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Abstract: Type 2 diabetes mellitus (T2DM) is a significant metabolic disorder affecting approximately 537 

million people globally. Syzygium cumini is a herbal plant with multitarget and multi-pathway potential, 

used traditionally in medicine due to its diverse pharmacological properties. Therefore, this study aimed to 

predict the target profiles and pharmacological mechanisms of S. cumini compounds using network 

pharmacology. The methanolic leaves extract of S. cumini was analyzed using LC-HRMS, ADMET 

prediction, network pharmacology, and molecular docking. LC-HRMS analysis identified 42 compounds in 

the extract and 35 satisfied Lipinski’s rule of 5. From the analysis, 150 common targets for S. cumini were 

identified, leading to the determination of 10 core targets, namely IL-6, TNF, ALB, AKT1, IL1B, STAT3, 

CTNNB1, PPARG, TLR4, and PTGS2. Molecular docking was then carried out on the compounds focusing 

on the three best targets, namely IL-6, TNF, and ALB. A total of 4, 4, and 1 compounds targeted IL-6, TNF-

α, and ALB, respectively. In particular, bergenin and FF-MAS had binding energy comparable to native 

ligand when bound to IL-6 and TNF-α, respectively. NP-012381 was the only compound had lower binding 

energies than native ligand on the three targets (IL-6, TNF-α, and ALB) simultaneously. This present study 

showed the potential of S. cumini in inhibiting T2DM. 
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1. Introduction 

Diabetes mellitus (DM), characterized by elevated 

blood sugar levels, is a significant global public 

health issue, affecting approximately 537 million 

people worldwide [1]. The most prevalent form of 

this disease is type 2 diabetes mellitus (T2DM), 

accounting for over 90% of all cases. T2DM is 

marked by insulin resistance and dysfunction of 

pancreatic β-cells [2], which contributes to 

glycotoxicity and various systemic complications 

[3]. Current clinical treatments for T2DM, such as 

metformin and thiazolidinediones [4] are associated 

with serious side effects, including hypoglycemia 

and gastrointestinal disturbances [5]. However, 

herbal plants are known for minimal side effects 

and high safety profile, showing the potential as 

sources for developing new T2DM therapies [6]. 

Several studies have shown the biological activities 

of Syzygium cumini. The various parts of S. cumini 

exhibit significant biological activity and hold the 

potential for developing products applicable to the 

pharmaceutical and food industries. In 2020, 

Kandeda et al. (2022) suggested that the aqueous 

extract of S. cumini had antiepileptic- and anti-

amnesic-like effects, which were mediated in part 

by antioxidant and anti-inflammatory activities [7]. 

Abdin et al. (2020) implied the antioxidant and anti-

inflammatory activities of target anthocyanins di-

glucosides isolated from S. cumini [8]. Sing et al 

(2018) reported that S. cumini was rich in phenolic 

acids, (gallic and ellagic acid), flavonoids 

(quercetin, myricetin, flavonol glycosides, 

anthocyanins, flavonols, flavanols, and 

flavanonols), tannins (mostly ellagitannins), and 

anthocyanins (delphinidin, petunidin, and malvidin 

in glycosylated forms). Due to this components, the 

plant functions as anti-inflammatory, anti-allergic, 

antihyperglycaemic, anticancer, cardioprotective, 

radioprotective, antibacterial, chemopreventive, 

and antioxidant agent [9]. Srivastava and Chandra 

(2013) also reported that S. cumini had beneficial 

physiological effects, including antidiabetic 

properties [10]. Despite these results, no network 

pharmacology studies have investigated the 

pharmacological effects of the chemical 

compounds on multiple targets and pathways as 

anti-T2DM agent. Network pharmacology 

underscores a paradigm shift from the  “one 

compound, one target” paradigm to a novel version 

of the “multi-components, multi-target,” strategy 

[11]. This network pharmacology is particularly 

suitable for addressing the mechanism of action of 

a herbal plant considering its multiple chemical 

compounds [11]. Therefore, this study applied a 

network pharmacology method to enhance the 

molecular understanding of S. cumini potential as 

anti-T2DM agent in a multidrug and multitarget 

paradigm [12]  

 

2. Computational Method 

2.1. Plant Material and Extraction Process, LC-

HRMS Analysis, and ADME Prediction 

S. cumini leaves were collected in June 2024 from 

Kalebarembeng Village, Bontonompo Subdistrict, 

Gowa Regency, South Sulawesi Province, 

Indonesia (coordinates: 5°18'21"S, 119°23'48"E). 

Leaves were cleaned using wet sorting to remove 

impurities, washed, thinly sliced, and air-dried. The 

crude S. cumini simplicia extract (300 g) was 

subjected to two rounds of maceration using 

ethanol as the solvent, yielding a crude extract of 

5.62 g, with a percentage of 1.87% (w/w). 

High-resolution mass spectrometry analysis was 

carried out using liquid chromatography (LC-

HRMS) following the method described by Zubair 

et al. (2021) [13]. ADMET properties of the 

compounds were predicted using SwissADME web 

server (http://www.swissadme.ch/) as outlined by 

Daina et al. (2017) [14]. 

 

2.2. Genes Identification Associated with Type 2 

Diabetes Mellitus 

Target prediction for the compounds of S. cumini 

was conducted using SwissTargetPrediction and 

SEA databases (https://sea.bkslab.org) 

(https://sea.bkslab.org) by inputting SMILES code 

for each compound [15, 16]. Genes associated with 

T2DM were predicted using OMIM database 

(https://www.omim.org), DisGeNET, and 

GeneCards (https://www.genecards.org) [17-19]. 

The GeneCards data were filtered to include the top 

500 targets [20]. Subsequently, the results of the 

disease targets and compounds were filtered and 

combined into a Venn diagram using 

Bioinformatics and System Biology 

(https://bioinformatics.psb.ugent.be/webtools/Ven

n).  

http://www.swissadme.ch/
https://sea.bkslab.org/
https://sea.bkslab.org/
https://www.omim.org/
https://www.genecards.org/
https://www.bing.com/ck/a?!&&p=60ec771d11e0f6cbJmltdHM9MTcyNzIyMjQwMCZpZ3VpZD0yZjEzMDY4NS00YTJjLTZmOWQtMzM3Mi0xMjhkNGI3YTZlZGQmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2f130685-4a2c-6f9d-3372-128d4b7a6edd&psq=diagram+venn&u=a1aHR0cHM6Ly9iaW9pbmZvcm1hdGljcy5wc2IudWdlbnQuYmUvd2VidG9vbHMvVmVubi8&ntb=1
https://www.bing.com/ck/a?!&&p=60ec771d11e0f6cbJmltdHM9MTcyNzIyMjQwMCZpZ3VpZD0yZjEzMDY4NS00YTJjLTZmOWQtMzM3Mi0xMjhkNGI3YTZlZGQmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2f130685-4a2c-6f9d-3372-128d4b7a6edd&psq=diagram+venn&u=a1aHR0cHM6Ly9iaW9pbmZvcm1hdGljcy5wc2IudWdlbnQuYmUvd2VidG9vbHMvVmVubi8&ntb=1
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2.3. Protein-Protein Interaction (PPI) Network 

and Core Target Selection 

Protein-protein interaction (PPI) network was 

constructed using STRING database (https://string-

db.org), with the target proteins restricted to the 

species Homo sapiens and a high confidence 

threshold of 0.007. In this case, other parameters 

were left at the default settings. The resulting PPI 

network was imported into Cytoscape v3.10.2 

Cytoscape v3.10.2 [21] for further analysis. 

 

2.4. GO Analysis and KEGG Path  

Gene Ontology (GO) analysis was conducted using 

Metascape (https://www.metascape.org) and 

shinyGO 0.80 databases to evaluate the biological 

functions, cellular processes, and molecular 

components associated with the predicted protein 

targets [22-24]. Additionally, KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathway 

analysis was carried out to identify the metabolic 

pathways or molecular signaling processes 

influenced by the compounds and the targets in S. 

cumini and T2DM. The resulting pathways were 

used as a working framework to study the effects of 

the compounds. 

 

2.5. Molecular Docking  

The crystal structures of IL-6, TNF-α, and ALB 

were used as protein targets for docking 

simulations. The 2D structures of the S. cumini 

compounds identified through LC-HRMS analysis 

were converted into 3D using Maestro LigPrep 

module with OPLS_2005 force field [25]. Protein 

and ligand preparations were carried out based on 

previously established protocols [26, 27] using 

Maestro Schrödinger 11.1.012 release 2017-1 

software (Schrödinger, New York, NY, USA) [25]. 

Prednisolone was used as a positive control for 

docking to IL-6, following the procedure described 

in the previous study [28]. 

 

3. Results and discussion 

3.1. LC-HRMS Analysis 

LC-HRMS analysis of S. cumini extracts identified 

42 compounds. All compounds were screened for 

ADME properties, with 35 meeting the Lipinski 

rule criteria, as shown in Tables S1 and S2. 

 

3.2. The Target Genes of S. cumini Compounds 

and T2DM 

The target proteins from SwissTargetPrediction and 

SEA databases identified for S. cumini were 990 

and 439, respectively, while gene targets for T2DM 

from the GeneCards, DisGeNet, and OMIM 

databases were 500, 271, and 82, respectively. 

After eliminating duplicates, 1,138 unique targets 

of the S. cumini compounds were obtained. 

Similarly, 850 gene targets associated with T2DM 

have been identified using OMIM, DisGeNET, and 

GeneCards databases. By comparison, using a 

Venn diagram, 150 common targets shared between 

S. cumini and T2DM were identified, as shown in 

Figure 1. 

 
Figure 1. Venn diagram of a common target of T2DM- S. cumini. The blue, yellow, and dark colors 

represent genes of T2DM, compounds of S. cumini, and the common target, respectively 

https://string-db.org/
https://string-db.org/
https://www.metascape.org/
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Figure 2. Visualization of PPI network for S. cumini and T2DM, where the intensity of the green color 

shows the significance of gene degree 

 

Table 1. The values of degree, closeness centrality, and betweenness centrality of the top 

10 proteins. 

NO Name Degree Closeness Centrality Betweenneess Centrality 

1 IL-6 44 0.536 0.08724512636608397 

2 TNF 41 0.5381526104417671 0.09789594317925121 

3 ALB 37 0.536 0.15564233230351093 

4 AKT1 37 0.5173745173745175 0.13313266304234703 

5 IL1B 35 0.5153846153846153 0.03840495031775519 

6 STAT3 29 0.47017543859649125 0.03069596291814518 

7 CTNNB1 28 0.48201438848920863 0.0642811157937861 

8 PPARG 27 0.48201438848920863 0.09701829683867383 

9 TLR4 27 0.47686832740213525 0.013584118528804279 

10 PTGS2 26 0.48727272727272725 0.04911658338795967 

 

3.3. Protein-Protein Interaction (PPI) 

PPI network was constructed using the Search Tool 

for the Retrieval of Interacting Genes/Proteins 

(STRING) (http://string-db.org). The resulting 

network was analyzed using Cytoscape v3.10.2 

(https://cytoscape.org). Key proteins with the 

highest number of interactions were identified, 

including IL-6, TNF, ALB, AKT1, IL1B, STAT3, 

CTNNB1, PPARG, TLR4, and PTGS2, as shown 

in Figure 2. 

The core targets were identified based on Degree, 

Closeness, and betweenness values using the 

CytoHubba plug-in (Table 1), resulting in a 

network comprising 129 nodes and 599 edges. The 

analysis consistently showed IL-6, TNF, ALB, 

AKT1, IL1B, STAT3, CTNNB1, PPARG, TLR4, 

and PTGS2 as key targets (Figure S1). Table 1 

shows the top 10 proteins along with the Degree, 

Closeness Centrality, and Betweenness Centrality 

values. 

 

Higher degree values show a greater number of 

direct connections, reflecting a more significant 

role of the protein. Similarly, higher betweenness 

centrality values suggested that the protein serves 

as a critical node for facilitating communication. 

Higher closeness centrality values represent an 

advanced level of centrality and faster signal 

transmission to other nodes in the network [29]. 

 

3.4. KEGG and GO Analysis 

Functional analysis was carried out using KEGG 

and GO across three categories, namely biological 

process (BP), cellular component (CC), and 

molecular function (MF). Figures 4 and S2 show 

the top 20 enriched terms for each category ranked 

by p-value. The highest-ranking terms are the 

http://string-db.org/
https://cytoscape.org/
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regulation of hormone levels, phagocytic cup, and 

aromatase binding for GO biological process, 

cellular component, and molecular function.  

AGE-RAGE signaling pathway in diabetic 

complications was reflected in KEGG pathway as 

shown in Figure 5. 

 

 
Figure 4. The top 20 enriched terms for KEGG pathway ranked by p-value. 

 
Figure 5. KEGG pathway of T2DM, in which the red color represents genes in the common target 

 

The advanced glycation end (AGE) products are 

formed when the free amino groups of proteins 

react with carbonyl groups of sugars [30]. AGE and 

receptor (RAGE) signalling pathway was shown to 

play a role in diabetes [31, 32]. According to a 

previous study, the level of AGE was increased in 

diabetes [33]. In a hyperglycemic environment, 

tissue glucose levels rise, causing the peripheral 

nervous system to produce AGE. Diabetes greatly 

facilitates the production and accumulation of AGE 

because glucose serves as the primary source of 

carbonyl groups for glycation processes. AGE 

receptors may also play a part in the development 

of diabetes complications, in addition to the buildup 

of AGE in tissues. AGE has been shown to bind to 

several receptors, such as RAGE. 

 

3.5. Molecular Docking 

The network pharmacology results identified 10 

core targets, and the three best were selected for 
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molecular docking, namely IL-6, TNF-α, and ALB. 

There were 4 compounds targeting IL-6, namely 

18-β-Glycyrrhetinic, ursolic, bergenin, and NP-

012381. A total of 4 compounds were targeting 

TNF-α, namely 4-(4-methylpiperidin-1-yl)benzoic 

acid, 18-β-Glycyrrhetinic acid, FF-MAS, Comp29, 

and NP-012381, while only 1 (NP-012381) targeted 

ALB. Molecular docking was then carried out on 

the compound to indentify the binding affinity to its 

corresponding target [34-37], as shown in Table 3.  

 

 
Table 3. Binding energies for each compound to its corresponding target 

Compound 

Binding energy (kcal/mol) 

IL-6 (PDB ID : 

1N26) 

TNF (PDB ID : 

2AZ5) 

ALB (PDB ID : 

1E7A) 

Native ligand (Prednisolone) -4.180   

18-β-Glycyrrhetinic acid -2.489   

Ursolic acid -1.808   

Bergenin -4.513   

NP-012381 -5.923 -5.186 -6.116 

Native ligand (307)  -3.348  

4-(4-methylpiperidin-1-

yl)benzoic acid 

 -2.381  

FF-MAS  -3.217  

Comp 29  -2.084  

Native ligand (PFL)   -6.078 

 

 

 

 

 

 

 

The docked poses to IL-6: NP-

012381 (top) and prednisolone 

(bottom) 

The docked poses to TNF-α: NP-

012381 (top) and 307 (bottom) 

The docked poses to 

ALB: NP-012381 (top) 

and PFL (bottom) 

Figure 5: The docked poses of NP-012381 and native ligand to IL-6, TNF-α, and ALB 

 

Binding energy of native ligand (prednisolone) to 

interleukin-6 (IL-6) was -4.180 kcal/mol, while 

those of 18-β-Glycyrrhetinic, Ursolic, Bergenin, 

and NP-012381 were -2.489 kcal/mol, -1.808 

kcal/mol, -4.513 kcal/mol, and -5.923 kcal/mol, 

respectively. Similarly, binding energies of ligand 

to TNF-α were -2.381 kcal/mol, -1.734 kcal/mol, -

3.217 kcal/mol, -2.084 kcal/mol, and -5.186 

kcal/mol for 4-(4-methylpiperidin-1-yl)benzoic 

acid, 18-β-Glycyrrhetinic acid, FF-MAS, Comp 29, 

and NP-012381, respectively, In the case of native 

ligand (307) of TNF-α, binding energy was -3.348 

kcal/mol. Binding energy of native ligand (PFL) 

and NP-012381 to ALB were -6.078 and -6.116 

kcal/mol, respectively.  
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Bergenin and FF-MAS had binding energies 

comparable to those of native ligand when bound to 

IL-6 and TNF-α, respectively. NP-012381 was the 

only compound targeting IL-6, TNF-α, and ALB 

simultaneously, and binding energy was lower than 

native ligand. Figure 5 shows the docked poses of 

NP-012381 and native ligand to IL-6, TNF-α, and 

ALB. In addition, Figure S3 shows the docked pose 

of each compound to its corresponding target. 

 

4. Conclusions 

In conclusion, the present study investigated the 

potential of S. cumini methanolic leaf extract as a 

therapeutic agent for type 2 diabetes mellitus 

(T2DM). The findings demonstrated that the extract 

contains bioactive compounds with significant 

potential to inhibit key proteins associated with 

T2DM, including IL-6, TNF-α, ALB, AKT1, IL1B, 

STAT3, CTNNB1, PPARG, TLR4, and PTGS2. 

These proteins play critical roles in the 

pathophysiology of T2DM by contributing to AGE-

RAGE signaling pathway in diabetic 

complications. Molecular docking analysis carried 

out on the three best targets showed that bergenin 

and FF-MAS had comparable binding energy with 

native ligand when bound to IL-6 and TNF-α, 

respectively. However, NP-012381 was a potential 

inhibitor of IL-6, TNF-α, and ALB simultaneously, 

as evidenced by its lower binding energy than 

native ligand. Overall, this study emphasizes the 

potential of S. cumini methanolic leaf extract as a 

promising candidate for the development of novel, 

multi-target treatments for T2DM.  
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Supplymantery data 
 

Table S1: Compounds identified from S. cumini extract as revealed by HR-LCMS 

analysis. 

Table S2: The drug-likeness of all compounds 

Figure S1: The core targets based on (a) degree, (b) betweeness, (c) closenees. 

Figure S2: The top 10 enriched terms for biological process (BP) (a), cellular 

component (CC) (b), and molecular function (MF) (c) ranked by p-value. 

Figure S3: The docked conformations of 3 compounds to IL-6. 

Figure S4: The docked conformations of 4 compounds to TNF-α. 

 

Table S1: Compounds identified from S. cumini extract as revealed by HR-LCMS analysis. 

Compounds violated more than one Lipinsky rule of 5 was assigned as red colors. 

 

No Compound 
Molecular 

Formula 
m/z RT (min) 

1 (2S,4R,5S,6S,7R)-5,6,12,14-

tetrahydroxy-4-(hydroxymethyl)-

13-methoxy-3,8-

dioxatricyclo[8.4.0.0²,⁷]tetradeca-

1(10),11,13-trien-9-

one ATAU bergenin. 

C₁₄H₁₆O₉ 329.08707 5.18 

2 (4aS,6aS,6bR,8aR,13aR,13bR,15bS

)-N-Benzyl-2,2,6a,6b,9,9,13a-

heptamethyl-

1,2,3,4,5,6,6a,6b,7,8,8a,9,11,13,13, 

13b,14,15b-octadecahydro-4aH-

chryseno[1,2-f]indazole-4a-

carboxamide 

C₃₈H₅₃N₃O 568.42810 32.49 

3 1,2,3,4-Tetrahydroisoquinoline-1-

acetic acid 

C₁₁H₁₃NO₂ 224.12837 0.76 

4 18-β-Glycyrrhetinic acid C₃₀H₄₆O₄ 471.34756 22.56 

5 2,5-Bis[(2-

acetamidobenzoyl)amino]-1,2,5,6-

tetradeoxy-1,6-diphenyl-L-altritol 

C₃₆H₃₈N₄O₆ 623.28674 31.55 

6 2-(Cyclopropylmethyl)guanidine C₅H₁₁N₃ 114.10272 38.7 

7 3,4-MDPA C₁₃H₁₉NO₂ 222.14917 0.81 

8 3-O-trans-p-

Coumaroyltormentic acid 

C₃₉H₅₄O₇ 635.39484 21.95 
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9 4-(4-methylpiperidin-1-

yl)benzoic acid 

C₁₃H₁₇NO₂ 220.13347 0.76 

10 5,6-dimethoxy-2-(2-

methoxyphenyl)-4H-chromen-4-

one 

C₁₈H₁₆O₅ 313.10736 19.79 

11 5-Hydroxy-3,4-dimethyl-5-pentyl-

2(5H)-furanone 

C₁₁H₁₈O₃ 181.12238 11.19 

12 5K8ξ641G3 C₆H₁₀N₂ 111.09181 38.11 

13 6-[(8Z)-8-Octadecen-1-yl]-4-(2-

oxo-2-phenylethyl)-2-phenyl-6,7-

dihydro-4H-pyrazolo[1,5-

a]pyrrolo[3,4-d]pyrimidine-5,8-

dione 

C₄₀H₅₀N₄O₃ 635.39514 21.88 

14 Amidinomycin C₉H₁₈N₄O 199.15550 13.37 

15 Bis(methylbenzylidene)sorbitol C₂₂H₂₆O₆ 387.18060 16.89 

16 Butyl-(4,5-dihydro-thiazol-2-yl)-

amine 

C₇H₁₄N₂S 159.09518 0.15 

17 Chromic acid H₂CrO₄ 118.94273 1.08 

18 Cyprodenate C₁₃H₂₅NO₂ 228.19601 30.31 

19 Dichloroacetic acid C₂H₂Cl₂O₂ 128.95094 1.03 

20 Dihydroethoxyquin C₁₄H₂₁NO 220.16988 0.84 

21 Eglumetad C₈H₁₁NO₄ 186.07623 0.76 

22 FF-MAS C₂₉H₄₆O 411.36258 27.83 

23 N,N,N′,N′-Tetramethylpiperazine-

1,4-dicarboxamide 

C₁₀H₂₀N₄O₂ 229.16623 1.07 

24 N,N-Diethyloctadecanamide C₂₂H₄₅N 340.35803 36.07 

25 N-[(1R)-1-{5-[(1S)-1-Formamido-

2-(1H-indol-3-yl)ethyl]-4-(4-

methoxybenzyl)-4H-1,2,4-triazol-3-

yl}-2-(1H-indol-3-yl)ethyl]-2-

pyridinecarboxamide 

C₃₇H₃₄N₈O₃ 639.28217 31.33 

26 N-[1-(3-Fluoro-4-

methoxyphenyl)butyl]-2-{[(2S)-1-

hydroxy-2-propanyl]amino}-5,8-

dihydropyrido[3,4-d]pyrimidine-

7(6H)-carboxamide 

C₂₂H₃₀FN₅O₃ 432.23843 16.9 

27 N-Formylalanine C₄H₇NO₃ 118.05000 0.75 

28 N-Tridecylglycyl-N-(4-

aminobutyl)glycyl-N₂-(tetrahydro-

2-furanylmethyl)glycinamide 

C₂₈H₅₅N₅O₄ 526.43231 26.91 

29 N-{(1S,2S,4R)-1-[(2,3-Dihydro-

1′H-spiro[indene-1,4′-piperidin]-1′-

ylsulfonyl)methyl]-7,7-

dimethylbicyclo[2.2.1]hept-2-yl}-

Nα,Nα-dimethyl-D-histidinamide  

(Comp29) 

C₃₁H₄₅N₅O₃S 568.33435 32.45 

30 NP-012381 C₂₄H₂₆O₁₀ 475.16052 14.29 

31 NP-017152 C₁₃H₂₃NO₂ 226.18045 29.91 
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32 NP-021050 C₃₀H₄₈O₄ 473.36316 22.97 

33 N₁-(Dispiro[cyclohexane-1,3′-

[1,2,4,5]tetroxane-6′,2″-

tricyclo[3.3.1.1³,⁷]decan]-4-

ylmethyl)-N₄-(6-methoxy-5-

phenyl-8-quinolinyl)-1,4-

pentanediamine 

C₃₈H₄₉N₃O₅ 628.37549 34.64 

34 Tetrahydrofurfuryl methacrylate C₉H₁₄O₃ 171.10185 21.68 

35 Triazabicyclodecene C₇H₁₃N₃ 140.11839 38.11 

36 Ursolic acid C₃₀H₄₈O₃ 439.35742 27.82 

37 N-Ethyl-N-methylcathinone C₁₂H₁₇NO  38.11 

38 N-cyclooctylurea C₉H₁₈N₂O  0.43 

39 1-tetradecylamine C₁₄H₃₁N  15.92 

40 1-[3-(4-Benzyl-1-

piperidinyl)propyl]-3(12-oxo-

6,7,8,9,10,12 

hexahydroazepino[2,1-

b]quinazolin-2-yl)thiourea 

C₂₉H₃₇N₅OS  33.46 

41 1,3-Dicyclohexylurea C₁₃H₂₄N₂O  0.17 

42 1-(3-Hexyl-4-oxo-2-oxetanyl)-2-

tridecanyl N-{[(2-methyl-2-

propanyl)oxy]carbonyl}leucinate 

C₃₃H₆₁NO₆  32.54 

 

Table S2: The drug-likeness properties of all compounds. Compounds violated more than one Lipinsky rule of 5 

was assigned as red colors. 

No Compound 
Molecular 

Formula 

Lipinski 

Rule of 5 

MW 

(g/mol) 

MlogP Hbond 

Aceptor 

Hbond 

Donor 

1 

(2S,4R,5S,6S,7R)-

5,6,12,14-tetrahydroxy-4-

(hydroxymethyl)-13-

methoxy-3,8-

dioxatricyclo[8.4.0.0²,⁷]tetr

adeca-1(10),11,13-trien-9-

one ATAU bergenin. 

C₁₄H₁₆O₉ 
0 

Violation 

328.27 

g/mol 

 

-1.67 

 

9 5 

2 

(4aS,6aS,6bR,8aR,13aR,1

3bR,15bS)-N-Benzyl-

2,2,6a,6b,9,9,13a-

heptamethyl-

1,2,3,4,5,6,6a,6b,7,8,8a,9,1

1,13,13a,13b,14,15b-

octadecahydro-4aH-

chryseno[1,2-f]indazole-

4a-carboxamide 

C₃₈H₅₃N₃O 
2 

Violation 

567.85 

g/mol 
6.36 2 2 

3 

1,2,3,4-

Tetrahydroisoquinoline-1-

acetic acid 

C₁₁H₁₃NO₂ 
0 

Violation 

191.23 

g/mol 
1.30 3 2 
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4 18-β-Glycyrrhetinic acid C₃₀H₄₆O₄ 
1 

Violation 

470.68 

g/mol 
4.87 4 2 

5 

2,5-Bis[(2-

acetamidobenzoyl)amino]-

1,2,5,6-tetradeoxy-1,6-

diphenyl-L-altritol 

C₃₆H₃₈N₄O₆ 
2 

Violation 

622.71 

g/mol 
2.50 6 6 

6 

2-

(Cyclopropylmethyl)guani

dine 

C₅H₁₁N₃ 
0 

Violation 

113.16 

g/mol 
0.03 1 2 

7 3,4-MDPA C₁₃H₁₉NO₂ 
0 

Violation 

221.30 

g/mol 
2.08 3 1 

8 
3-O-trans-p-

Coumaroyltormentic acid 
C₃₉H₅₄O₇ 

2 

Violation 

634.84 

g/mol 
4.81 7 4 

9 
4-(4-methylpiperidin-1-

yl)benzoic acid (Comp9) 
C₁₃H₁₇NO₂ 

0 

Violation 

219.28 

g/mol 
2.39 2 1 

10 

5,6-dimethoxy-2-(2-

methoxyphenyl)-4H-

chromen-4-one 

C₁₈H₁₆O₅ 
0 

Violation 

312.32 

g/mol 
1.25 5 0 

11 
5-Hydroxy-3,4-dimethyl-

5-pentyl-2(5H)-furanone 
C₁₁H₁₈O₃ 

0 

Violation 

198.26 

g/mol 
1.90 3 1 

12 5K8ξ641G3 C₆H₁₀N₂ 
0 

Violation 

110.16 

g/mol 
0.32 1 1 

13 

6-[(8Z)-8-Octadecen-1-

yl]-4-(2-oxo-2-

phenylethyl)-2-phenyl-6,7-

dihydro-4H-pyrazolo[1,5-

a]pyrrolo[3,4-

d]pyrimidine-5,8-dione 

C₄₀H₅₀N₄O₃ 
2 

Violation 

634.85 

g/mol 
5.75 4 0 

14 Amidinomycin C₉H₁₈N₄O 
0 

Violation 

198.27 

g/mol 

 

-0.38 

 

3 4 

15 
Bis(methylbenzylidene)sor

bitol 
C₂₂H₂₆O₆ 

0 

Violation 

386.44 

g/mol 

 

-0.38 

 

6 6 

16 
Butyl-(4,5-dihydro-

thiazol-2-yl)-amine 
C₇H₁₄N₂S 

0 

Violation 

158.26 

g/mo 

 

1.23 
1 1 

17 Chromic acid H₂CrO₄ 
0 

Violation 

118.01 

g/mol 
1.23 1 1 

18 Cyprodenate C₁₃H₂₅NO₂ 
0 

Violation 

227.34 

g/mol 
2.15 3 0 

19 Dichloroacetic acid C₂H₂Cl₂O₂ 
0 

Violation 

128.94 

g/mol 
0.49 2 1 

20 Dihydroethoxyquin C₁₄H₂₁NO 
0 

Violation 

219.32 

g/mol 
2.82 1 1 

21 Eglumetad C₈H₁₁NO₄ 
0 

Violation 

185.18 

g/mol 
-2.50 5 3 

22 FF-MAS C₂₉H₄₆O 
1 

Violation 

410.67 

g/mol 
6.53 1 1 
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23 

N,N,N′,N′-

Tetramethylpiperazine-

1,4-dicarboxamide 

C₁₀H₂₀N₄O₂ 
0 

Violation 

228.29 

g/mol 
0.33 2 0 

24 
N,N-

Diethyloctadecanamide 
C₂₂H₄₅N 

1 

Violation 

339.60 

g/mol 
5.17 1 0 

25 

N-[(1R)-1-{5-[(1S)-1-

Formamido-2-(1H-indol-

3-yl)ethyl]-4-(4-

methoxybenzyl)-4H-1,2,4-

triazol-3-yl}-2-(1H-indol-

3-yl)ethyl]-2-

pyridinecarboxamide 

C₃₇H₃₄N₈O₃ 
2 

Violation 

638.72 

g/mol 
2.04 6 4 

26 

N-[1-(3-Fluoro-4-

methoxyphenyl)butyl]-2-

{[(2S)-1-hydroxy-2-

propanyl]amino}-5,8-

dihydropyrido[3,4-

d]pyrimidine-7(6H)-

carboxamide 

C₂₂H₃₀FN₅O₃ 
0 

Violation 

431.50 

g/mol 
1.81 6 3 

27 N-Formylalanine C₄H₇NO₃ 
0 

Violation 

 

117.10 

g/mol 

 

-0.54 3 2 

28 

N-Tridecylglycyl-N-(4-

aminobutyl)glycyl-N₂-

(tetrahydro-2-

furanylmethyl)glycinamid

e 

C₂₈H₅₅N₅O₄ 
1 

Violation 

525.77 

g/mol 
0.88 6 3 

29 

N-{(1S,2S,4R)-1-[(2,3-

Dihydro-1′H-spiro[indene-

1,4′-piperidin]-1′-

ylsulfonyl)methyl]-7,7-

dimethylbicyclo[2.2.1]hept

-2-yl}-Nα,Nα-dimethyl-D-

histidinamide 

C₃₁H₄₅N₅O₃S 
1 

Violation 

567.79 

g/mo 
2.19 6 2 

30 NP-012381 C₂₄H₂₆O₁₀ 
0 

Violation 

474.46 

g/mol 
-0.31 10 5 

31 NP-017152 C₁₃H₂₃NO₂ 
0 

Violation 

225.33 

g/mol 
1.93 2 2 

32 NP-021050 C₃₀H₄₈O₄ 
1 

Violation 

472.70 

g/mo 
4.97 4 3 

33 

N₁-(Dispiro[cyclohexane-

1,3′-[1,2,4,5]tetroxane-

6′,2″-

tricyclo[3.3.1.1³,⁷]decan]-

4-ylmethyl)-N₄-(6-

methoxy-5-phenyl-8-

C₃₈H₄₉N₃O₅ 
2 

Violation 

627.81 

g/mol 
5.08 7 2 
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quinolinyl)-1,4-

pentanediamine 

34 
Tetrahydrofurfuryl methac

rylate 
C₉H₁₄O₃ 

0 

Violation 

170.21 

g/mol 
0.90 3 0 

35 Triazabicyclodecene C₇H₁₃N₃ 
0 

Violation 

139.20 

g/mol 
0.76 1 1 

36 Ursolic acid C₃₀H₄₈O₃ 
1 

Violation 

456.70 

g/mol 
5.82 3 2 

37 
N-Ethyl-N-

methylcathinone 
C₁₂H₁₇NO 

0 

Violation 

191.27 

g/mol 
2.05 2 0 

38 N-cyclooctylurea C₉H₁₈N₂O 
0 

Violation 

170.25 

g/mol 
1.41 1 2 

39 1-tetradecylamine C₁₄H₃₁N 
0 

Violation 

213.40 

g/mol 
3.95 1 1 

40 

1-[3-(4-Benzyl-1-

piperidinyl)propyl]-3(12-

oxo-6,7,8,9,10,12 

hexahydroazepino[2,1-

b]quinazolin-2-yl)thiourea 

C₂₉H₃₇N₅OS 
1 

Violation 

503.70 

g/mol 
4.05 3 2 

41 1,3-Dicyclohexylurea C₁₃H₂₄N₂O 
0 

Violation 

224.34 

g/mol 
2.56 1 2 

42 

1-(3-Hexyl-4-oxo-2-

oxetanyl)-2-tridecanyl N-

{[(2-methyl-2-

propanyl)oxy]carbonyl}le

ucinate 

C₃₃H₆₁NO₆ 
2 

Violation 

567.84 

g/mol 
5.03 6 1 

 

  
(a) (b) 
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(c) 

Figure S1: The core targets based on (a) closenees, (b) betweeness, (c) degree. 

 

 

(a) 
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(b) 

 

(c) 

 

Figure S2: The top 10 enriched terms for biological process (BP) (a), cellular 

component (CC) (b), and molecular function (MF) (c) ranked by p-value  
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18-β-Glycyrrhetinic acid  

 

 
Ursolic acid 

 
Bergenin 

 

Figure S3: The docked conformations of 3 compounds to IL-6. 
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4-(4-methylpiperidin-1-yl)benzoic acid 

 
 

18-β-Glycyrrhetinic acid 

 
FF-MAS 

 

 
 

N-{(1S,2S,4R)-1-[(2,3-Dihydro-1′H-

spiro[indene-1,4′- piperidin]-1′- 

ylsulfonyl)methyl]- 7,7-

dimethylbicyclo[2.2.1]hept-2-yl}- Nα,Nα-

dimethyl-D- histidinamide  

(Comp29) 

 

Figure S4: The docked conformations of 4 compounds to TNF-α. 

 


