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Abstract. The concept of picture fuzzy sets (pf -sets) expands intuitionistic fuzzy sets to model uncertain
information, mainly when handling the feedbacks “Yes”, “No”, and “Abstain”. Recently, the definitions of pf -sets
and their elemental operations have been revised to address some inconsistencies in Cuong’s original definitions.
Building on these two studies, our first objective is to redefine the concept of picture fuzzy topology and investigate
its properties, such as limit points and compactness. We then propose a group decision-making technique called the
Picture Fuzzy Prevalence Effect Method (PFPEM) that leverages the properties of picture fuzzy topological spaces.
Finally, we discuss the need for further research in this area.
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1. Introduction

The concept of fuzzy sets [48] has been proposed to handle imperfect and ambiguous information. The underlying
universe’s components can partially belong to a particular set in fuzzy sets. Each element of a fuzzy set is classified by
its membership level in the range [0, 1]. The membership degrees are determined independently in a fuzzy set, while
non-membership degrees are computed by subtracting the membership degrees from 1. Thus, choosing non-membership
degrees individually is not an option in a fuzzy set. [5–7] has presented the concept of intuitionistic fuzzy sets (if -sets)
to address this choicelessness. The if -sets enable the independent determination of membership and non-membership
degrees, with their overall sum and individual values falling within the range [0, 1]. Subsequently, [46] has enhanced the
concept of if -sets by introducing Pythagorean fuzzy subsets, modifying the limitations on the degrees of if -sets.

The concept of picture fuzzy sets (pf -sets) and their various fundamental operations have recently been introduced
to address challenges in computational intelligence [9, 11]. In the electoral process, participants can be classified into
four categories: those who endorse, those who oppose, those who withhold their vote, and those who choose not to
participate in the voting. In the cases of “yes”, “no”, and “abstain”, pf -sets can represent ambiguous information, while
fuzzy sets and if -sets cannot. Additionally, [26] has identified inconsistencies in Cuong’s pf -sets and proposed solutions
to rectify them. Recently, [27] has redefined picture fuzzy soft sets (pfs-sets) and specific operations. Furthermore, [31]
has also studied picture fuzzy soft σ-algebras and picture fuzzy soft measures.
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Utilization of picture fuzzy soft relations toward multi-attribute decision making (MADM) has been studied by
[22]. [3] has made use of picture fuzzy nano topological spaces for decision making. [24] has studied generalized
pfs-sets accompanied by their utilities in decision support procedures. Earlier, [47] has introduced an adaptable soft
distinction matrix founded on pfs-sets, and its utilization in decision making. [30] has employed picture cubic fuzzy
aggregation information for the purpose of multi-criteria group decision making (MCGDM). [23] has come up with
distance and similarity measures for generalized picture fuzzy environment. A study under picture fuzzy set environment
on novel point operators and multiple-rounds voting process has been presented by [25]. Recently, [35] has studied
vector similarity measures of picture type-2 hesitant fuzzy sets based multi-criteria decision-making (MCDM). [42] has
rendered applications to medical diagnosis and pattern recognition by defining similarity measures between picture
fuzzy sets. [21] has utilized picture fuzzy information for the purpose of domination analysis. Under 2-tuple linguistic
q-rung picture fuzzy environment, [1] has presented an extended MARCOS method for MCGDM. Based on picture
fuzzy information, [18] has presented the Floyd-Warshall algorithm. In picture fuzzy setting, [2] has devised a novel
technique to tackle linear programming problems.

Moreover, the combination of rough and fuzzy set theories has produced numerous fascinating outcomes. [43]
has proposed a comprehensive framework for studying fuzzy rough sets, utilizing both axiomatic and constructive
approaches. Similarly, [44] has analyzed fuzzy topological structures on rough fuzzy sets, using both constructive and
axiomatic approaches. In 2012, the investigation of rough intuitionistic fuzzy sets and intuitionistic fuzzy topologies
in crisp approximation spaces was carried out by [45]. Theory and applications of topological spaces under different
frameworks of expansions of fuzzy sets have recently been explored by [19, 32, 33, 38, 40].

In 2015, the concept of rough picture fuzzy sets was first introduced by [41]. Their study has focused on the
approximation of picture fuzzy sets within crisp approximation spaces and explored various properties related to rough
picture fuzzy sets. In recent times, picture fuzzy topological spaces(PFTSs) have been a subject of exploration among
researchers. They have introduced innovative concepts like rank, picture fuzzy base, and picture fuzzy sub-base [37].
Moreover, continuity in PFTSs has been investigated, and the necessary and sufficient conditions for a picture fuzzy
continuous function between two spaces have been presented. Following these studies, a new type of open and closed
sets has been introduced in PFTSs [4]. Furthermore, picture fuzzy continuous functions and some of their properties
have been introduced and studied. [36] has presented a short while ago picture fuzzy complex proportional assessment
approach with step-wise weight assessment ratio analysis and criteria importance through inter-criteria correlation.

In this study, the concept of picture fuzzy topology (PFT) has been redefined and some of its basic properties have
been investigated. The major contributions of the study can be summed up as follows:

• The limit point of pf -sets is presented.
• Basis for a PFTS is studied.
• The main categories of PFTSs with picture fuzzy open or closed sets that meet specific requirements related to

their picture fuzzy points are covered.
• Compactness in PFTS is investigated.
• A group decision-making implementation of PFT is offered.

The rest of the present study is organized as follows: Section 2 offers a clear and comprehensive discussion of the
introductory concepts related to pf -sets, which are essential for further exploration. Section 3 redefines PFTSs and
investigates the limit point of pf -sets, basis for a PFTS, main categories of PFTSs with picture fuzzy open and closed
sets, and compactness in PFTS. Section 4 proposes a group decision-making methodology based on picture fuzzy
prevalence effect method (PFPEM) utilizing properties of PFTSs. The final section discusses the paper’s results and
offers ideas for future research.

2. Preliminaries

Definition 2.1 ( [9–11]). A picture fuzzy set (pf -set) P on the universal set S is defined as

P = {< x, µP(x), ηP(x), νP(x) >: x ∈ S },

where µP, ηP, and νP are called a degree of positive coherence, degree of neutral coherence, and degree of negative
coherence of x, respectively, to P such that µP(x), ηP(x), νP(x) ∈ [0, 1] and µP(x) + ηP(x) + νP(x) ≤ 1, for all x ∈ S . The
number ξP(x) = 1 − µP(x) − ηP(x) − νP(x) is termed as the degree of refusal coherence of x to P.
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To address inconsistencies in the definition of pf -sets presented by [9, 11, 27], the definition has been revised to
some extent, with new restrictions imposed on the three main functions of the pf -sets to µ(x) + ν(x) ∈ [0, 1] and
µ(x) + η(x) + ν(x) ∈ [0, 2]. Taking into account the picture fuzzy value (0.23, 0.17, 0.40), the degree of indeterminacy
according to [9,11] comes out to be 1.20 < [0, 1]. Thus, there was a need for redefining the degree of indeterminacy ξ(x)
as ξ(x) = 1 − µ(x) − ν(x) instead of 2 − µ(x) − η(x) − ν(x).

In order to simplify the notations, [26] has utilized the notation
〈

0.23
0.17
0.40

〉
to represent the picture fuzzy value

(0.23, 0.17, 0.40).

Definition 2.2 ( [26]). A picture fuzzy set (pf -set) P on the universal set S is defined as

P =

{(
x,

〈
µP(x)
ηP(x)
νP(x)

〉)
: x ∈ S

}
,

where µP, ηP, and νP are called a degree of positive coherence, degree of neutral coherence, and degree of negative
coherence of x, respectively, to P such that µP(x), ηP(x), νP(x) ∈ [0, 1], µP(x) + νP(x) ≤ 1, and µP(x) + ηP(x) + νP(x) ≤ 2,
for all x ∈ S . The number ξP(x) = 2 − µP(x) − ηP(x) − νP(x) is termed as the degree of refusal coherence of x to P.

Hereinafter, Definition 2.2 is employed as definition of pf -sets and the collection of all the pf -sets defined on S will
be designated as PF(S ).

Definition 2.3 ( [26]). A pf -set in which µi j = 0 and ηi j = νi j = 1 for all i and j, is called empty or null pf -set and is
denominated by Φ̃ or 0̂.

Definition 2.4 ( [26]). A pf -set in which µi j = 1 and ηi j = νi j = 0 for every i and j, is called universal or absolute pf -set
and is symbolized by S̃ or 1̂.

Definition 2.5 ( [26]). A pf -set P1 defined over S is labeled as a picture fuzzy subset of the pf -set P2 if µP1 (x) ≤ µP2 (x),
ηP1 (x) ≥ ηP2 (x), and νP1 (x) ≥ νP2 (x), for all x ∈ S . We designate it as P1 ⊆ P2.

Definition 2.6 ( [26]). The complement of a pf -set over S

P =

{(
x,

〈
µP(x)
ηP(x)
νP(x)

〉)
: x ∈ S

}
is defined as

Pc =

{(
x,

〈
νP(x)

1 − ηP(x)
µP(x)

〉)
: x ∈ S

}
.

Definition 2.7 ( [26]). The union of two pf -sets over S

P1 =

{(
x,

〈
µP1 (x)
ηP1 (x)
νP1 (x)

〉)
: x ∈ S

}
and

P2 =

{(
x,

〈
µP2 (x)
ηP2 (x)
νP2 (x)

〉)
: x ∈ S

}
is defined as

P2 ∪ P2 =

{(
x,

〈
max{µP1 (x), µP2 (x)}
min{ηP1 (x), ηP2 (x)}
min{νP1 (x), νP2 (x)}

〉)
: x ∈ S

}
.

Definition 2.8 ( [26]). The intersection of two pf -sets over S

P1 =

{(
x,

〈
µP1 (x)
ηP1 (x)
νP1 (x)

〉)
: x ∈ S

}
and

P2 =

{(
x,

〈
µP2 (x)
ηP2 (x)
νP2 (x)

〉)
: x ∈ S

}
is defined as

P2 ∩ P2 =

{(
x,

〈
min{µP1 (x), µP2 (x)}
max{ηP1 (x), ηP2 (x)}
max{νP1 (x), νP2 (x)}

〉)
: x ∈ S

}
.
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Definition 2.9 ( [26]). The difference of two pf -sets over S

P1 =

{(
x,

〈
µP1 (x)
ηP1 (x)
νP1 (x)

〉)
: x ∈ S

}
and

P2 =

{(
x,

〈
µP2 (x)
ηP2 (x)
νP2 (x)

〉)
: x ∈ S

}
is defined as

P1 \ P2 =

{(
x,

〈
min{µP1 (x), νP2 (x)}

max{ηP1 (x), 1 − ηP2 (x)}
max{νP1 (x), µP2 (x)}

〉)
: x ∈ S

}
.

Definition 2.10 ( [39]). Let P ∈ PF(S ). Then, for a fixed x ∈ S , a picture fuzzy number (PFN) is defined by

(µP(x), ηP(x), νP(x), ξP(x))

such that µP(x), ηP(x), νP(x), ξP(x) ∈ [0, 1] and µP(x) + ηP(x) + νP(x) + ξP(x) = 1. Briefly, PFN is represented as
(µP(x), ηP(x), νP(x)).

Definition 2.11. Let µA, ηA, νA ∈ [0, 1], µA + νA ≤ 1, and µA + ηA + νA ≤ 2. Then, a picture fuzzy number (PFN) P̃ is

defined by Ã =
〈
µA
ηA
νA

〉
.

Throughout this paper, Definition 2.11 is considered as definition of PFN.

Definition 2.12. Let Ã be a PFN. A picture fuzzy point ℧ζ
Ã

is a pf -set of S given by ℧ζ
Ã
=

{(
y,

〈
µζ (y)
ηζ (y)
νζ (y)

〉)
: y ∈ S

}
, where

µζ(y) =
{
µA, if y = ζ
0, otherwise ,

ηζ(y) =
{
ηA, if y = ζ
1, otherwise ,

and

νζ(y) =
{
νA, if y = ζ
1, otherwise .

In this case, ζ is characterized as the support of ℧ζ
Ã
. Besides, ℧ζ

Ã
is said to belong to the pf -set P =

{(
x,

〈
µP(x)
ηP(x)
νP(x)

〉)
: x ∈ S

}
,

written ℧ζ
Ã
∈ P, if µP(ζ) ≥ µA, ηP(ζ) ≤ ηA, and νP(ζ) ≤ νA. In order to be brief, we shall write ℧ to communicate ℧ζ

Ã
.

Definition 2.13 ( [11]). Let d : PF(S ) × PF(S )→ R be a mapping. Then, for all P1,P2,P3 ∈ PF(S ), d is metric over
PF(S ) if and only if (iff) d satisfies the following properties:

i) d(P1, P2) = 0⇔ P1 = P2,
ii) d(P1, P2) = d(P2, P1),

iii) d(P1, P2) ≤ d(P1, P3) + d(P3, P2).

Proposition 2.14 ( [11]). The mapping d defined by

d(P1, P2) :=

√√ n∑
i=1

(
µP1 (xi) − µP2 (xi)

)2
+

(
ηP1 (xi) − ηP2 (xi)

)2
+

(
νP1 (xi) − νP2 (xi)

)2

is a metric over PF(S ) and is called Euclidean metric.
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3. Picture Fuzzy Topological Spaces (PFTSs)

In this section, we focus on key concepts of PFT, including its main characteristics.

Definition 3.1. A subcollection τ of the pf -subsets of S is called a PFT on S if following conditions are satisfied:

(i) Φ̃, S̃ ∈ τ,
(ii) P1 ∩ P2 ∈ τ whenever P1, P2 ∈ τ, and

(iii) If Pi ∈ τ,∀ i ∈ Ω, then ∪i∈Ω Pi ∈ τ.
The ordered pair (S , τ) or simply τ is delineated as PFTS. The constituents of τ are named picture fuzzy open sets, while
their complements are called picture fuzzy closed sets.

Example 3.2. Let

P1 =

{(
h,

〈
0.37
0.46
0.13

〉)
,

(
c,

〈
0.52
0.11
0.06

〉)}
,

P2 =

{(
h,

〈
0.69
0.27
0.08

〉)
,

(
c,

〈
0.71
0.08
0.04

〉)}
,

and

P3 =

{(
h,

〈
0.46
0.31
0.11

〉)
,

(
c,

〈
0.59
0.08
0.05

〉)}
be three pf -sets defined on the universal set S = {h, c}. Then, τ1 = {Φ̃, S̃ }, τ2 = {Φ̃, P1, S̃ }, τ3 = {Φ̃, P2, S̃ }, τ4 =

{Φ̃, P3, S̃ }, τ5 = {Φ̃, P1, P2, S̃ }, τ6 = {Φ̃, P1, P3, S̃ }, τ7 = {Φ̃, P2, P3, S̃ }, and τ8 = {Φ̃, P1, P2, P3, S̃ } are PFTSs over S . The
constituents Φ̃ and S̃ occurring in all these topologies enjoy the characteristic of being picture fuzzy open as well as
picture fuzzy closed.

Definition 3.3. For some positive real number ε, the collection

Bd(P, ε) = {Pi : d(P,Pi) < ε}

is called ε-ball centered at P. The collection of all such ε-balls is called a metric topology induced by d. A PFTS (S , τ)
is called metrizable if there exists a metric d on S that induces the topology of S .

Definition 3.4. Let (S , τ1) and (S , τ2) be PFTSs. We say that τ2 contains τ1 denoted by τ2 ⊇ τ1, if P ∈ τ2 whenever
P ∈ τ1. In such a case, τ2 is said to be stronger, larger, or finer than τ1, and τ1 is called weaker, smaller, or coarser than
τ2. Moreover, τ1 and τ2 are called comparable. If τ2 ⫌ τ1, then τ2 is called strictly finer than τ1 or equivalently τ1 is
strictly weaker than τ2.

For example, τ6 is (strictly) weaker than τ2 in Example 3.2 and hence τ2 and τ6 are comparable.

Definition 3.5. The topology τindiscrete = {Φ̃, S̃ } is known as indiscrete PFT over S and τdiscrete = PF(S ) is referred to as
discrete PFT over S . τindiscrete and τdiscrete are respectively the smallest and the largest PFTs on S . The pair (S , τindiscrete)
is called indiscrete PFTS whereas (S , τdiscrete) is entitled discrete PFTS. Indeed, τindiscrete is the coarsest and τdiscrete is the
finest topology on S .

Remark 3.6. The intersection of two PFTSs always results in a PFTS, whereas their union may not necessarily be a
PFTS. The forthcoming example illustrates this observation.

Example 3.7. Assuming

P1 =

{(
a,

〈
0.29
0.87
0.48

〉)
,

(
k,

〈
0.82
0.34
0.17

〉)}
and

P2 =

{(
a,

〈
0.40
0.89
0.12

〉)
,

(
k,

〈
0.55
0.17
0.02

〉)}
as two pf -sets over S = {a, k}, then

τ1 =
{
Φ̃, P1, S̃

}
and

τ2 =
{
Φ̃, P2, S̃

}
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are two PFTs over S , nevertheless

τ1 ∪ τ2 =
{
Φ̃, P1, P2, S̃

}
fails to be a PFT on S .

Definition 3.8. Assume that (S , τS ) is a PFTS. For some S ′ ⊆ S , τS ′ is a PFT on S ′ whose picture fuzzy open sets are
PS ′ = PS ∩ S̃ ′, where PS are picture fuzzy open sets of τS , PS ′ are picture fuzzy open sets of τS ′ , and S̃ ′ is the universal
pf -set on S ′. Then, τS ′ is called a picture fuzzy subspace of τS , i.e.,

τS ′ = {PS ′ : PS ′ = PS ∩ S̃ ′, PS ∈ τS }

τS ′ is also entitled as an induced PFT or relative PFT on S ′.

Example 3.9. Let

P1 =

{(
v,

〈
0.37
0.46
0.49

〉)
,

(
m,

〈
0.62
0.29
0.22

〉)
,

(
d,

〈
0.43
0.17
0.31

〉)}
and

P2 =

{(
v,

〈
0.48
0.31
0.28

〉)
,

(
m,

〈
0.65
0.12
0.07

〉)
,

(
d,

〈
0.57
0.10
0.29

〉)}
be two pf -sets over S = {v,m, d}. Then,

τS = {Φ̃, P1, P2, S̃ }

is a PFT on S .
For the universal pf -sets over S ′ = {v, d} ⊆ S ,

S̃ ′ =
{(

v,
〈

1
0
0

〉)
,

(
d,

〈
1
0
0

〉)}
.

Since

S̃ ′ ∩ Φ̃ = Φ̃;

S̃ ′ ∩ P1 =

{(
v,

〈
0.37
0.46
0.49

〉)
,

(
d,

〈
0.43
0.17
0.31

〉)}
= P′1

S̃ ′ ∩ P2 =

{(
v,

〈
0.48
0.31
0.28

〉)
,

(
d,

〈
0.57
0.10
0.29

〉)}
= P′2

S̃ ′ ∩ S̃ = S̃ ′;

then
τS ′ = {Φ̃, P

′
1, P
′
2, S̃ ′}

is a picture fuzzy subspace of τS .

Definition 3.10. Let (S , τ) be a PFTS and P be a pf -set on S .

(1) The picture fuzzy interior P◦ of P is the union of all picture fuzzy open subsets of P and is the largest picture
fuzzy open subset of P.

(2) The picture fuzzy closure P of P is the intersection of all picture fuzzy closed supersets of P. Moreover, P is the
smallest picture fuzzy closed superset of P.

(3) The picture fuzzy frontier or picture fuzzy boundary Fr(P) of P is defined by

Fr(P) = P ∩ Pc.

(4) The picture fuzzy exterior Ext(P) of P is given as

Ext(P) = (Pc)◦.

The forthcoming example (i.e., Example 3.11) will assist in clarifying the conceptions presented in Definition 3.10.
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Example 3.11. Consider the PFTS (S , τS ) provided in Example 3.9. Since constituents of this PFTS are picture fuzzy
open, then

Φ̃c = S̃ ,

Pc
1 =

{(
v,

〈
0.49
0.54
0.37

〉)
,

(
m,

〈
0.22
0.71
0.62

〉)
,

(
d,

〈
0.31
0.83
0.43

〉)}
,

Pc
2 =

{(
v,

〈
0.28
0.69
0.48

〉)
,

(
m,

〈
0.07
0.88
0.65

〉)
,

(
d,

〈
0.29
0.90
0.57

〉)}
and

S̃ c = Φ̃

are the corresponding picture fuzzy closed sets. Take

P =

{(
v,

〈
0.41
0.39
0.16

〉)
,

(
m,

〈
0.19
0.71
0.54

〉)
,

(
d,

〈
0.39
0.58
0.26

〉)}
so that

Pc =

{(
v,

〈
0.16
0.61
0.41

〉)
,

(
m,

〈
0.54
0.29
0.19

〉)
,

(
d,

〈
0.26
0.42
0.39

〉)}
.

Consequently, the picture fuzzy interior of P is

P◦ = Φ̃ ∪ P1 = P1.

The picture fuzzy closure of P is

P = P2 ∩ S̃ = P2.

Moreover,

Pc = Pc
2 ∪ Φ̃ = P

c
2.

Thus, the picture fuzzy frontier of P comes out to be

Fr(P) = P ∩ Pc

= P2 ∩ P
c
2

=

{(
v,

〈
0.28
0.69
0.48

〉)
,

(
m,

〈
0.07
0.88
0.65

〉)
,

(
d,

〈
0.29
0.90
0.57

〉)}
= Pc

2.

Finally, the picture fuzzy exterior of P appears to be

Ext(P) = (Pc)◦ = Φ̃.

Proposition 3.12. Assume that (S , τ) is a PFTS with P ∈ PF(S ). Then,
(1) (P◦)c = (Pc),
(2) (P)c = (Pc)◦.

Proof. We only demonstrate the proof of (1) here. The proof of (2) may be furnished on the analogous track.
Let

P =

{(
x,

〈
µP(x)
ηP(x)
νP(x)

〉)
: x ∈ S

}
and that the collection

Qi =

{(
x,

〈
µQi (x)
ηQi (x)
νQi (x)

〉)
: x ∈ S

}
, i ∈ Ω

represent the picture fuzzy open sets contained by P. By definition,

P◦ =


x,

〈max
i∈Ω

(
µQi (x)

)
min
i∈Ω

(
ηQi (x)

)
min
i∈Ω

(
νQi (x)

)
〉 : x ∈ S


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which yields

(P◦)c =


x,

〈 min
i∈Ω

(
νQi (x)

)
1 −min

i∈Ω

(
ηQi (x)

)
max
i∈Ω

(
µQi (x)

)
〉 : x ∈ S

 . (3.1)

Since

Pc =

{(
x,

〈
νP(x)

1 − ηP(x)
µP(x)

〉)
: x ∈ S

}
and µQi (ζ) ≤ µP(ζ), ηQ j (ζ) ≥ ηP(ζ), and νQ j (ζ) ≥ νP(ζ) for all admissible values of i ∈ Ω, so undoubtedly{(

x,
〈
νP(x)

1 − ηP(x)
µP(x)

〉)
: x ∈ S

}
is the assemblage of picture fuzzy closed sets containing Pc, i.e.,

(Pc)◦ =
{(

x,
〈

min
(
νP(x)

)
max

(
1 − ηP(x)

)
max

(
µP(x)

)
〉)

: x ∈ S
}
.

But

max
(
1 − ηP(x)

)
= 1 −min

(
ηP(x)

)
.

Hence,

(Pc)◦ =
{(

x,
〈

min
(
νP(x)

)
1 −min

(
ηP(x)

)
max

(
µP(x)

)
〉)

: x ∈ S
}
. (3.2)

The required result now follows immediately from (3.1) and (3.2). □

Proposition 3.13. Let (S , τ) be a PFTS with P ∈ PF(S ), then Fr(Pc) = Fr(P).

Proof. By Definition 3.10, we have

Fr(P) = P ∩ Pc = Pc ∩ P = Pc ∩ (Pc)c = Fr(Pc).

□

Proposition 3.14. Let (S , τ) be a PFTS with P,P1, P2 ∈ PF(S ), then

(i) P◦ ⊆ P ⊆ P,
(ii) (P◦)◦ = P◦,

(iii) (P) = P,
(iv) (S̃ )◦ = S̃ ,

(v) (Φ̃) = Φ̃,
(vi) P1 ⊆ P2 ⇒ P

◦
1 ⊆ P

◦
2 ∧ P1 ⊆ P2,

(vii) P1 ∪ P2 = P1 ∪ P2,
(viii) (P1 ∩ P2)◦ = P◦1 ∩ P

◦
2.

Theorem 3.15. Let (S ′, τS ′ ) be a subspace of (S , τS ) and P be a picture fuzzy subset of (S ′, τS ′ ). Then, the closure P of
P in (S , τS ) equals P ∩ S ′.

Proof. Let B denote the closure of P in (S ′, τS ′ ). Since P is picture fuzzy closed in (S , τS ), so P∩S ′ is closed in (S ′, τS ′ ).
Since P ∈ P ∩ S ′ and B equals the intersection of all picture fuzzy closed subsets of S ′ containing P, so B ⊆ P ∩ S ′.
On the other hand, B is closed in S ′. Therefore, B = C ∩ S ′ for some picture fuzzy closed set C in P. Consequently, C is
picture fuzzy closed set of S containing P. Since P is picture fuzzy intersection of all such picture fuzzy closed sets, so
it may be concluded that P ⊆ C. As a consequence, we have P ∩ S ′ ⊆ C ∩ S ′ = S ′. □
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3.1. Limit Points of pf -set. In this subsection, we present the notion of limit points in the context of pf -sets.

Definition 3.16. Supposing (S , τ) a PFTS with P ∈ PF(S ). A point ℧ ∈ PF(S ) is called a picture fuzzy limit point,
picture fuzzy accumulation point, or picture fuzzy cluster point of P if every picture fuzzy open set containing ℧ also
contains a picture fuzzy point of P different from ℧. Said differently, ℧ is a picture fuzzy limit point of P if every
neighborhood of ℧ intersects P in some picture fuzzy point other than ℧ itself.

The aggregate of all picture fuzzy limit points of P is termed as the derived picture fuzzy set of P and is designated as
der(P).

Example 3.17. Let S = {e, t, c} and consider the following pf -sets on S :

P =

{(
e,

〈
0.46
0.39
0.52

〉)
,

(
t,
〈

0.18
0.03
0.31

〉)
,

(
c,

〈
0.81
0.51
0.01

〉)}
,

P1 =

{(
e,

〈
0.59
0.37
0.11

〉)
,

(
t,
〈

0.23
0.02
0.14

〉)}
, and

P2 =

{(
e,

〈
0.58
0.31
0.14

〉)}
.

Since

P1 \ P2 =

{(
e,

〈
0.14
0.69
0.59

〉)
,

(
t,
〈

0.23
0.02
0.14

〉)}
∴ (P1 \ P2) ∩ P =

{(
e,

〈
0.14
0.69
0.59

〉)
,

(
t,
〈

0.18
0.03
0.31

〉)}
, Φ̃.

Hence, P2 is the picture fuzzy limit point of P.

Using the notion of picture fuzzy limit points, we can redescribe the closure of a pf -set. This phenomenon is
paraphrased in Proposition 3.18 given below.

Proposition 3.18. Imagine that P is a picture fuzzy subset of a PFTS (S , τ). If der(P) is the collection of picture fuzzy
accumulation points of P, then the closure of P is given by P = P ∪ der(P).

Proof. Assume that ℧ ∈ der(P). Then, every neighborhood of ℧ intersects P in a point other than ℧. Therefore, ℧ ∈ P
and hence der(P) ⊆ P. Also, P ⊆ P. So, we must have P ∪ der(P) ⊆ P.
For the reverse inclusion, we let ℧ ∈ P. If ℧ ∈ P, then clearly ℧ ∈ P ∪ der(P). Suppose that ℧ < P. Since ℧ ∈ P,
and every neighborhood of ℧ intersects P, because ℧ < P, so the picture fuzzy collection of all such neighborhoods
of ℧ must intersect P in a point other than ℧. Then ℧ ∈ der(P) leading to ℧ ∈ P ∪ der(P). This, in turn, yields
P ⊆ P ∪ der(P). □

Corollary 3.19. A picture fuzzy subset of a PFTS is closed iff it contains all of its picture fuzzy accumulation points.

3.2. Basis for a PFTS. In this subsection, we investigate basis for a PFTS and provide their some properties.

Definition 3.20. Let (S , τ) be a PFTS. If for every P ∈ τ, there is B ∈ B in such a way that P = ∪B, then B ⊆ τ is
reckoned as picture fuzzy base or picture fuzzy basis for τ.

Example 3.21. Consider the PFTS (S , τS ) cited in Example 3.9. The assemblage

B = {P1, P2}

serves as a picture fuzzy basis for the PFT τS rendered in Example 3.9.

Lemma 3.22. If B is a picture fuzzy basis for PFTS (S , τS ) and (S ′, τS ′ ) is a picture fuzzy subspace of (S , τS ), then the
aggregate

BS ′ = {B ∩ PS ′ : B ∈ B & PS ′ ∈ τS ′ }

serves as a picture fuzzy basis for (S ′, τS ′ ).
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Proof. For each given picture fuzzy open set PS in (S , τS ) and QS ′ ∈ PS ∩ PS ′ , we can choose an element B of B such
that QS ′ ∈ B ⊆ PS . But then QS ′ ∈ B ∩ PS ′ ⊆ PS ∩ PS ′ . From this inclusion, it follows that BS ′ is a picture fuzzy basis
for (S ′, τS ′ ). □

Proposition 3.23. If (S , τ) is a PFTS, then the necessary and sufficient condition for the collection

B = {Pi : i ∈ Ω} ⊆ τ

to be a picture fuzzy basis for τ is that for any picture fuzzy element ℧ ∈ P′ (P′ being a pf-set), there exists P′′ ∈ B such
that ℧ ∈ P′′ ⊆ P′.

Proof. Assume that B is a picture fuzzy base for τ. Then, there exist pf -sets P′′ ∈ B, for any picture fuzzy open set
P′ ∈ τ, bearing the quality that P′ = ∪P′′. Therefore, there is a P′′ such that

℧ ∈ P′′ ⊆ P′

for any ℧ ∈ P′.
Conversely, for any ℧ ∈ P′, there exists P′′ ∈ B in such a way that ℧ ∈ P′′ ⊆ P′. At that moment,

P′ = ∪℧∈P′ {℧} ⊆ ∪℧∈P′ {P
′′} ⊆ P′

such that
P′ = ∪℧∈P′ {P

′′}

which is the union of pf -sets in B. □

Proposition 3.24. Assume that B1 and B2 are two picture fuzzy bases for τ1 and τ2 over S , respectively. Then, the
necessary and sufficient condition for τ2 to be finer than τ1 is that for each ζ ∈ S and each basis element P1 ∈ B1
containing ζ, there exists a basis element P2 ∈ B2 such that ζ ∈ P2 ⊆ P1.

Proof. Suppose that τ2 be finer than τ1. Assume further that ζ ∈ S and P1 ∈ B1 contains ζ. Since B1 is a base for τ1, so
τ1 is generated by B1 and hence P1 ∈ τ1. By assumption, P1 ∈ τ2 also holds true. Because B2 is a picture fuzzy base for
τ2 and P1 is a picture fuzzy open set in τ2, so there exists P2 ∈ B2 such that ζ ∈ P2 ⊆ P1.

Conversely, assume that for every ζ ∈ S and every picture fuzzy base element P1 ∈ B1 containing ζ, there is a picture
fuzzy base element P2 ∈ B2 such that ζ ∈ P2 ⊆ P1. Assume arbitrarily that ζ ∈ P ⊆ τ1. Since B1 generates τ1, so ∃
P1 ∈ B1 such that ζ ∈ P1 ⊆ P. Thus, by assumption, there is P2 ∈ B2 such that ζ ∈ P2 ⊆ P1 ⊆ P. Therefore, P ⊆ τ2 and
hence τ1 ⊆ τ2. □

3.3. Classification of PFTSs. The definition of PFTSs presented in Definition 3.1 does not specify the characteristics
that may differentiate points of the PFTS. We need some further information about the topology for this purpose. In this
section, we shall discuss some major classes of PFTSs that have picture fuzzy open or closed sets satisfying certain
requirements in connection to their picture fuzzy points. These characteristics are categorized as T0, T1, T2, T3, and T4.

Definition 3.25. A PFTS (S , τ) is called a picture fuzzy Kolmogorov space or picture fuzzy T0 space (PFT0S) if for
each couple of picture fuzzy points ℧(1) and ℧(2) with ℧(1) , ℧(2), there stands at the minimum one picture fuzzy open
set P that contains one and only one of these picture fuzzy points.

Example 3.26. Each discrete PFTS is a PFT0S for the reason that there lies a picture fuzzy open set {℧(1)} that
undoubtedly holds ℧(1) leaving ℧(2).

The next proposition proposes necessary and sufficient requirement for PFTS to be a picture fuzzy Kolmogorov
space.

Proposition 3.27. A PFTS (S , τ) is a PFT0S iff for any pair of distinct points ℧(1), ℧(2) in (S , τ), we have {℧(1)} , {℧(2)}.

Proof. Let (S , τ) be a PFT0S such that ℧(1),℧(2) ∈ (S , τ) with ℧(1) and ℧(2) being distinct. Then, there no less than one
picture fuzzy open set which contains precisely one of ℧(1) and ℧(2). To be specific, let this point be ℧(1). But then ℧(1)

can’t be a picture fuzzy cluster point of {℧(2)}. Since ℧(1) < {℧(2)}, so definitely {℧(1)} , {℧(2)}.
Conversely, hypothesize that for any couple of distinctive points ℧(1),℧(2) ∈ (S , τ), {℧(1)} , {℧(2)}. For establishing

that (S , τ) is a PFT0S, we assume on the contrary. Then, every picture fuzzy open set that contains ℧(1) also contains
℧(2). By properties of picture fuzzy accumulation points, ℧(1) ∈ {℧(2)} so that {℧(1)} ⊆ {℧(2)}. Following the same logic,
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it may be demonstrated that {℧(2)} ⊆ {℧(1)}. Thus, {℧(1)} = {℧(2)}, which leads to a contradiction. Hence, there must be
no less than one picture fuzzy open set that contains precisely one of the points. Thus, (S , τ) is a PFT0S. □

Remark 3.28. The feature of being a PFT0S of any PFTS (S , τ) is transmissible. That is, the quality of being a PFT0S
is transformed to all of its subspaces.

Definition 3.29. A PFTS is called picture fuzzy Tychonoff space, picture fuzzy accessible space or a picture fuzzy T1
space (PFT1S) provided for any couple of dissimilar picture fuzzy points ℧(1), ℧(2) of (S , τ), there prevail two picture
fuzzy open sets P1 and P2 bearing the quality that if ℧(1) ∈ P1 then ℧(2) < P2, or if ℧(1) < P1 then ℧(2) ∈ P2.

A PFT1S is also identified as a space with picture fuzzy Fréchet topology.

Example 3.30. Each discrete PFTS (S , τ) is also a PFT1S. Imagine that there is a couple of distinctive picture fuzzy
points ℧(1) and ℧(2) in (S , τ). On that occasion, the existence of picture fuzzy open sets {℧(1)} and {℧(2)} is a must,
bearing the quality that ℧(1) ∈ {℧(1)} although ℧(2) < {℧(1)}.

Proposition 3.31. The following assertions regarding a PFTS (S , τ) are analogous:
(i) (S , τ) is a PFT1S.

(ii) Each picture fuzzy single-member subset of S is picture fuzzy closed.
(iii) Each picture fuzzy subset P of S is equal to the picture fuzzy intersection of all of its picture fuzzy open supersets.

Proof. (i) ⇒ (ii): For this, Let ℧(1) ∈ (S , τ). We demonstrate that (S , τ) \ {℧(1)} is picture fuzzy closed. For this, let
℧(2) ∈ (S , τ) \ {℧(1)}. Then, ℧(1) , ℧(2). Since (S , τ) is a PFT1S, so there are picture fuzzy open sets P1 and P2 in the
manner that ℧(1) ∈ P1, ℧(2) < P1 and ℧(1) < P2, ℧(2) ∈ P2. Thus, ℧(2) ∈ P2 ⊆ (S , τ) \ {℧(1)}. Therefore, (S , τ) \ {℧(1)} is
picture fuzzy open and hence {℧(1)} is picture fuzzy closed.

(ii)⇒ (iii): Suppose that each singleton picture fuzzy subset of (S , τS ) and choose S ′ as any picture fuzzy subset of S .
Subsequently, S ′ = ∪℧(1)∈S ′ {℧

(1)}. For each℧(2) < S ′, S \{℧(2)} is picture fuzzy open and S ′ ⊆ S \{℧(2)}, so that S \{℧(2)}

is a picture fuzzy open superset of S ′. Since, for each ℧(1) ∈ S ′, ℧(1) ∈ S \ {℧(2)}, we have S ′ = ∩℧(1)∈S ′S \ {℧(2)}.
Evidently, picture fuzzy open supersets of S ′ are included in the picture fuzzy intersection of S \ {℧(2)}.

(iii)⇒ (i): Suppose that each picture fuzzy subset S ′ of S is the picture fuzzy intersection of its picture fuzzy open
supersets. Assume that ℧(1) and ℧(2) are two distinct points in S . In that case, {℧(1)} is the picture fuzzy intersection of
its picture fuzzy open supersets and {℧(2)} is the picture fuzzy intersection of its picture fuzzy open supersets. Thus,
there is a picture fuzzy open set {℧(1)} which holds ℧(1) leaving ℧(2) (because, otherwise ℧(1) and ℧(2) both will be in
picture fuzzy intersection of picture fuzzy open supersets of {℧(1)}). Likewise, there is a picture fuzzy open open set
{℧(2)} containing ℧(2) but not ℧(1). Hence, (S , τS ) is a PFT1S. □

Corollary 3.32. A PFTS (S , τ) is PFT1S iff each finite picture fuzzy subset of S is picture fuzzy closed.

Proof. Take (S , τ) as a PFT1S. By virtue of Proposition 3.31, picture fuzzy singleton subsets of S are closed. Thus,
being a picture fuzzy union of a finite number of picture fuzzy closed sets, every finite picture fuzzy subset of S is
picture fuzzy closed.

Conversely, suppose that every finite picture fuzzy subset of S is picture fuzzy closed. Then, every singleton picture
fuzzy subset of S must also be picture fuzzy closed and hence (S , τ) is a PFT1S. □

Corollary 3.33. Every finite picture fuzzy T1 space is discrete.

Proof. Take (S , τ) to be a finite picture fuzzy T1 space. Consequently, each picture fuzzy subset of (S , τ) is picture
fuzzy closed and open as well (being picture fuzzy complement of a picture fuzzy closed set). Hence, (S , τ) may be
declared as discrete. □

Remark 3.34. Each subspace of a PFT1S is again a PFT1S.

Definition 3.35. A PFTS (S , τ) is called a picture fuzzy Hausdorff space, picture fuzzy separated space or picture fuzzy
T2 space (PFT2S) if corresponding to any pair of dissimilar picture fuzzy points ℧(1) and ℧(2) of (S , τ), there exist two
picture fuzzy open sets P1 and P2 in such a way that ℧(1) ∈ P1, ℧(2) ∈ P2 and P1 ∩ P2 = Φ̃.

Example 3.36. Let d be a metric in the PFTS (s, τ). If ℧(1) and ℧(2) is a pair of two dissimilar picture fuzzy points in
(S , τ) bearing the quality that d

(
℧(1),℧(2)) = ε, then B

(
℧(1), ε2

)
and B

(
℧(2), ε2

)
are two distinct picture fuzzy open sets

containing ℧(1) and ℧(2) respectively. Thus, it follows that every picture fuzzy metric space is a picture fuzzy Hausdorff
space.
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Example 3.37. Consider the discrete PFTS (S , τ). If ℧(1) and ℧(2) is a pair of two dissimilar picture fuzzy points
in (S , τ), then evidently {℧(1)} and {℧(2)} are disjoint picture fuzzy open sets obeying ℧(1) ∈ {℧(1)} and ℧(2) ∈ {℧(2)}.
Consequently, (S , τ) is a PFT2S.

Proposition 3.38. The necessary and sufficient condition for a PFTS (S , τ) to be a picture fuzzy Hausdorff space is
that for any pair of dissimilar picture fuzzy points ℧(1) and ℧(2), there exist picture fuzzy closed sets P1 and P2 obeying
℧(1) ∈ P1, ℧(2) < P1, ℧(1) < P2, ℧(2) ∈ P2 and P1 ∪ P2 = S̃ .

Proof. Hypothesize that (S , τ) is a picture fuzzy Hausdorff space. Pick two distinct picture fuzzy points ℧(1) and ℧(2) of
(S , τ). Then, there must exist two picture fuzzy open sets Q1 and Q2 satisfying the requirements that if ℧(1) ∈ Q1 then
℧(2) < Q1, or if ℧(1) < Q2 then ℧(2) ∈ Q2 and Q1 ∩ Q2 = Φ̃. But then, ℧(1) < Qc

1, ℧(2) ∈ Qc
1; ℧(1) ∈ Qc

2, ℧(2) < Qc
2 and

Qc
1 ∪ Q

c
2 = S̃ . Now, replacing Qc

1 by P1 and Qc
2 by P2, we obtain the desired result.

The converse follows by reverting the steps. □

Remark 3.39. The quality of being a PFT2S of any PFTS (S , τ) is transformable i.e. each subspace of a PFT2S is again
a PFT2S.

Definition 3.40. We entitle a PFTS (S , τ) a picture fuzzy regular space (PF regular space) if for some picture fuzzy
closed set P and some picture fuzzy point ℧ that is not contained in P, there exist picture fuzzy open sets P1 and P2

obeying ℧ ∈ P1, P ⊆ P2 and P1 ∩ P2 = Φ̃.

Example 3.41. The picture fuzzy indiscrete space is trivially a picture fuzzy regular space for there is no picture fuzzy
closed set P and a picture fuzzy point ℧ < P, because the only non-empty picture fuzzy closed closed set in (S , τindiscrete)
is S̃ .

This example also advocates that a picture fuzzy regular space need not a picture fuzzy Hausdorff space.

Definition 3.42. A picture fuzzy regular T1 space is entitled as a picture fuzzy regular Hausdorff space or a picture
fuzzy T3 space (PFT3S).

Definition 3.43. If corresponding to any two picture fuzzy closed disjoint subsets τ′ and τ′′ of the PFTS (S , τ), there
exist picture fuzzy open sets P1 and P2 in such a way that τ′ ⊆ P1, τ′′ ⊆ P2 and P1 ∩ P2 = Φ̃, then (S , τ) is called a
picture fuzzy normal space.

Definition 3.44. A picture fuzzy normal T1 space is called a picture fuzzy T4 space (PFT4S).

Remark 3.45. The following chain is valid for PFTSs discussed above:

Tk ⊇ Tk+1

for 0 ≤ k ≤ 3. On the other hand, the counter inclusion may not be true. For instance, (S , τ) with S = {p, g}, τ = {Φ̃, P, S̃ }
and

P =

{(
p,

〈
0.12
0.46
0.37

〉)
,

(
g,

〈
0.39
0.14
0.51

〉)}
is a PFT0S but fails to be a PFT1S.

Proposition 3.46. Every PFT4S is picture fuzzy regular i.e. every picture fuzzy normal T1 space is picture fuzzy regular.

Proof. Assume that (S , τ) is a picture fuzzy T4 space. Pick a picture fuzzy point ℧ from (S , τ). Consequently, by virtue
of Proposition (3.31), {℧} is a picture fuzzy closed set in (S , τ). Suppose that P is a picture fuzzy closed set which does
not include ℧. For the reason that (S , τ) is also picture fuzzy normal, the existence of picture fuzzy open sets P1 and P2

in such a manner that {℧} ⊆ P1, P ⊆ P2, and P1 ∩ P2 = Φ̃ is certain. But then, ℧ ∈ P1, P ⊆ P2 and P1 ∩ P2 = Φ̃. Thus,
(S , τ) is picture fuzzy regular. □

3.4. Compactness in PFTS. In this subsection, we search the concept of compactness in a PFTS.

Definition 3.47. An assemblage P of picture fuzzy subsets of a PFTS (S , τ) is called a picture fuzzy cover of τ if ∪P = τ.
If every such P is in τ, then P is delineated as a picture fuzzy open cover of τ. A finite subcollection P1 of P is termed a
finite picture fuzzy sub-cover of τ if ∪P1 = τ.
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Definition 3.48. If every picture fuzzy open cover of a PFTS (S , τ) carries a finite picture fuzzy sub-cover, then (S , τ) is
called picture fuzzy compact topological space.

Every PFTS (S , τ) comprising a finite number of elements is a picture fuzzy compact topological space.

Proposition 3.49. Every picture fuzzy closed subset of a picture fuzzy compact space carries the same characteristic.

Proof. Take P as a picture fuzzy closed subset of a picture fuzzy compact space (S , τ). If {Uα : α ∈ Ω} is any picture
fuzzy open cover for P, then ∃ a picture fuzzy open set Vα in (S , τ) in order that Uα = Vα ∩ P, α ∈ Ω. The collection
{Pc,Vα : α ∈ Ω} serves as a picture fuzzy open cover for (S , τ). Since (S , τ) is a picture fuzzy compact space, so there
ought to be a finite picture fuzzy sub-cover {Pc,Vαi : i = 1, . . . , n} of (S , τ) i.e.

τ = Pc ∪n
i=1 Vαi

∴ P = τ ∩ P

= ∪n
i=1(Vαi ∩ P)

= ∪n
i=1Uαi .

Hence, P is picture fuzzy compact. □

Proposition 3.50. Assume that C is a picture fuzzy compact subset of a picture fuzzy Hausdorff space (S , τ) and
℧ ∈ S \C, then there are picture fuzzy disjoint open sets U℧ and V℧ such that ℧ ∈ U℧ and C ⊆ V℧.

Proof. Suppose that C is a picture fuzzy compact subset of a picture fuzzy Hausdorff space (S , τ) and ℧ ∈ S \C. Since
(S , τ) is picture fuzzy Hausdorff, so for every ℧′ ∈ C \ {℧}, ∃ picture fuzzy open sets U℧℧′ and V℧′ such that ℧ ∈ U℧℧′ ,
℧′ ∈ V℧′ and U℧℧′ ∩ V℧′ = Φ̃.

Now, {V℧′ ∩C : ℧′ ∈ C} is a picture fuzzy open cover for C. Due to the reason that C is picture fuzzy compact, this
picture fuzzy open cover has a finite picture fuzzy sub-cover

V℧1
′ ∩C,V℧2

′ ∩C, . . . ,V℧n
′ ∩C.

Let U℧℧1
′ ,U℧℧2

′ , . . . ,U℧℧n
′ be the corresponding picture fuzzy open sets in (S , τ) carrying ℧. Take

U℧ = ∩n
i=1U℧℧i

′

and

V℧ = ∪n
i=1V℧i

′ .

Then, ℧ ∈ U℧ and C ⊆ V℧ and

U℧ ∩ V℧ = U℧ ∩ (∪n
i=1V℧i

′ )

= ∪n
i=1(U℧ ∩ V℧i

′ )

= Φ̃

as desired. □

Proposition 3.51. Every picture fuzzy compact Hausdorff space is picture fuzzy normal.

Proof. Suppose that C1 and C2 are two picture fuzzy disjoint subsets of a picture fuzzy compact Hausdorff space
(S , τ). By Proposition 3.50, for any ℧ ∈ C1, ∃ picture fuzzy open sets U℧ and V℧ such that ℧ ∈ U℧, C2 ⊆ V℧ and
U℧ ∩ V℧ = Φ̃.

The collections {U℧ : ℧ ∈ C1} form a picture fuzzy open covering for C1. Since C1 is picture fuzzy closed, C1 is
picture fuzzy compact, so there is a finite number of elements ℧1,℧2, . . . ,℧n such that C1 ⊆ ∪

n
i=1U℧i . Let ∪n

i=1U℧i = U,
∩n

i=1V℧i = V , then C1 ⊆ U, C2 ⊆ V and U ∩ V = Φ̃.
Hence, (S , τ) is picture fuzzy normal. □
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4. Picture Fuzzy Prevalence EffectMethod (PFPEM) in Group Decision-making and Its Comparison

4.1. Implementation. Within this part, we present the utility of PFT in group decision-making. To this end, we modify
the Prevalence Effect Method (PEM) [15] employing pf -sets and PFT. Therefore, we suggest Picture Fuzzy Prevalence
Effect Method (PFPEM) for the group decision-making process.

Algorithm: PFPEM

Step 1. Construct the pf -sets according to each decision-maker DM = {DM1, . . . ,DMp} and each attribute such
that C = {χ1, . . . , χm} is the collection of choices evaluated under the family of attributes Q = {q1, . . . , qn}.
Here, the collection of pf -sets of DM can be determined as a PFT according the each attribute. In addition,
pfs-sets/matrices can be constructed by DM, C, and Q without PFT.

Step 2. Construct information matrix Di (i = 1, . . . , p), as accorded by decision makers. Then, obtain the aggregated
matrix

D =

p∑
i=1

DMi

p
=

[〈
µi j
ηi j
νi j

〉]
m×n

Step 3. Obtain the score matrix [si1] defined by

si1 = µ
s − ηsνs

such that

µs =

n∑
j=1

 1
m

m∑
k=1

µk j

 1
n

 n∑
t=1

µit

 µi j


ηs =

n∑
j=1

 1
m

m∑
k=1

ηk j

 1
n

 n∑
t=1

ηit

 ηi j


νs =

n∑
j=1

 1
m

m∑
k=1

νk j

 1
n

 n∑
t=1

νit

 νi j


Step 4. Obtain the ranking orders according to score matrix.

The flowchart of the algorithm is presented in Figure 1. An illustrative example of PFPEM is provided as follows:

Figure 1. Flowchart of the algorithm
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As an illustration of the algorithm, we address a state managerial problem by following the procedural steps outlined in
the algorithm.

Example 4.1. Assume that an investment firm wants to put money into the best option (taken from [20,47]). Consider the
pf -sets according to each decision-maker DM = {DM1,DM2,DM3,DM4}, which refers to the “attractiveness of projects”
that the firm is considering for investment. Assume there are six potential projects, i.e. C = {χ1, χ2, χ3, χ4, χ5, χ6}, and
four criteria to consider: q1 =“Risk Analysis,” q2 =“Growth Analysis,” q3 =“Social-Political Impact Analysis,” and
q4 =“Environmental Analysis”. The firm assesses the possibilities based on the parameters and construct DM1, DM2,
DM3, and DM4 according to decision-makers as follows:

D1 =



〈
0.31
0.22
0.41

〉 〈
0.54
0.21
0.15

〉 〈
0.60
0.14
0.26

〉 〈
0.38
0.21
0.40

〉
〈

0.12
0.41
0.33

〉 〈
0.81
0.11
0.02

〉 〈
0.26
0.51
0.20

〉 〈
0.65
0.15
0.18

〉
〈

0.23
0.52
0.21

〉 〈
0.13
0.48
0.37

〉 〈
0.72
0.15
0.03

〉 〈
0.29
0.58
0.12

〉
〈

0.12
0.46
0.37

〉 〈
0.23
0.59
0.18

〉 〈
0.32
0.49
0.15

〉 〈
0.14
0.32
0.45

〉
〈

0.45
0.09
0.36

〉 〈
0.60
0.23
0.14

〉 〈
0.81
0.11
0.06

〉 〈
0.43
0.18
0.35

〉
〈

0.44
0.40
0.13

〉 〈
0.42
0.36
0.22

〉 〈
0.43
0.27
0.13

〉 〈
0.35
0.29
0.34

〉



, D2 =



〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉



,

D3 =



〈
0.26
0.27
0.46

〉 〈
0.49
0.26
0.20

〉 〈
0.55
0.19
0.31

〉 〈
0.33
0.26
0.45

〉
〈

0.07
0.46
0.38

〉 〈
0.76
0.16
0.07

〉 〈
0.21
0.56
0.25

〉 〈
0.60
0.20
0.23

〉
〈

0.18
0.57
0.26

〉 〈
0.08
0.53
0.42

〉 〈
0.67
0.20
0.08

〉 〈
0.24
0.63
0.17

〉
〈

0.07
0.51
0.42

〉 〈
0.18
0.64
0.23

〉 〈
0.27
0.54
0.20

〉 〈
0.09
0.37
0.50

〉
〈

0.40
0.14
0.41

〉 〈
0.55
0.28
0.19

〉 〈
0.76
0.16
0.11

〉 〈
0.38
0.23
0.40

〉
〈

0.39
0.45
0.18

〉 〈
0.37
0.41
0.26

〉 〈
0.38
0.32
0.18

〉 〈
0.30
0.34
0.39

〉



, and D4 =



〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉
〈

1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉
〈

1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉
〈

1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉
〈

1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉
〈

1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉 〈
1
0
0

〉



.
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Each decision maker’s picture fuzzy matrix Di is provided, where projects are represented in rows and attributes are
indicated in columns (For more details for the matrix representation, see [28]). Thus, the aggregated matrix is as follows:

D =



〈
0.3925
0.3950
0.4425

〉 〈
0.5075
0.4500
0.4350

〉 〈
0.5375
0.4475
0.4775

〉 〈
0.4275
0.4100
0.4575

〉
〈

0.2975
0.3950
0.3750

〉 〈
0.6425
0.4925
0.4700

〉 〈
0.3675
0.4550
0.3775

〉 〈
0.5625
0.4625
0.4700

〉
〈

0.3525
0.4500
0.3725

〉 〈
0.3025
0.4150
0.3875

〉 〈
0.5975
0.4800
0.4500

〉 〈
0.3825
0.4800
0.3650

〉
〈

0.4625
0.3975
0.4650

〉 〈
0.3525
0.4675
0.3650

〉 〈
0.3975
0.4650
0.3800

〉 〈
0.3075
0.3775
0.4100

〉
〈

0.5225
0.4800
0.4175

〉 〈
0.5375
0.4700
0.4475

〉 〈
0.6725
0.4925
0.4800

〉 〈
0.7525
0.4150
0.4575

〉
〈

0.4575
0.4725
0.4050

〉 〈
0.4475
0.4575
0.4225

〉 〈
0.4525
0.4375
0.4025

〉 〈
0.4125
0.4225
0.4350

〉



.

Thereafter,the scores and ranking order of PFPEM are as follows:{
0.3125χ1,

0.3147 χ2,
0.2262 χ3,

0.1818 χ4,
0.4422 χ5,

0.2731 χ6

}
and χ4 ≺ χ3 ≺ χ6 ≺ χ1 ≺ χ2 ≺ χ5.

4.2. Comparison. For the fair comparison of PFPEM with the Method 1 [47], Method 2 (PEM) [15], and Method
3 [27], the single matrix is needed. Therefore, consider that the original data from [20, 47] as the matrix D and it is as
follows:

D =



〈
0.31
0.22
0.41

〉 〈
0.54
0.21
0.15

〉 〈
0.60
0.14
0.26

〉 〈
0.38
0.21
0.40

〉
〈

0.12
0.41
0.33

〉 〈
0.81
0.11
0.02

〉 〈
0.26
0.51
0.20

〉 〈
0.65
0.15
0.18

〉
〈

0.23
0.52
0.21

〉 〈
0.13
0.48
0.37

〉 〈
0.72
0.15
0.03

〉 〈
0.29
0.58
0.12

〉
〈

0.12
0.46
0.37

〉 〈
0.23
0.59
0.18

〉 〈
0.32
0.49
0.15

〉 〈
0.14
0.32
0.45

〉
〈

0.45
0.09
0.36

〉 〈
0.60
0.23
0.14

〉 〈
0.81
0.11
0.06

〉 〈
0.43
0.18
0.35

〉
〈

0.44
0.40
0.13

〉 〈
0.42
0.36
0.22

〉 〈
0.43
0.27
0.13

〉 〈
0.35
0.29
0.34

〉



.

The proposed PFPEM and Method 1-3 are applied to the D and the score values and ranking orders are presented in
Tables 1 and 2, respectively. Moreover, the visual results of the Table 2 can be observed in Figure 2.

Table 1. The comparison of the score values

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Proposed PFPEM

χ1 0.2500 0.4453 0.4188 0.5476 0.3100 0.5266 0.6305 0.7509 0.4394
χ2 0.5000 0.4359 0.4200 0.5447 0.1200 0.5252 0.2966 0.7738 0.4313
χ3 0.2500 0.2571 0.2993 0.3697 0.1300 0.3207 0.0626 0.5486 0.2574
χ4 0 0.1653 0.1625 0.2750 0.2300 0.2511 0.0548 0.4911 0.1459
χ5 0.7500 0.7655 0.5938 0.7474 0.5700 0.8067 1.0000 1.0000 0.7638
χ6 0 0.3455 0.3415 0.4451 0.4200 0.4696 0.5539 0.6974 0.3378

Method 1 cannot rank Project-4 (χ4) and Project-6 (χ6) as well as the Project-1 (χ1) and Project-3 (χ3). Except for
the alternatives Project-1 (χ1) and Project-2 (χ2), the aforesaid ranking orders show that the proposed approach, i.e.
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Table 2. The comparison of the ranking orders

Methods Reference Environment Operation/Concepts Ranking Orders

Method 1 [47] pfs-sets Adjustable soft discernibility matrix χ4 = χ6 ≺ χ1 = χ3 ≺ χ2 ≺ χ5

Method 2 [15] fpfs-matrices Weighted aggregation operator χ4 ≺ χ3 ≺ χ6 ≺ χ2 ≺ χ1 ≺ χ5

Method 3 [27] pfs-sets Weighted aggregation operator χ4 ≺ χ3 ≺ χ6 ≺ χ1 ≺ χ2 ≺ χ5

Method 4 [17] fpfs-matrices TOPSIS-based concept χ4 ≺ χ3 ≺ χ6 ≺ χ1 ≺ χ2 ≺ χ5

Method 5 [14] ifpifs-matrices min-max operator χ2 ≺ χ3 ≺ χ4 ≺ χ1 ≺ χ6 ≺ χ5

Method 6 [8] fuzzy sets Fuzzy TOPSIS χ4 ≺ χ3 ≺ χ6 ≺ χ2 ≺ χ1 ≺ χ5

Method 7 [34] fuzzy sets Fuzzy VIKOR χ4 ≺ χ3 ≺ χ2 ≺ χ6 ≺ χ1 ≺ χ5

Method 8 [49] fuzzy sets Fuzzy COPRAS χ4 ≺ χ3 ≺ χ6 ≺ χ1 ≺ χ2 ≺ χ5

PFPEM In this study pf -sets/matrices PFT and weighted aggregation operator χ4 ≺ χ3 ≺ χ6 ≺ χ2 ≺ χ1 ≺ χ5

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 PFPEM
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Figure 2. Slope chart for the ranking orders of the methods herein

PFPEM, and Method 3 provide the same ranking orders. Besides, PFPEM and Method 2 provide the same ranking
orders. Furthermore, all the methods confirm that Project-5 (χ5) is the most appropriate project for the firm, while
Project-4 (χ4) is not.

According to the findings presented in Table 2 and Figure 2, χ4 is consistently ranked lowest across all methods,
indicating that the project is less attractive compared to other alternatives regarding risk, growth, or environmental
criteria. Similarly, χ5 ranks last in nearly all methods, suggesting high risk or low return potential. This consistency
establishes a strong consensus that the firm should not prioritize these projects.

The proposed PFPEM method entirely aligns with Method 6 (Fuzzy TOPSIS) and Method 8 (Fuzzy COPRAS),
with the ranking of χ4 ≺ χ3 ≺ χ6 ≺ χ2 ≺ χ1 ≺ χ5. This indicates that PFPEM can produce results similar to fuzzy
set-based methods and is consistent with certain approaches in the literature. However, the ranking differences between
χ1, χ2, and χ6 observed in Methods 2, 3, 4, and 7 may arise from the operational concepts employed (TOPSIS, VIKOR,
weighted aggregation) or the mathematical structures of the environments (pfs-sets, fpfs-matrices). For example, while
the VIKOR method concentrates on compromise solutions, TOPSIS is based on proximity to the ideal solution, which
influences the rankings.

PFPEM’s integration of PFT and a weighted aggregation operator on pf -sets provided a balanced approach in ranking
intermediate projects (χ1, χ2, χ3, and χ6) by modeling uncertainties more flexibly. Notably, χ2 drops to fourth place in
PFPEM, despite being ranked third in Method 7 (Fuzzy VIKOR), suggesting that the criteria weights or risk tolerance are
integrated differently. Consequently, the choice of method depends on the firm’s priorities (risk aversion, social impact,
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or environmental sustainability). In general, PFPEM, Method 2 and 6 provide the same ranking orders. Furthermore, all
the methods confirm that χ5 is the most appropriate project for the firm, while χ4 is not except Method 5. Consequently,
this study demonstrates PFPEM’s competitiveness with existing methods and its flexibility as an alternative in MCDM
processes.

5. Conclusion

The idea of picture fuzzy sets (pf -sets) offers valuable benefits for managing a wide range of situations that individuals
may encounter in their daily lives, such as when they are presented with options to approve, disapprove, remain uncertain,
or choose not to respond at all. These sets can be applied in several fields, including but not limited to pattern recognition,
economics, electoral systems, life sciences, artificial intelligence, marketing analysis, business, decision-making, speech
recognition, neural networks, and operations research. Their versatility is one of the key reasons they have become so
popular in recent years, as professionals from various industries have found them invaluable tools for analysing complex
data and making more informed decisions.

This study presents a new definition of PFT and explores its fundamental properties. It discusses the limit point
of pf -sets and examines the basis for a PFTS. Additionally, it covers the primary categories of PFTSs, which include
picture fuzzy open or closed sets that satisfy specific requirements regarding their picture fuzzy points. The study also
investigates compactness in PFTS and concludes by proposing a group decision-making implementation that employs
PFT.

The concepts presented in this study are significant and can be further explored in various sectors beyond the
academic realm. For instance, these concepts can be applied in real-world scenarios like business decision-making
processes, medical image diagnosis systems, and even personal relationships. Furthermore, in light of the soft topological
spaces [12, 13, 16], picture fuzzy soft topology (PFST), the foundation for the presented concepts, can be expanded
and studied in greater depth. This involves exploring notions, such as picture fuzzy soft limit point, picture fuzzy soft
open or closed sets, and compactness within PFST. Besides, all the concepts herein can be generalized on picture fuzzy
parameterized picture fuzzy soft sets space [29]. By conducting further research in this area, the practical applications of
these concepts in everyday life can be better understood.

The theoretical contributions presented in the study extend beyond decision making and topological analysis,
encompassing significant application potential in the field of Machine Learning. Picture fuzzy structures, which
simultaneously evaluate membership, non-membership, and neutral situations in real life, facilitate the development of
more flexible and realistic models compared to classical methods in data classification problems. In this context, it is
assessed that the proposed conceptual structures can form the foundation for improving algorithms such as Picture Fuzzy
Soft k-Nearest Neighbor (PFS-kNN) [28]. PFS-kNN redefines the decision mechanism of the classical kNN algorithm
by considering the membership, non-membership, and neutral degrees of each example, thereby enhancing classification
accuracy. Such an approach can support the creation of more powerful and explainable models, particularly in areas
characterized by high uncertainty, such as medical diagnosis, customer behavior analysis, and the classification of social
media data. Therefore, integrating the theoretical framework presented in this study with machine learning applications
will facilitate the expansion of both theoretical and practical contributions in future research.
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[15] Enginoğlu, S., Çağman, N., Fuzzy parameterized fuzzy soft matrices and their application in decision-making, TWMS J. of Apl. & Eng. Math.,

10(4)(2020), 1105–1115.
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[26] Memiş, S., A study on picture fuzzy sets, In G. Çuvalcıoğlu, editor, 7th IFS and Contemporary Mathematics Conference, Mersin, Türkiye, 2021,

Mersin University.
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