ∈ B(X)D and m ∈ N. If A⊥D⃝B, the following statements are
equivalent:

(i) A + B ∈ B(X)D and (A + B)W⃝,m = AW⃝,m + BW⃝,m;
(ii) A + B ∈ B(X)D and (A + B)W⃝,m(I − AAD⃝) = (AW⃝,m + BW⃝,m)(I − AAD⃝);
(iii) A + B ∈ B(X)D, AAD⃝(A + B)W⃝,m = AW⃝,m and (I − AAD⃝)(A + B)W⃝,m = BW⃝,m;
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(iv) A + B ∈ B(X)D, AD⃝(A + B)W⃝,m = AD⃝AW⃝,m and (I − AAD⃝)(A + B)W⃝,m = BW⃝,m.

Proof. Using [16, Theorem 2.1] and A⊥D⃝B, for ind(A) = k, we can write with respect
to the orthogonal sum X = R(Ak) ⊕ N((Ak)∗):

A =
[

A1 A2
0 A3

]
and B =

[
0 0
0 B2

]
,

where A1 ∈ B(R(Ak)) is invertible, A3 ∈ B[N((Ak)∗)] is nilpotent and B2 ∈ B[N((Ak)∗)]D.
Now,

AD⃝ =
[

A−1
1 0
0 0

]
, AW⃝,m =

 A−1
1 A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 0

 ,

BW⃝,m =
[

0 0
0 B

W⃝,m
2

]
and AW⃝,m + BW⃝,m =

 A−1
1 A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 B
W⃝,m
2

 .

(i) ⇐⇒ (ii): The Drazin invertibility of

A + B =
[

A1 A2
0 A3 + B2

]
gives the Drazin invertibility of A3 +B2. By [14, Lemma 2.3], for a corresponding operator
S, we have

(A + B)D⃝ =
[

A−1
1 −A−1

1 A2(A3 + B2)D⃝

0 (A3 + B2)D⃝

]
and

(A + B)W⃝,m = [(A + B)D⃝]m+1(A + B)m =
[

A−1
1 S
0 (A3 + B2)W⃝,m

]
.

Because
(A + B)W⃝,m(I − AAD⃝) =

[
0 S
0 (A3 + B2)W⃝,m

]
and

(AW⃝,m + BW⃝,m)(I − AAD⃝) =

 0 A
−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 B
W⃝,m
2

 ,

we deduce that (A + B)W⃝,m = AW⃝,m + BW⃝,m if and only if S = A
−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

and (A3+B2)W⃝,m = B
W⃝,m
2 if and only if (A+B)W⃝,m(I−AAD⃝) = (AW⃝,m+BW⃝,m)(I−AAD⃝).

(i) ⇐⇒ (iii): By the part (i) ⇐⇒ (ii) and A(AD⃝)2 = AD⃝, it follows

AAD⃝(A + B)W⃝,m =
[

A−1
1 S
0 0

]
and

AW⃝,m = AAD⃝AW⃝,m =

 A−1
1 A

−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3

0 0

 .

So, AAD⃝(A + B)W⃝,m = AW⃝,m is equivalent to S = A
−(m+1)
1

m−1∑
j=0

Aj
1A2Am−1−j

3 . From

(I − AAD⃝)(A + B)W⃝,m =
[

0 0
0 (A3 + B2)W⃝,m

]
,
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(I −AAD⃝)(A+B)W⃝,m = BW⃝,m if and only if (A3 +B2)W⃝,m = B
W⃝,m
2 . Thus, the equivalence

of statements (i) and (iii) holds.
(iii) ⇐⇒ (iv): The properties of the core–EP inverse imply this equivalence. □
Theorem 2.18 yields additive properties for the weak group inverse.

Corollary 2.19. Let A, B ∈ B(X)D. If A⊥D⃝B, the following statements are equivalent:
(i) A + B ∈ B(X)D and (A + B)W⃝ = AW⃝ + BW⃝;
(ii) A + B ∈ B(X)D and (A + B)W⃝(I − AAD⃝) = (AW⃝ + BW⃝)(I − AAD⃝);
(iii) A + B ∈ B(X)D, AAD⃝(A + B)W⃝ = AW⃝ and (I − AAD⃝)(A + B)W⃝ = BW⃝;
(iv) A + B ∈ B(X)D, AD⃝(A + B)W⃝ = AD⃝AW⃝ and (I − AAD⃝)(A + B)W⃝ = BW⃝.

3. Conclusion
Our aim is to generalize the notion of the core–EP orthogonality to the m-weak group

orthogonality for operators, based on the m-weak group inverse as an extension of the
core–EP inverse. Many characterizations of the m-weak group orthogonal operators are
proved including their operator matrix forms. Additive properties for the m-weak group
inverse are considered for core–EP orthogonal operators. As consequences, we obtain the
results about the weak group orthogonality for operators.

In the future, we are going to extend our results to weighted m-weak group inverse for
operators [17].
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