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ABSTRACT This paper presents a novel approach to modeling and analyzing chaotic mechanical vibrations in
laser scanning systems. The model explicitly incorporates nonlinear friction using the LuGre friction model.
Experimental validation demonstrates chaotic behavior manifested in irregular velocity fluctuations. Dominant
frequencies and maximum vibration amplitudes were identified under various operational conditions. A
maximum disturbance amplitude of 1.65 rad/s² was observed under the most demanding conditions (25 RPS,
±15° inclination). The proposed model was validated experimentally, providing insights into the interplay of
chaotic vibrations and nonlinear friction. A robust control strategy was introduced to mitigate these effects.
This strategy is supported by Lyapunov stability analysis and computational implementation. The results
demonstrate the effectiveness of the control strategy in reducing the negative effects of friction and chaotic
vibrations. The findings could benefit precision engineering, nonlinear dynamics research, and machine vision.
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INTRODUCTION

Laser scanners are essential tools in industry, providing precise
distance mapping and high-speed image processing capabilities.
These systems are widely applied in tasks such as accurate mea-
surements, part identification, and robotic control (Sergiyenko et al.
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2020). An example is the Technical Vision System (TVS), described
in (Lindner 2021), which integrates a laser scanning system utiliz-
ing the Dynamic Triangulation measurement method to calculate
3D coordinates within its field of view (FOV). The system employs
electric motors to drive both the positioning laser (PL) and the
scanning aperture (SA), enabling mapping across the FOV.

Friction is a complex and nonlinear phenomenon arising from
the contact between surfaces, significantly affecting the position-
ing accuracy of mechanical systems (Gohar and Rahnejat 2012).
Various models have been proposed over time to describe friction,
each with its limitations in capturing all its effects (Canudas de
Wit et al. 1995; Armstrong-Hélouvry et al. 1994; Popov et al. 2010).
Understanding friction is crucial for designing control laws to mit-
igate its undesirable effects (Selivanov and Fridman 2023; Marton
and Lantos 2007). Friction can be modeled as static or dynamic and
is described using algebraic or differential equations (Armstrong-
Hélouvry et al. 1994).

On the other hand, mechanical vibrations are a nonlinear and
complex consequence of motion in mechanical systems (Lazutkin
et al. 2017). These phenomena can arise from various sources,
such as unbalanced forces, external excitations, or interactions be-
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tween components, and they significantly impact the stability and
precision of positioning systems. Vibrations can exhibit chaotic
behavior under certain conditions, further complicating their anal-
ysis and control (Zhao et al. 2010). While studies on nonlinear
vibrations in cantilever beams and structural systems have pro-
vided insights into how stiffness and damping variations influence
dynamic response (Pany and Rao 2004; Pany 2023; Pany and Rao
2002), in laser scanning systems, such vibrations, coupled with
friction effects, can degrade the accuracy of the scanning process
rather than geometric anisotropies, leading to errors in positioning
and measurement (Liu et al. 2021).

This paper focuses on modeling and estimating the chaotic
vibrations observed in laser scanning systems, specifically those
influenced by frictional forces. By leveraging experimental data
from MPU6050 vibration sensors and the open-loop response of the
scanning aperture system, authors propose a comprehensive ap-
proach to analyze and mitigate these effects. The developed model
and its validation through numerical simulations and physical
experimentations aim to provide a robust tool for understanding
and controlling the intricate dynamics of mechanical vibrations in
these applications.

Figure 1 Overall methodology flow chart describing key stages
of the research.

The novelty of this research lies in the explicit modeling and con-
trol of nonlinear chaotic vibrations coupled with frictional effects
in laser scanning actuator subsystems, a topic scarcely addressed in
current literature. While existing studies have explored nonlinear
dynamics or friction individually, there remains a gap in simul-
taneously addressing chaotic vibrational disturbances combined
with nonlinear friction in laser scanning actuator systems. This

paper specifically addresses this gap by integrating the experimen-
tal characterization of chaotic vibrations into a robust nonlinear
control framework, validated by Lyapunov stability analysis and
experimental data.

Figure 1 shows the overall methodology followed in this study,
highlighting the integration of experimental measurements, statis-
tical analysis, physical-mathematical modeling, parameter estima-
tion, validation, and robust control design.

TECHNICAL VISION SYSTEM

Figure 2 Diagram of the Laser Scanner TVS prototype.

The TVS (Figure 2) prototype was fabricated using PLA plastic
filament via 3D printing, selected due to its mechanical properties
that are suitable for lightweight robotic applications. Studies have
reported the following characteristics for PLA:

• Yield Strength: 45 MPa (Al Khawaja et al. 2020).
• Hardness: Ranging from 55 to 76.33 Shore D in non-planar

models (Atef et al. 2022).
• Natural Frequency: Approximately 214 Hz (Kushwaha et al.

2022).

These mechanical properties influence the structural behavior
of the TVS, particularly its response to vibrations, which may affect
coordinate accuracy. Since this prototype can be integrated into
mobile robots or mounted on an optical table, different mechanical
constraints may alter its vibrational response (Sergiyenko et al.
2020; Sepulveda-Valdez et al. 2024; Alaniz-Plata et al. 2025).

Dynamic Triangulation Method
The TVS operation is based on the dynamic triangulation method,
which enables accurate three-dimensional mapping by combining
angularly directed laser beams, reflective surface analysis, and
geometric principles. The system is composed of two main sub-
systems: the Positioning Laser (PL) and the Scanning Aperture
(SA). These components work together to capture and process
the reflected light from obstacles, ultimately calculating the 3D
coordinates of the reflection point with the following equations:

x = a
(

sin(φ) sin(β)

sin(φ + β)

)
(1)

y = a
(

1
2
− cos(φ) sin(β)

sin(φ + β)

)
(2)
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z = a
(

cos(φ) sin(β) tan(γ)
sin(φ + β)

)
(3)

These equations allow determining a specific point in three-
dimensional space (x, y, z) based on the given parameters, such
as the angle φ, the angle β, the angle γ, and the value of a. The
parameter a represents the fixed baseline distance between the Posi-
tioning Laser (PL) and the Scanning Aperture (SA). By varying the
angles β and γ, multiple points in space are generated, allowing for
the visualization of a broader spatial distribution. This approach
is particularly useful for analyzing trajectories, point distributions,
or patterns generated by angular variations in three-dimensional
systems.

Positioning Laser
The Positioning Laser subsystem (Figure 3) is responsible for ac-
curately directing a laser beam to various points within the envi-
ronment. It is composed of four main components: a laser emitter,
two 45-degree inclined mirrors —one fixed and one movable—
and two stepper motors.

Figure 3 Diagram of the Positioning laser (PL).

The operation begins with the laser emitter generating a laser
beam, which is initially directed toward a fixed 45-degree inclined
mirror. This mirror redirects the beam orthogonally toward a
second rotating mirror. The rotating mirror, mounted on a movable
axis, dynamically adjusts the direction of the laser beam with the
aid of one of the stepper motors. This motor enables the mirror to
be precisely oriented in small increments of angularity, controlling
the angle φ.

Furthermore, the second stepper motor controls the movement
of the main rod in the TVS, adjusting the angle γ. Together, these
angles, φ and γ, determine the location of the laser beam within
the FOV, allowing the subsystem to target specific points in the
environment as needed.

Scanning Aperture
The Scanning Aperture (Figure 4) is the main component of the
TVS, designed to capture and process laser beams reflected off
surfaces in the environment. Its key function is to determine the
reflection angle, which is used to calculate the three-dimensional
coordinates of the reflected points. This system includes a 45° ro-
tating mirror that redirects the beams toward a lens array, which
focuses the light onto an optical sensor. The Scanning Aperture
subsystem integrates a DC motor as an actuator, which converts
electrical energy into mechanical motion to rotate the 45° mirror.

This sensor detects the reflected beams and confirms the presence
of obstacles, while a zero-position sensor synchronizes these detec-
tions with the angular position of the mirror, generating reference
pulses during each 360° rotation. The incidence angle β is esti-
mated using the pulses recorded by both sensors, allowing the
integration of geometric and temporal information. This design,
based on sensor synchronization and the dynamic control of the
rotating mirror, ensures quasi-real-time measurements.

Figure 4 Diagram of the Scanning aperture (SA) subsystem.

MODEL DEVELOPMENT

To address the problem of scanning velocity stability in laser scan-
ning systems, authors consider the dynamics of the DC motor
responsible for the scanning aperture. The proposed model inte-
grates both electrical and mechanical behaviors, incorporating the
influence of friction and mechanical vibrations.

General Dynamic Model
To address disturbances in the scanning process, the dynamics of
the electric drive system can be generalized as:

ẋ(t) = Ax(t) + Bu(t) + Cρ(t) (4)

y(t) = Dx(t) (5)

where: In this formulation, x(t) ∈ Rn is the state vector of
dimension n, which includes variables such as angular position,
velocity, and current. The control input vector of dimension m
is denoted as u(t) ∈ Rm, while the output vector of dimension
l, y(t) ∈ Rl , represents measurable quantities like the scanning
velocity or position. The matrices A, B, C, and D define the system
dynamics and coupling terms. The term ρ(t) ∈ Rp accounts for
external disturbances vector of dimension p, which are assumed to
be unknown but bounded. This general description provides the
base for analyzing faults and disturbances in the scanning aperture
system, enabling robust control.

DC Motor Model
The DC motor drives the scanning aperture and is modeled by
the following state-space representation, derived from its electrical
and mechanical characteristics:

ẋ1(t) = x2(t) (6)

ẋ2(t) = − kv

J
x2(t) +

kM
J

x3(t) (7)
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ẋ3(t) = − kb
L

x2(t)−
R
L

x3(t) +
ku

L
u(t) (8)

In this model, x1(t) represents the angular position of the mo-
tor output shaft, while x2(t) denotes the angular velocity at the
same point. The variable x3(t) corresponds to the current flowing
through the motor windings, and u(t) represents the input voltage
applied to the motor. The parameter J is the combined moment
of inertia of the motor and the scanning aperture assembly, which
characterizes the system’s resistance to changes in rotational speed.
The term kv is the viscous friction coefficient, reflecting the losses
due to mechanical friction, and kM is the torque constant, which
relates the motor’s torque to the current. The back electromotive
force (EMF) constant, kb, links the angular velocity to the induced
voltage in the motor windings. Additionally, R and L are the arma-
ture resistance and inductance, respectively, defining the electrical
dynamics of the motor, while ku represents the amplification factor
of the input voltage.

Incorporating Nonlinear Effects of Vibrations and Friction
Friction and mechanical vibrations are integral to the system dy-
namics. Vibrations are modeled as a nonlinear perturbation, po-
tentially exhibiting chaotic behavior, which couples with frictional
forces in the following manner:

It is assumed that the motor is influenced by mechanical vibra-
tions, which lead to variations in the velocity of the motor output
shaft. These variations, caused by the vibrational disturbances, can
be introduced into the model (4) through an unknown function
∆v(t), resulting in the following system of equations:

ẋ1(t) = x2(t) (9)

ẋ2(t) = −λ1x2(t) + λ2x3(t)− λ3τf (t)− ∆v(t) (10)

ẋ3(t) = −λ4x2(t)− λ5x3(t) + λ6u(t) (11)

Table 1 presents the mathematical expressions used to define the
system parameters λ1 to λ6.The numerical values of the physical
parameters involved in these expressions were provided in the
’Characterization and Parameter Estimation’ subsection.

■ Table 1 Mathematical Expressions for System Parameters

Parameter Mathematical Expression

λ1 kv/J

λ2 kM/J

λ3 1/J

λ4 kb/L

λ5 R/L

λ6 ku/L

where:

• τf (t): Nonlinear frictional torque, modeled as a nonlinear
function of velocity and position.

• ∆v(t): Perturbation due to mechanical vibrations, derived
from experimental data using the MPU6050 sensor.

In this model of the laser scanning system, the function ∆v(t)
represents the influence of mechanical vibrations, which affects
the stability of the electric drive’s rotation speed. This instability
directly impacts the accuracy of the scanning process. The main
objective of the research is to estimate ∆v(t) and, if its value ex-
ceeds a predefined threshold, to account for it in signal processing
to estimate the effects of vibrational disturbances on system per-
formance. These vibrations are inherently random, as captured
experimentally using the MPU6050 sensor. Therefore, authors
model ∆v(t) as:

∆v(t) ≈ σv dW(t), (12)

where:

• σv: The amplitude of the stochastic noise, estimated experi-
mentally as the standard deviation of the captured data.

• dW(t): The increment of a Wiener process, representing the
random nature of the vibrational disturbances.

In practice, the experimentally captured data serves as a direct
approximation of ∆v(t), capturing both the amplitude and the
randomness of the mechanical vibrations (Kumičák 2004; Banerjee
2021). Therefore, the vibrations measured at the motor base, trans-
mitted to the shaft, induce an additional torque in the mechanical
dynamics. Using the experimentally obtained angular acceleration
of the vibration, this disturbance torque can be represented as:

τv = J∆v(t) (13)

where τv is the combined moment of inertia of the motor and
the scanning aperture assembly. The modeled vibration term τv is
subject to the upper bound:

|τv| ≤ τmax
v (14)

where the value τmax
v = J∆max

v denotes the maximum positive
value of the modeled vibration torque.

The LuGre friction model, originally proposed in (Canudas de
Wit et al. 1995), provides an effective framework for approximating
the nonlinear dynamics of friction. It assumes the presence of
micro-imperfections on the contact surfaces, which are modeled
as bristle-like deflections to represent the distributed deformation
of asperities. While these micro-imperfections are not directly
measured, their existence is inferred and incorporated into the
model as a deterministic approximation. This approach has been
widely adopted in various applications, including DC motor sys-
tems (Núñez-López et al. 2023; Wang et al. 2016; Freidovich et al.
2009).

The nonlinear friction torque is described by:

τf (ω) = σ0

(
1 − σ1

|ω|
g(ω)

)
z (15)

In this equation, the internal variable z represents the average
deflection of the bristle-like elements at the contact surface. The
parameter σ0 corresponds to the bristle stiffness coefficient, en-
capsulating the elastic behavior of the asperities, while σ1 reflects
the bristle damping coefficient, accounting for energy dissipation
during frictional interactions (Canudas de Wit et al. 1995).

The transition from static to dynamic friction, a phenomenon
critical to capturing real-world behavior, is modeled through the
Stribeck effect (Na et al. 2018). This is expressed as:
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g(ω) = τc + (τs − τc)e−(ω/vo)
2

(16)

Here, τc denotes the Coulomb friction torque, which is indepen-
dent of velocity, while τs represents the stiction torque, describing
the peak force required to overcome static friction. The parameter
vo defines the Stribeck velocity threshold.

The LuGre friction model ensures symmetry about the origin
(Canudas de Wit et al. 1995) and permits adhering to the following
upper bound:

|τf (ω)| ≤ τs (17)

where τs represents the maximum static friction torque, serving
as an upper limit for the nonlinear frictional behavior. In previous
studies (Wang et al. 2016; Freidovich et al. 2009), this model has
been parameterized to suit various applications, highlighting its
adaptability in DC motor systems.

Based on experimental data and a review of relevant literature,
the authors consider this formulation to provide a reliable theo-
retical framework. The subsequent section will present the model
validation for the specific system under study.

MODEL VALIDATION AND REAL-TIME MEASUREMENT OF
VIBRATIONS IN THE TVS LASER SCANNING

Experimental validation of the proposed model was performed
using the open-loop response and data from MPU6050 vibration
sensors, installed on the aperture and positioner (see Fig.5) of the
laser scanning system. The results demonstrate the model’s capa-
bility to accurately predict the dynamics of the scanning system
under various operating conditions.

Figure 5 MPU6050 sensor placement on Positioning Laser (PL)
and Scanning Aperture (SA) subsystems for vibration data collec-
tion.

Prior to experimental data collection, the MPU6050 sensors un-
derwent a standard calibration process to ensure accurate measure-
ment of vibration data. This calibration involved placing each sen-
sor on a flat, vibration-free surface to record baseline (zero-motion)
readings, which were then used to offset sensor biases. Subse-
quently, the sensors were rotated and positioned along known
orientations (X, Y, and Z axes) to verify and adjust measurement
accuracy for angular velocity and linear acceleration. After this
calibration, the sensors were securely mounted on the TVS subsys-
tems to avoid measurement deviations caused by relative motion
or misalignment during experiments.

Design of Experiment A
To accurately measure mechanical vibrations at critical points of
the TVS laser scanning prototype, two MPU6050 modules were
utilized. These modules measure linear acceleration and angular
velocity in three dimensions: X, Y, and Z. Each module, equipped
with an accelerometer and a gyroscope, was strategically placed
at key locations of the prototype: the PL and the SA (see Figure 5).
These locations were selected because they contain optoelectronic
elements that are susceptible to mechanical vibrations. Care was
taken to ensure that both modules were precisely aligned along
the X-axis, which is the primary axis of rotation for the scanning
aperture’s DC motor. The results, summarized in Fig. 6, provide a
foundation for further refinement of the control system.

Figure 6 Maximum amplitudes of vibration data (angular accel-
eration around the X-axis) measured during rotational motion at
various angular positions of the main rod of TVS prototype.

Once the sensors were calibrated, they were placed in a fixed
position, as shown in Figure 5, from which data collection began.
For each angular position, 3000 data points (1000 per axis) were
captured over a period of 2 minutes. This procedure was repeated,
incrementally increasing the angular position by one degree at a
time, until reaching a final position of 90 degrees. By analyzing the
data across different angular positions, the dominant frequencies
of the vibrations for the SA subsystem were obtained for each
rotational speed (RPS) value. These results are summarized in
Table 2. Deviations from this trend, such as those around 30 Hz,
were not considered in the model, as they likely represent external
resonances or higher-order system dynamics beyond the scope of
this study.

■ Table 2 Dominant Frequencies and Corresponding Spectral
Amplitudes Captured from Vibration Measurements at Different
Rotational Speeds (RPS) for the Scanning Aperture Subsystem

RPS Dominant Frequency Spectral Amplitude

(Hz) (Hz) (rad/s2)

15 15.4667 0.0234

20 19.8667 0.0851

25 24.0163 0.2368
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Design of Experiment B

In the second experiment, the angles γ and φ were varied within
the FOV (as shown in Figures 7, 8 and 9) to analyze their effect
on the spatial components, evaluating the system’s sensitivity and
how vibrations impact the stability and precision of the trajectories.
This analysis aims to identify mechanical error sources and their
interaction with angular parameters. Specifically, the following
angular values were used as reference: For γ, the values were γ1 =
15◦, γ0 = 0◦, and γ2 = −15◦. For φ, the values were φ1 = 40◦,
φ0 = 60◦, and φ2 = 80◦. These values facilitated a systematic
evaluation of the interaction between angular parameters and the
mechanical behavior of the system under varying conditions.

Figure 7 Laser scanning denoting selected targets.

Figure 8 Side view of the TVS prototype denoting selected γ
values.

The heat map in Figure 10 illustrates (by color intensity) the
maximum vibration amplitude obtained (rad/s2) observed in each
test for the PL and SA subsystems under varying scanning ve-
locities (RPS) and main inclinations of the rod (γ) denoting as
red the highest value. The rows represent different values of γ
(−15◦, 0◦, 15◦), while the columns distinguish between PL and SA
subsystems at scanning velocities of 15, 20, and 25 RPS. Higher

Figure 9 Top view of the TVS prototype denoting selected φ
values.

amplitudes, marked in warmer colors, indicate stronger vibra-
tion effects, which can be correlated with increased inclination or
scanning speed. Based on the experimental results, the maximum
disturbance amplitude captured was 1.65 rad/s2, observed under
the highest scanning velocity and inclination conditions. These
findings highlight the sensitivity of the system to mechanical vi-
brations under specific operational conditions.

Figure 10 Heatmap depicting maximum vibration amplitudes
(in rad/s2) for PL and SA subsystems, varying main-rod inclina-
tion (γ) and scanning velocities (15, 20, 25 RPS). Red indicates
higher vibration levels.

By comparing the obtained spectral amplitudes (Table 2) with
the maximum amplitudes obtained from the perturbations cap-
tured by the sensor (summarized in Figures 10 and 11), it is evident
that the spectral amplitudes are significantly smaller. Additionally,
as shown in Figure 6, it is evident that, regardless of the value of γ,
there is no way to establish a linear or deterministic model for the
mechanical vibrations.

This observation suggests that the deterministic component of
the vibrational model is negligible, further supporting the validity
of the proposed stochastic model for the chaotic mechanical per-
turbations, as defined in Equation (12). Consequently, this justifies
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■ Table 3 Estimated Parameters for SA

Exp J kv τc τs σ0 σ1 vo

Kg · m2 N·m·s
rad N · m N · m N·m

rad
N·m·s

rad rad/s

Exp1 3.084 × 10−5 1.1881 × 10−2 1.7257 × 10−7 3.6951 × 10−4 4.2880 × 10−4 7.7965 × 10−6 0.0290

Exp2 6.286 × 10−5 1.1831 × 10−2 1.6614 × 10−7 3.8451 × 10−4 4.0718 × 10−4 8.1163 × 10−6 0.0284

Exp3 7.561 × 10−5 1.2627 × 10−2 1.7172 × 10−7 3.6763 × 10−4 4.2464 × 10−4 8.0763 × 10−6 0.0293

Exp4 6.298 × 10−5 1.9373 × 10−2 1.6520 × 10−7 3.8187 × 10−4 4.0889 × 10−4 8.1963 × 10−6 0.0285

Exp5 6.123 × 10−5 1.9153 × 10−2 1.7274 × 10−7 3.7138 × 10−4 4.2131 × 10−4 7.8207 × 10−6 0.0291

Exp6 6.378 × 10−5 1.9080 × 10−2 1.6632 × 10−7 3.8379 × 10−4 4.1005 × 10−4 8.1402 × 10−6 0.0284

Exp7 6.727 × 10−5 2.7189 × 10−2 1.7222 × 10−7 3.6650 × 10−4 4.2671 × 10−4 8.1963 × 10−6 0.0292

Exp8 6.755 × 10−5 2.6774 × 10−2 1.6580 × 10−7 3.8063 × 10−4 4.0718 × 10−4 8.1963 × 10−6 0.0283

Exp9 6.775 × 10−5 2.7780 × 10−2 1.7292 × 10−7 3.6837 × 10−4 4.2255 × 10−4 7.8765 × 10−6 0.0293

the exclusion of any deterministic term in the formulation of ∆v(t).

Figure 11 3D Surface representation of maximum vibration am-
plitudes measured in SA under different conditions of laser posi-
tioning.

The selection of experimental parameters was constrained by
system limitations. Higher scanning velocities increased outliers
in sensor data, reducing reliability, while lower velocities were im-
practical for real-time navigation and laser scanning. The chosen
values balance accuracy and feasibility, ensuring robust data ac-
quisition. Similarly, angles γ and ϕ were set based on field-of-view
constraints, detailed in (Alaniz-Plata et al. 2025; Sepulveda-Valdez
et al. 2024).

Characterization and Parameter Estimation
Parameter estimation refers to the process of identifying the dy-
namical system’s constants by minimizing the discrepancy be-
tween experimental data and the mathematical model’s predic-
tions. Depending on the nature of the parameters and the available
data, this can involve direct experimental measurement, statisti-
cal analysis, or optimization algorithms. The overall approach
typically consists of three main steps:

1. Mathematical Modeling: The system’s dynamics are de-
scribed using mathematical equations that characterize the
behavior of the system.

2. Experimentation: Measurements are obtained from the real
system to capture its dynamic behavior.

3. Data Preparation: The collected data are refined to match the
duration of the simulation time and ensure that the experi-
ment starts at t = 0.

According to the recorded experimental data, the stochas-
tic noise parameter σv can be parameterized using the max-
imum (0.8069 rad/s2), average (0.3381 rad/s2), or minimum
(0.0838 rad/s2) amplitudes of the observed perturbations. These
alternatives provide flexibility for modeling ∆v(t), where the max-
imum ensures an upper-bound estimation, the average represents
typical amplitudes, and the minimum reflects an optimistic sce-
nario. It is important to note that this parameterization of chaotic
vibrations was based solely on experimental data without relying
on an optimization algorithm.

In this study, the parameters associated with frictional effects
were estimated using MATLAB’s Bounded Design Optimization
Tool. Similar to (Núñez-López et al. 2023), MATLAB’s Parameter
Estimation app from the Simulink Design Optimization toolbox
was employed, using a bounded nonlinear least-squares algorithm
to estimate parameters within predefined limits. Parameter esti-
mation was completed once the optimization tool minimized the
error between the model simulation results and the experimental
observations (Thenozhi et al. 2022).
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After conducting a series of experiments at the nine reference
points highlighted in Figure 7, the corresponding parameters were
estimated and are presented in Table 3.

Throughout the nine experiments, the estimated values of kM
remained consistently close to 8.526 × 10−3 N · m/A, demonstrat-
ing a stable torque constant for the motor under varying condi-
tions. Notice that the authors consider numerically kM = kb due to
the fact that the motor model assumes no electromagnetic energy
losses and that SI units are used (V · s/rad for kb). Furthermore,
the parameters measured directly for the tested motor were the
resistance of the DC armature R = 11.36 Ω and the inductance of
the armature L = 1.332 × 10−3 H. These values are consistent with
the motor’s electrical dynamics, which were validated during the
parameter estimation process.

CONTROL STRATEGY TO MITIGATE MODELED NONLIN-
EAR EFFECTS

To mitigate the modeled nonlinear effects, the control input u(t)
is computed using a robust nonlinear control law derived from
Lyapunov stability criteria. This control law, explicitly integrated
into Equation (11) of the system model, is designed to directly com-
pensate the nonlinear friction torque τf (t) (modeled by the LuGre
model) and the stochastic perturbations ∆v(t). The robust gain Gr
used in the control formulation was specifically selected based on
the maximum observed friction and vibration values, ensuring that
the controller robustly counteracts these disturbances. Achieving
stability of the actuator velocity is crucial for accurately determin-
ing the incidence angle β, necessary for the precise calculation of
3D coordinates using equations (1), (2), and (3).

Control Law Formulation
To perform a robust nonlinear proportional derivative control, the
proposed control law to decrease the negative effect of vibrations
is defined as follows:

u = −Gp tanh(ϵ)− Gd tanh(ϵ̇)− Gr tanh(G0ϵ) (18)

where:

• u is the control input.
• ϵ and ϵ̇ are the tracking error and its time derivative, respec-

tively.
• Gp, Gd, Gr are the positive proportional, derivative, and robust

gains, respectively.
• G0 is a sharpness factor enhancing the robustness aspect by

strengthening the response as the error ϵ increases.

Mathematically, tanh(x) saturates to ±1 as x → ±∞, which
means:

|u| ≤ Gp + Gd + Gr (19)

ensuring that the maximum possible control input magnitude
does not exceed the sum of the gains.

In this formulation, the positioning error ϵ is defined as:

ϵ = ϕ − ϕr (20)

where ϕ is the actual position, and ϕr is a positive constant
reference angular position for the DC motor’s shaft of the SA.

As depicted in Figure 12, the reference angle ϕr is compared
with the actual angle ϕ, generating an error ϵ. The robust controller
then computes the control input u to regulate the scanning aper-
ture’s velocity by counteracting the nonlinear friction torque τf (t)

Figure 12 Block diagram illustrating the robust control strategy
integrated into the system’s model.

and the stochastic vibration term ∆v(t). This approach ensures that
both position and velocity remain bounded, thereby guaranteeing
stable operation of the scanning aperture for accurate incidence
angle determination.

Lyapunov Stability Analysis
Upon substituting the proposed control law (18) into the motion
system’s dynamic equation (10), the closed-loop mechanical dy-
namics are described by:

Jω̇ =− k̃uGp tanh(ϵ)− k̃uGd tanh(ϵ̇)

− k̃uGr tanh(G0ϵ)− kvω − τf − τv
(21)

where J is the system inertia, kv is the viscous damping coef-
ficient, τf , and τv represent the nonlinear friction and vibration
torques, respectively. Finally, k̃u (torque-to-control gain) directly
scales the generated torque, simplifying the analysis due to the
significantly smaller electrical time constant compared to the me-
chanical time constant, as observed in similar systems according
to the literature (Ogata 2020; Kuczmann 2024).

The proposed control given by (18) ensures global asymptotic
positioning stability provided the control gains are chosen to satisfy
the constraint given by (19) and the following sufficient conditions:

Gp >
Gd
2

(22)

Gr ≥
τs + τv

k̃u
(23)

To facilitate subsequent analysis, a filtered positioning signal is
defined as follows, similar to (Núñez-López et al. 2021) and (Zheng
et al. 2019):

ξ = ϵ̇ + ηtanh(ϵ) (24)

where η is an arbitrarily small positive constant that satisfies
the following condition:

0 < η <
kv

J
(25)

The open-loop filtered error dynamics are obtained by taking
the time derivative of (24):

ξ̇ = Jω̇ + ηsech2(ϵ)ϵ̇ (26)

where sech(·) is the standard hyperbolic secant function. Mul-
tiplying both sides of (26) by J and noting that ϵ̈ = ω̇ and ϵ̇ = ω
for position control, the equation becomes:

Jξ̇ = Jω̇ + Jηsech2(ϵ)ω (27)

Substituting Jω̇ from (21) into (27), the resulting expression is:
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Jω̇ =− k̃uGp tanh(ϵ)− k̃uGd tanh(ϵ̇)

− k̃uGr tanh(G0ϵ)− [kv − Jηsech2(ϵ)]ω

− τf − τv

(28)

The stability proof proceeds using Lyapunov’s direct method
(Slotine et al. 1991). For this purpose, the Lyapunov function candi-
date is proposed as:

V =
1
2

J̃ξ2 + k̃u[Gp + Gr]
∫ ϵ

0
tanh(σ) dσ

+ η
∫ ϵ

0
[kv − η Jsech2(σ)]tanh(σ) dσ

(29)

From the property of the standard hyperbolic secant function
and the condition (25) on η, it has kv − η Jsech2(σ) ≥ kv − η J ≥ 0.
Together with the fact that tanh(ϵ)ϵ ≥ 0 for all ϵ, and tanh(ϵ)ϵ = 0
only for ϵ = 0 it is straightforward to verify that the integral terms
are positive and/or semi-positive definite with respect to ϵ.

Taking the time derivative of V along (29) leads to

V̇ =Jξξ̇ + k̃uGptanh(ϵ)ϵ̇ + k̃uGrtanh(ϵ)ϵ̇

+ η[kv − η Jsech2(ϵ)]tanh(ϵ)ϵ̇
(30)

After substituting Jξ̇ from (28) into (30) using the fact that ϵ̇ =
ωo for position control, recalling the fact that −τf (ω)ω ≤ 0 from
(15) (due to the symmetry about the origin of the model), and
sech2(ϵ) ≤ 1 from the property of the hyperbolic secant function,
the upper bound for V̇ is

V̇ ≤− k̃uGdtanh(ω)ω − k̃uGrtanh(G0ϵ)ω − [kv − η J]ω2

− τvω − ηk̃uGptanh2(ϵ)− ηk̃uGdtanh(ω)tanh(ϵ)

− ηk̃uGrtanh(G0ϵ)tanh(ϵ)− ητf tanh(ϵ)

− ητvtanh(ϵ) + k̃uGrtanh(ϵ)ω

(31)

From the trigonometric property of the hyperbolic tangent func-
tion, the following inequality is defined:

− ηk̃uGdtanh(ω)tanh(ϵ) ≤ ηk̃uGd
2

[tanh2(ω) + tanh2(ϵ)] (32)

Using a proposed additional gain condition for G0 to assure the
global asymptotic stability, leading to if 1 ≤ G0, hence tanh(ϵ) ≤
tanh(G0ϵ), and applying the fact tanh(ω)ω ≥ tanh2(ω) from the
standard hyperbolic tangent function to (31) leads to:

V̇ ≤− k̃uGd

[
1 − η

2

]
tanh2(ω)− [kv − η J]ω2 − τmax

v |ω|

− η

[
k̃uGp −

ηk̃uGd
2

+ k̃uGr − τs − τmax
v

]
tanh2(ϵ)

(33)

where are used the inequalities (14), (17), (32) and |tan(ϵ)| ≥
tanh2(ϵ) from the property of the hyperbolic tangent function.

By the conditions on control gains (22), (23) and (25), the final
upper bound for V̇ can be written as

V̇ ≤ −ρ1tanh2(ω)− ρ2ω2 − ρ3|ω| − ρ4tanh2(ϵ) (34)

where ρ1, ρ2, ρ3, and ρ4 are some positive constants.

The detailed derivation demonstrates that V̇ is negative definite.
By applying Barbalat’s lemma (Slotine et al. 1991), the authors con-
clude that limt→∞ tanh2(ω) = 0, limt→∞ ω2 = 0, limt→∞ |ω| = 0,
and limt=∞ tanh2(ϵ) = 0, thereby ensuring global asymptotic sta-
bility for any initial states (ϕ(0), ω(0)).

RESULTS AND DISCUSSION

The purpose of this analysis is to evaluate the effect of mechanical
vibrations on the precision of the measured coordinates. Vibra-
tional disturbances can introduce variability in the system, po-
tentially affecting the stability of the scanning process and the
accuracy of the spatial measurements. By examining the standard
deviations, the authors aim to quantify how the vibrational effects
propagate across the different coordinate components.

Figure 13 depicts the open-loop velocity response under mul-
tiple operating conditions. The signal exhibits irregular, abrupt,
non-periodic fluctuations that suggest a complex, chaotic behavior
induced by the synergy of nonlinear friction (modeled by the Lu-
Gre approach) and random perturbations, which are represented
as stochastic mechanical vibrations in this study. Such chaotic
mechanical dynamics negatively affect the system’s accuracy be-
cause the scanning aperture must maintain as stable a velocity as
possible to accurately determine the incidence angle β, which is
essential for calculating the 3D coordinates of objects within the
field of view using equations (1), (2) and (3). Stochastic angular
velocity fluctuations demonstrate a complex dynamic behavior
that requires robust control to mitigate performance degradation.

Figure 13 Angular velocity in RPS of the actuator versus time
under various operating conditions.

Table 4 presents the experimental uncertainties σx, σy, and σz for
the coordinates x, y, and z, respectively, under different inclination
angles γ. These uncertainties represent the standard deviation of
the coordinate errors, derived from experimental data collected
under varying vibrational conditions. From the results in Table 4,
it is observed that σx and σz show a slight decrease as the inclina-
tion γ changes from −15◦ to 15◦. Specifically, σx decreases from
2.88056mm to 2.58106mm, while σz decreases from 2.00934mm to
1.71697mm. In contrast, σy remains consistently smaller in magni-
tude, with values close to 0.7mm, except for a notable reduction to
1.6 × 10−2mm when γ = 0◦. As previously established graphically,
a numeric relation exists between inclination and vibration char-
acteristics (as shown in Figure 11). This allows the conclusion of
the empirical analysis of vibration influence on the measurement
uncertainty in a particular case of the presented laser scanner.
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These findings suggest that the x- and z-components are mod-
erately affected by changes in inclination, while the y-component
exhibits a minimal sensitivity to the vibrational disturbances.

■ Table 4 Average Experimental Uncertainty (in mm)

γ (Inclination) σx (mm) σy (mm) σz (mm)

−15◦ 2.88 0.77 2.01

0◦ 2.68 0.016 1.82

15◦ 2.58 0.69 1.72

The analysis of the proposed controller’s performance was fo-
cused exclusively on the x-axis, as detailed in the Model Valida-
tion section. This axis was selected due to its primary role in the
scanning aperture’s rotational dynamics. The computational im-
plementation of the robust control strategy was evaluated based
on its ability to mitigate the nonlinear effects of mechanical vibra-
tions and friction. The robust gain, Gr, was particularly chosen
to ensure stability under the maximum observed vibrational and
frictional disturbances, aligning the control parameters with the
experimentally captured data.

To assess the controller’s performance under varying gain con-
figurations, metrics such as settling time and maximum overshoot
were evaluated for each positioning cycle across a range of angu-
lar positions. The parameter ranges employed in these tests are
presented in Table 5. The resulting data enabled the identification
of an optimal set of control gains that minimized both settling
time and overshoot while maintainingthe stable operation of the
scanning aperture.

■ Table 5 Ranges of Proportional, Derivative, Robust Gains, and
Reference Positions Employed during the Robust Control Law Evalu-
ation

Parameter Range of Values

Proportional Gain (Gp) 1.25, 3.78, 6.31

Derivative Gain (Gd) 0.5, 3.11, 8.33

Robust Gain (Gr) 16.33, 18.89, 21.44

Sharpness Factor (G0) 10, 100, 150

Reference Positions (degrees) 5, 20, 25, 30, 35, 40, 45

The proposed nonlinear control strategy was assessed by mea-
suring the average settling time, maximum overshoot, and final
positioning accuracy across various target positions. These results
were summarized in and are presented in Table 6.

In Fig. 14, the phase portrait depicts the relationship between
angular position (in radians) and angular velocity (in rad/s) for
distinct sets of controller gains prior to stabilization at a reference
position of 5 degrees. Fig. 15 illustrates the oscillatory behavior of
the system’s angular position before achieving the desired refer-
ence, while Fig. 16 highlights the oscillations in angular velocity
during the same interval. The black and red curves exhibit greater
oscillatory behavior compared to the blue curve, underscoring

the stabilizing effect of the gain G0. Specifically, the configuration
with G0 = 10 (blue curve) achieved the smoothest response and
the least overshoot, while the setup with G0 = 150 (black curve)
demonstrated the most pronounced oscillations and the longest
stabilization time.

■ Table 6 Summary of Results Obtained under Varying Reference
Positions for the Robust Nonlinear Controller

Ref. Position Average Settling
Time

Average Maximum
Overshoot

5 0.019139 4.95

20 0.036022 19.98

25 0.041547 24.93

30 0.044959 29.97

35 0.049019 34.92

40 0.053001 39.96

45 0.056768 45.00

Figure 14 Phase portrait of system’s angular position and veloc-
ity for different controller constants.

Figure 15 System’s position response for different controller
constants.
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Figure 16 System’s velocity response for different controller
constants.

The results highlight the effectiveness of the proposed control
strategy in maintaining system stability while minimizing the set-
tling time and maximum overshoot. By leveraging the robust gain
Gr calibrated to the upper limits of the observed disturbances, the
controller demonstrated the ability to ensure smooth operation
even under varying dynamic conditions. These findings validate
the computational implementation of the control strategy, paving
the way for future physical testing and refinement. The Lyapunov
stability analysis confirmed the global asymptotic stability of the
system, providing theoretical guarantees for the controller’s ro-
bustness under bounded disturbances.

CONCLUSION

This work developed a physical-mathematical model to describe
the mechanical vibrations and nonlinear friction effects in laser
scanning systems, integrating both deterministic and stochastic
terms that reflect their chaotic nature. Experimental measurements
obtained using MPU6050 sensors validated the model, highlight-
ing the significance of random perturbations and their impact on
system dynamics.

The findings presented here align with prior studies on non-
linear dynamics in precision systems, particularly regarding the
LuGre friction model’s effectiveness in capturing nonlinear friction
phenomena, as demonstrated in (Canudas de Wit et al. 1995; Wang
et al. 2016; Freidovich et al. 2009). However, the distinctive contribu-
tion of this work lies in explicitly characterizing and incorporating
the chaotic mechanical vibrations measured experimentally into a
robust nonlinear control framework. The present study focused
on modeling the nonlinear vibrational response of the TVS within
typical operational conditions (scanning speeds below 25 RPS) to
ensure data acquisition while maintaining realistic performance
constraints. Chaotic behavior was explicitly confirmed experimen-
tally through irregular velocity fluctuations at the actuator shaft,
with disturbances reaching up to 1.65 rad/s² under demanding
conditions (25 RPS, ±15° inclination).

The proposed model not only provides a tool to analyze and
understand the inherent complexities of friction and vibration in
mechanical systems but also opens opportunities for designing
robust control strategies. In this regard, a nonlinear controller
based on hyperbolic functions was implemented computationally
to mitigate the effects of chaotic perturbations and ensure opera-
tional stability. After applying the proposed methodology in the
computational implementation, the visualized results suggest a
reduction in the negative influence of chaotic signals, leading to a
more stable simulated system response. The results demonstrate

the effectiveness of this approach, showcasing its potential for
high-precision system applications. Future work will aim to im-
plement the proposed control strategy on a physical TVS system
prototype, enabling the validation of simulation outcomes under
real-world operating conditions.

Limitations of the present study include assumptions made in
modeling vibrations as purely stochastic processes, potentially ne-
glecting minor deterministic resonance effects that might influence
system behavior. Additionally, the robust control strategy was
validated through computational simulations, and its effectiveness
under practical implementation constraints, such as actuator satu-
ration or sensor noise, remains to be experimentally verified. The
typical operational conditions of TVS to minimize the occurrence of
outliers were studied according to previous research (Alaniz-Plata
et al. 2025; Sepulveda-Valdez et al. 2024; Sergiyenko et al. 2024).
However, further investigation is needed to analyze the effect of
material properties on vibrational stability at higher speeds.

APPENDIX

Abbreviations and Symbols

■ Table 7 Most Relevant Symbols Used in the Manuscript.

Symbol Description

φ, β, γ Angles in Dynamic Triangulation Method

a Fixed distance between PL and SA subsystems

R, L DC motor armature resistance and inductance

J Moment of inertia of DC motor and SA assembly

kM, kb DC motor torque constant and back-EMF constant

kv Viscous damping friction coefficient of DC motor

τs,τc Static friction torque and Coulomb friction torque

σ0, σ1 LuGre friction stiffness and damping coefficients

vo Stribeck velocity threshold in friction model

σv Standard deviation of experimentally measured
stochastic vibration disturbance

Gp, Gd, Gr Proportional, derivative, and robust control gains

G0 Sharpness factor enhancing robustness of controller

∆v(t) Stochastic perturbation due to mechanical vibrations

dW(t) Increment of Wiener process

u(t) Control input voltage to DC motor

ω(t) Angular velocity of DC motor shaft

τf (t) Nonlinear friction torque described by LuGre model

τv(t) Torque induced by mechanical vibrations
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■ Table 8 Most Relevant Abbreviations Used in the Manuscript.

Abbreviation Description

TVS Technical Vision System

PL Positioning Laser

SA Scanning Aperture

DOF Degree of Freedom

FOV Field of View

MPU6050 Inertial Measurement Unit Sensor

RPS Revolutions per Second
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