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Abstract: High air temperatures caused by climate change affect various aspects of daily life, including the livestock sector.
In dairy farming, heat stress in cows emerges as a major issue, reducing both animal health and milk productivity. To mitigate
these effects, farmers commonly use barn cooling and climate control systems. However, these traditional systems lack
intelligent decision-making mechanisms. This study focuses on the integration of an Al-powered image and data processing
model into existing cooling systems to improve efficiency and establish a sustainable infrastructure. Through the use of artificial
intelligence, the cooling systems are expected to operate more sensitively and efficiently, adapting to changing environmental
conditions while minimizing resource usage. The impact of cooling systems on livestock productivity is analyzed, and
improvements are proposed for more effective use. The integration of image processing and Al-based models is evaluated in
terms of operational efficiency. Reducing resource usage through smart systems is emphasized as a key advantage. The system
aims to ensure animal welfare and health with minimal resource consumption, by automating climate control systems and
enabling intelligent decision-making processes. As a result, operational costs are expected to decrease and system stability to
increase. Additionally, the study discusses the potential benefits of a real-time system for operational management. Real-time
monitoring of animal behavior and automated system responses are explored for their potential to improve farm management.
Experimental results showed that the proposed system achieved an average response time of 1.8 seconds, a 28% reduction in
water consumption compared to traditional systems, and a cow detection accuracy of 91.2% mAP, confirming its effectiveness
in real-time barn environments.

Key words: Artificial intelligence, image processing, smart systems, livestock farming, milk productivity.

Yapay Zeka Tabanh Otomatik Ahir iklim Yonetimi

Oz: iklim degisikliginin sebep oldugu yiiksek hava sicakligi giinliik yasam rutinleri icerisinde birgok alami etkilemektedir.
Hayvancilik alani igin 6rnek vermek gerekirse siit siirlarinda 1s1 stresi durumunu ortaya gikarmaktadir. Ist stresi hayvanlarin
saghgint ve siit verimliligini disiirdiigli i¢in bu isletmeler ahirlarda cesitli serinletme ve iklimlendirme sistemleri
kullanmaktadir. Ancak bu sistemler geleneksel olup akilli kararlar alan bir mekanizmaya sahip degildir. Bu c¢alismada
isletmelerin verimliliklerini arttirmak ve siirdiiriilebilir bir yap:1 olusturabilmek adina serinletme sistemlerine yapay zeka
destekli goriintli ve veri isleme modeli entegrasyonu iizerinde durulmaktadir. Yapay zekd modeli sayesinde kurulu olan
serinletme sistemleri daha duyarl: ve etkili hale geleceginden, degisen ortam kosullarinda daha dogru ¢alisan ve kaynak
kullanimini azaltan bir serinletme sistemi saglanmasi hedeflenmektedir. Serinletme sistemlerinin hayvanlarin verimlilikleri
iizerindeki etkileri aragtirilmakta ve bu sistemlerin daha etkili verimli kullanilabilmesi adina gelistirmeler yapilmaktadir.
Sistemin yapay zekd ve goriintli isleme modeli ile ¢aligmasi verimlilik agisindan degerlendirilmektedir. Akilli sistemlerin
entegrasyonu sonucunda kaynak kullaniminin azaltilmas: tizerinde durulmaktadir. Hayvan refahi ve sagliginin daha etkili ve
az kaynak kullanimiyla saglanmasi, serinletme sistemlerinin otomatize ve akilli karar mekanizmalartyla ¢alismas1 ve sonug
olarak isletme maliyetlerinin minimize edilerek kararliliklarinin arttirilmasi hedeflenmektedir. Bunun yaninda gergek zamanl
calisan bir sistemin isletme iizerinde ne gibi avantajlara sahip olabilecegi tartisiimaktadir. Hayvan sagligi iizerinde gergek
zamanli takibin hayvan davranislarimi inceleyerek anlik sistem tepkileri {iretilmesinin faydalari arastirilmaktadir.
Gergeklestirilen testler sonucunda, sistemin ortalama 1.8 saniyelik tepki siiresi ile ¢alistig1, geleneksel sistemlere kiyasla %28
oraninda su tasarrufu sagladig1 ve inek tespitinde %91,2 mAP dogrulugu elde ettigi belirlenmistir.

Anahtar Kelimeler: Yapay zeka, goriintii isleme, akilli sistemler, hayvancilik, siit verimliligi.
1. Introduction
One of the primary challenges faced by dairy farms is high air temperatures. Elevated temperatures cause

heat stress in dairy cows, which disrupts the balance between body heat production and dissipation. The body heat
generated, also known as basal heat, is influenced by ambient temperatures. The thermal neutral zone, the
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temperature range in which cows can maintain their normal body temperature, is determined to be 4.5-26.5°C.
Within this range, the basal heat production is approximately 825 kilocalories per hour. When the temperature
exceeds 26.5°C, the body’s heat production decreases by about one-third. This reduction leads to decreased
activity, reduced feed intake, and consequently, lower milk production in cows. If adequate shading is not
provided, the radiant energy from the sun exacerbates the stress experienced by the animals [1]. To reduce stress
and restore normal bodily functions in cows, various interventions such as providing shade, enhancing passive
ventilation, and adding fans and sprinklers can be implemented. Effective cooling lowers the animals’ body
temperature, maintains basal heat balance, and improves milk production efficiency [2]. Methods employed to
help cows maintain their basal body temperature and achieve cooling can mitigate the inefficiencies caused by
heat stress [3]. Keeping barns cool prevents the onset of heat stress in animals, ensuring productivity remains at
optimal levels. Conversely, studies have shown that even brief exposure to moderate heat can increase respiratory
rates and elevate animal body temperatures. This rise in body temperature reduces heat production below normal
levels, leading to reduced activity and feed intake. A decrease in feed intake significantly lowers metabolic
activities, resulting in a loss of milk production. Even with changes to feeding practices, feeding schedules, and
supplementary additives, the losses in milk production caused by heat stress cannot be fully mitigated. This is
because stressed animals exhibit a lack of appetite, preventing them from consuming adequate nutrients necessary
for optimal milk production [4].

Modern dairy farms employ various methods to enhance animal welfare and ensure effective cooling.
Sprinkler systems, which spray water to cool animals, are widely used to maintain the health and comfort of
livestock. Additionally, providing shaded areas is essential to protect animals from the effects of solar radiation,
helping to keep body temperatures low and maintaining basal heat production within normal ranges. Combining
shade with sprinklers and fan-based ventilation systems in barns has been shown to significantly reduce respiratory
rates and body temperatures in animals, enabling metabolic functions to proceed without disruption [5]. Another
cooling method is the use of misting systems, which release a fine cold vapor to cool the surrounding air. However,
misting systems are generally less effective than sprinklers in achieving desired cooling levels. This is because
cold air, particularly in hot and confined barn environments, does not provide the same cooling effect as water.
Fans are another common solution, especially in smaller-scale or less advanced farms, where they are used to
circulate and direct air to cool animals. Yet, studies have consistently shown that cows cooled with sprinkler
systems produce more milk compared to those cooled solely with misting or fan systems [6]. Despite their
effectiveness, sprinkler systems consume ten times more water than misting systems, raising concerns about water
usage efficiency. The operational costs associated with sprinkler systems can escalate in farms that fail to use these
systems effectively and strategically. Therefore, it is crucial for farms utilizing sprinkler systems to adopt
technologies that enhance efficiency and reduce operational costs in cooling systems. Another critical factor
influencing the effectiveness of animal cooling is the duration and frequency of water spraying. If water is sprayed
for excessively long periods, it leads to excessive water consumption and increased operational costs, which is
undesirable. Conversely, insufficient spray durations fail to provide adequate cooling and offer no substantial
benefits for milk production. Research highlights the importance of optimizing water spraying performance; overly
frequent sprays result in unnecessary water wastage, while infrequent sprays diminish the cooling effect [7]. While
these cooling methods are vital for productivity, they lack intelligent decision-making mechanisms. As a result,
they are insufficient in responding to variable environmental conditions, highlighting the need for integrating smart
systems into cooling processes.

With advancements in technology and its application to industrial sectors, operational efficiency in businesses
has seen positive transformations. Improvements and innovations driven by artificial intelligence (Al) and image-
processing algorithms have made production processes more effective in terms of both efficiency and
sustainability. Adapting to the advancements and innovations introduced by Industry 4.0 has become a necessary
step for businesses to remain competitive within their respective sectors. These innovations not only reduce
resource consumption but also enable increased production and profitability. As a result, digital transformation
and keeping pace with technological developments have become critical topics for the livestock industry and its
stakeholders. Incorporating these advancements into the livestock sector is essential for ensuring sustainable
growth and operational competitiveness [8].

Monitoring and evaluating the health, posture, and behavioral patterns of livestock in dairy farms is of
paramount importance. Therefore, tracking animals to assess their condition and behaviors becomes a necessity.
Real-time monitoring of animals allows for accurate assessment of their health status, water and feed consumption,
heat and stress conditions, and provides opportunities for timely intervention by farm operators. Additionally,
barns’ integrated cooling systems can be monitored and controlled effectively. Several methods enable the
implementation of these systems. For instance, camera systems installed in barns can analyze the positions and
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movements of animals, allowing the establishment of smart systems that enhance operational efficiency. In the
face of increasing demand in the dairy industry, ensuring maximum growth with minimal operational costs has
become essential. This goal can only be achieved through the integration of advanced technologies that enhance
efficiency, sustainability, and animal welfare [9]. Minimizing resource use while maximizing efficiency has made
the adoption of artificial intelligence (AI) and image-processing technologies a highly advantageous approach.
Livestock can be monitored in real-time by employing Al and image processing, and automated decision-making
and evaluation mechanisms can be integrated into barn systems. A subtraction-based approach has been effectively
used to track animal behaviors in dairy farms, particularly for monitoring posture and movement using image
processing techniques aligned with the aim of this study [10] . Specifically, numeric images of areas occupied by
animals are compared to empty-background images (such as pens, pastures, or bedding areas) of the same spaces.
This method enables real-time monitoring and learning of animal positions and behaviors, facilitating enhanced
decision-making for farm operations [11].

Numerous studies in the literature focus on barn climate control systems and their effectiveness in reducing
heat stress in livestock. Firfiris et al. [12] presented research on the application of passive cooling systems,
successfully implemented in urban buildings, to livestock housing. Their review study concentrated on
construction principles for the most common passive cooling systems in farm buildings. They emphasized the
importance of energy-efficient cooling systems for modern and sustainable farm structures. Zhang et al. [13]
provided a comprehensive overview of individual precision cooling methods for dairy cows, including spray
cooling, forced air convection, and waterbed cooling. They also evaluated the adaptability of technologies such as
infrared thermography, computer vision, and wearable sensing devices for detecting heat stress. The study
highlighted the limited use of automated control systems in dairy farms and stressed the importance of control
logic in precision cooling. By proposing the integration of real-time monitoring and control strategies, they
contributed to enhancing the efficiency of existing cooling systems. Liberati [14] developed an active drying sensor
to optimize sprinkler and ventilation systems for cooling dairy cows. The sensor simulated the thermal responses
of cows to predict fur drying time, achieving a 57% reduction in water consumption. This study made a significant
contribution to using sensors in assessing heat stress and improving resource efficiency. Cao et al. [15] investigated
the effects of discharge angle on cooling efficiency in ventilation systems based on perforated air ducts (PAD).
Using computational fluid dynamics simulations, they examined the impact of various air flow rates, duct
diameters, and deflector types. The results indicated that rectangular duct deflectors provided the highest
convection heat transfer rate, making discharge angle optimization a promising method for enhancing the
performance of PAD systems. Garcia et al. [16] conducted a study on a low-profile cross- ventilated (LPCV) barn
equipped with evaporative cooling pads to reduce heat stress in dairy cows. Analyzing 5,712 data records, they
observed that LPCV systems were more effective under low-humidity conditions, achieving an indoor-outdoor
temperature difference of up to —12°C. Their experimental findings revealed that LPCV systems increased the
time cows spent in thermoneutral conditions and significantly reduced heat exposure when temperatures exceeded
25°C. They concluded that LPCV systems are a viable alternative for managing dairy cows in hot and humid
climates. These studies collectively underscore the critical role of innovative climate control systems in enhancing
animal welfare and productivity in dairy farming, offering valuable insights for integrating advanced technologies
into barn operations.

In this study, an artificial intelligence (Al)-based model has been developed to prevent heat stress in livestock
on dairy farms and enhance the efficiency of cooling systems. The proposed model leverages image processing
techniques to optimize cooling processes, aiming to minimize human-induced errors while improving the
efficiency of water, energy, and labor usage. The system enables individual recognition and monitoring of animals,
providing farms with a cost-effective and sustainable solution. This study aims to develop an artificial intelligence
(Al)-based model for preventing heat stress in dairy livestock by optimizing cooling systems through image
processing techniques. The proposed approach focuses on enhancing the efficiency of water, energy, and labor use
while supporting sustainable and cost-effective livestock management practices.

The remainder of the study is structured as follows: Section 2 focuses on the Materials and Methods, covering
the motivational drivers behind the study, its general limitations, and the methodologies employed for analyses.
Section 3 presents the experimental studies conducted, while Section 4 details the findings derived from these
experiments. The Discussion is provided in Section 5, followed by the Conclusion in Section 6, which summarizes
the key outcomes of the study and concludes the paper.
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2. Materials & Methods

The Materials and Methods section explains the motivational drivers and limitations of the study, detailing
the methodologies employed. This section covers the processes followed in developing the Al-based model and
the data analysis approaches used.

2.1. Motivations

This study aims to optimize barn cooling systems used to prevent heat stress in livestock on dairy farms. By
integrating an artificial intelligence (AI)-supported image processing model, the proposed approach seeks to
reduce human-induced errors while minimizing resource usage (water, electricity, and labor), thereby enhancing
overall efficiency. Additionally, the study focuses on maintaining and improving the consistency of milk
production in livestock and evaluating the impact of technology adoption on farm productivity. These objectives
represent key aspects addressed within the scope of the research.

The integration of artificial intelligence (Al) technology into traditional cooling methods plays a pivotal role
in mitigating the adverse effects of heat [17]. In this context, the aim is to guide cooling systems through intelligent
decision-making mechanisms and achieve full automation. The proposed model was developed to automatically
manage barn cooling systems by analyzing real-time image data and environmental sensor inputs. It consists of
several key stages, including background subtraction, animal detection, and the integration of temperature and
humidity data. These components work in coordination to determine when and where cooling is required, thereby
minimizing unnecessary water and energy use. A visual summary of the system’s structure and operation is
provided in Figure 1.
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Figure 1. Visual summary of the study.

However, there are certain limitations in the implementation of the system. The creation of a real-time,
remotely manageable system may encounter issues such as internet and electricity outages. Additionally, hardware
components are exposed to challenging environmental factors such as humidity, dust, and high temperatures in
barn conditions. This can lead to malfunctions in electronic connections and impose constraints on the selection
of appropriate hardware. In this context, Al-supported models to be used in dairy farms must be carefully designed,
considering these limitations.
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2.2. General Limitations in Smart Barn Climate Control Systems

1. Limited Case Studies in Livestock Enterprises:

While the agricultural sector strives to adapt to the innovations brought by Industry 4.0, this transition is
occurring at a slower pace than other industries. This creates opportunities for unique research within the sector
but also presents significant challenges. Adapting systems implemented in different industrial domains to the
agricultural sector and developing new methodologies has become a necessity [18]. However, businesses,
universities, and research centers are faced with the need to increase research and development efforts to overcome
the challenges encountered during this adaptation process.

II.  Data Insufficiency and Reliability:

Traditional barn cooling systems generally lack the capability to generate and store sufficient data. This leads
to issues such as the inability to access historical data and the absence of preliminary analysis processes.
Interpreting a system with the support of artificial intelligence models, especially for systems that have not
previously generated data, is a challenging task. In cases of missing data, performing statistical analysis and
interpreting the gaps requires additional effort. In this context, during the process of making the system intelligent,
detailed analyses and tests should be conducted to identify potential issues preemptively, and solutions should be
developed accordingly [19].

III.  Lack of Technological Infrastructure and the Risk of Hyper-Connectivity:

The instability of internet connection can pose a significant barrier to real-time data generation and analysis,
potentially leading to system malfunctions and a decline in the performance of technological equipment. Such a
situation can compromise system efficiency and degrade the performance of technological assets. Furthermore,
the risk of hyperconnectivity is rooted in the complex interdependencies among the business’s subunits. A problem
in one subunit has the potential to cascade to other areas, causing systemic disruptions [20]. Hence, measures
should be taken to minimize these risks during the design and integration of systems.

1V.  System Optimization Issues:

The primary goal in the establishment of technological systems is to enhance the efficiency of businesses.
However, achieving this objective requires not only the effective utilization of resources but also the optimization
of the systems themselves. Unoptimized systems can lead to a loss of efficiency from the business perspective.
Moreover, creating an optimized system with limited resources is a challenging process. Proper adjustment of
parameters and optimization of existing systems are fundamental strategies to increase efficiency and ensure long-
term sustainability [21].

V. Difficulties in the Harmonious and Efficient Operation of Barn Air Conditioning Systems:

The combined use of fan and sprinkler systems for cooling livestock can face various challenges during
implementation. For instance, running sprinkler systems for an excessively long period can increase water costs
without providing effective cooling for the animals. Similarly, if fans are turned off while the sprinklers are
running, it may lead to heat stress. To address these issues, innovative solutions should be developed that optimize
resource usage and ensure the systems work in harmony, improving the overall efficiency and effectiveness of the
cooling process.

VI Limitations in Selection of System Subunits:

The challenging environmental conditions in barns, including dusty, wet, and humid environments,
necessitate the use of equipment that is resistant to such conditions. In addition, selecting appropriately sized, high-
performance equipment suitable for confined spaces like barns is crucial. For equipment that cannot be placed
inside the barn, suitable design plans must be developed to ensure effective integration. Such evaluations help
prevent increased costs and damage to equipment, thereby enhancing the sustainability of the system.

2.3. Data and Obtaining Methods

The system continuously collects data from PT100 temperature sensors and HIKVISION cameras within the
barn environment. These collected data are transmitted to the artificial intelligence-based image processing model
through various system components using communication protocols such as Real-Time Streaming Protocol
(RTSP) and Modbus Transmission Control Protocol (Modbus TCP) via Ethernet connections. RTSP is used for
transmitting image data, while Modbus TCP is employed for transmitting temperature data to the PLC and network
[22]. This data transmission enables real-time operation of the model, allowing the barn climate control systems
to be guided based on live data. Furthermore, the data collection process requires seamless integration of
components such as the PLC (Programmable Logic Controller), server, andartificial intelligence model. The entire
data flow and collection process are visualized in Figure 2.

375



Artificial Intelligence-Based Automated Barn Climate Management

@ :O' Data Collection
5 P
® |}
S+
]
g2 ) |
] \'
E ( )

Modbus
Tce

Modbus

Figure 2. Demonstration of the data collection process.

Figure 2 illustrates the flow of temperature and image data within the system in detail. Additionally, another
critical type of data obtained from the enterprise pertains to milk production. This data is collected separately from
the barn environment for analytical purposes and is safeguarded in accordance with the enterprise’s privacy
policies. Consequently, specific details regarding the methodology for calculating the average milk production and
enterprise data cannot be disclosed. The data can be represented as follows:

Temperature: The PT100 temperature sensor functions by altering its resistance value based on temperature,
serving as a reliable component for temperature measurement in the barn environment. This sensor is known for
its precision and robustness and ensures dependable temperature monitoring [23]. It transmits the measured
temperature data to the system via the PLC. The PLC subsequently forwards this data to the server, where it is
used as a parameter for the artificial intelligence model. The Al model processes the temperature data through its
intelligent decision-making mechanism and activates the cooling system at the optimal time. This ensures the
system operates efficiently, adapting dynamically to temperature variations, thereby enhancing the overall
effectiveness of barn climate control.

Image Data: Visual data from the barn environment is captured using HIKVISION DS-2CD1643G0-1ZS/UK
cameras, which are specifically designed for challenging environmental conditions. These cameras feature high-
resolution imaging, adaptability to low-light settings, and resistance to dust and moisture, making them ideal for
barn use. Their wide field of view and ability to track animal movements in detail ensure superior performance in
image-processing applications [24]. Raw images captured by the cameras have a resolution of 2688x1520 pixels
before any preprocessing. Prior to being fed into the algorithm, the image dimensions are adjusted to meet model
requirements. The captured images are transmitted to the server via the RTSP (Real-Time Streaming Protocol) and
subsequently sent to the AI model for analysis. The Al model processes these images to determine the positions
of the cattle using image processing techniques. Positional data is then compared with predefined area coordinates,
such as feeding zones (paddocks) or sprinkler system ranges, to ascertain whether the animals are within these
regions. Based on this information, the model makes decisions to optimize barn climate control systems and
enhance animal welfare, ensuring efficient and responsive system operations.

Restricted Area Coordinates: To enable the Al model to effectively process images and interpret the
positional data of the cattle, a set of restricted areas is defined for each camera. These areas are uniquely tailored
to the barn’s layout and are designed to overlap with functional zones, such as the feeding area (paddock) and the
sprinkler system range. This ensures precise monitoring and control of the barn’s climate and feeding systems.
The restricted areas are delineated on the images by drawing bounding boxes corresponding to the designated
zones. These boundaries are defined based on the barn’s architectural design and operational requirements. Once
the zones are mapped, the number of cattle within each boundary is calculated in real-time. The AI model uses
this data to make decisions according to predefined thresholds and conditions, ensuring that system responses align
with the actual distribution of cattle in the barn.

Milk Production Data: The data taken from the farm where the study was carried out, is provided by the
business. The data was used to make various analyses and to observe the developments regarding the contributions
of the study. The farm collects and calculates milk production data with its own unique methods.
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Transmission and Storage of Data on the Server: A server is essential for real-time data monitoring and image
processing, serving as a hub to store incoming data, provide an analytical environment, and relay decisions to
system components [25]. However, the server must be installed in a protected area due to challenging barn
environments—characterized by dust, heat, moisture, and water exposure. The durability of servers is determined
by their Ingress Protection (IP) ratings, such as IP54 and IP65, which indicate resistance to dust and water ingress
[26]. Additionally, the optimal operating temperature for servers typically ranges between 18°C and 27°C [27].
To ensure uninterrupted functionality, the server was placed in a shielded location away from wet, dusty, or
extreme temperature fluctuations. Data transmission from the barn to the server is facilitated through PLC and
RTSP protocols. The server processes the collected temperature and image data and relays the results to the
artificial intelligence model. The AI model analyzes these inputs and distributes actionable insights to system
components, enabling efficient decision-making and execution of barn climate control strategies.

2.4. Methods

The system identifies image and temperature data, transferring them sequentially to the PLC and server
through various communication protocols. These data are supplied as parameters to the AI model hosted on the
server. The model processes the inputs to make decisions, which are subsequently transmitted back through the
server and PLC to control the barn cooling systems. This closed-loop mechanism transforms the system into an
intelligent, automated entity. The system comprises various elements meticulously determined through
experimental evaluations, ensuring optimal functionality under challenging barn conditions. By integrating these
components, the system achieves seamless communication, precise decision-making, and efficient execution of
climate control strategies.

% Programmable Logic Controller (PLC): In this study, a PLC is utilized to control the cooling systems
(e.g., fans and sprinklers) based on data received from the Al-powered object tracking model.
Additionally, it is used to transmit temperature data from the PT100 temperature sensor to the server.
PLCs must be robust enough to withstand barn environments characterized by dust, humidity, and
temperature fluctuations [28]. PLCs are essential components in industries with advanced machinery and
devices primarily used for automation. They minimize human errors and interventions, ensuring safe,
high-quality, and efficient production and control processes. These capabilities enhance system
intelligence and efficiency. Frequently applied in ventilation and cooling facilities, PLCs are also suitable
for barn climate control systems. Their simple programmability, ease of installation, operation, and
maintenance, resilience in challenging environments, low failure rates, and reduced energy consumption
make them an optimal choice. A basic diagram illustrating the operational principles of PLC systems is
provided in Figure 3 to better understand the processes.
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Figure 3. PLC operation diagram.

+ Artificial Intelligence-Powered Image Processing Model: The system incorporates real-time image
processing using the YOLOv10 deep learning algorithm, which is part of the YOLO family of image
processing models. YOLOVI10 is the latest and most advanced version, enabling simultaneous object
detection and classification by analyzing an image in a single pass. Compared to its predecessors,
YOLOV10 offers superior precision in object detection and classification [29]. The basic principle of the
algorithm is dividing the input image into a grid and performing potential object detection within each
cell. During this process, bounding boxes, dimensions, and probability scores for identified objects are
generated. YOLOVI10 further improves on earlier versions by employing advanced feature maps and
architectural enhancements, enabling higher accuracy in detecting object boundaries and associating them
with a confidence score. Its refined network architecture also significantly enhances its ability to detect
objects of various sizes [30]. In this study, the model has been specifically adapted for monitoring dairy
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cows in barn environments. Raw images captured by cameras have a resolution of 2688x1520 pixels.
Before feeding these images into YOLOvV10, their resolution is adjusted to 1280x1280 pixels to ensure
consistent data input for the algorithm. The algorithm is trained and validated using datasets containing
cow images. Once trained, it can identify cows as objects and count their numbers within defined areas.
Initially, the algorithm operates without spatial constraints, detecting all cows within the camera’s field
of view. As shown in Figure 4, the algorithm marks the position of each cow detected within the camera’s
range, providing location and classification data for integration into the cooling system [31]. This
approach has been developed to enhance animal welfare and prevent unnecessary resource utilization,
contributing to a more efficient and sustainable barn climate control system.
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Figure 4. Visualization of YOLOv10 working mechanism.
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2.5. Model Training and Evaluation

In this study, the object detection model used for real-time monitoring of dairy cows is based on the YOLOv10
architecture, a recent and advanced member of the YOLO family optimized for both speed and precision. A
dedicated dataset was created using video recordings obtained directly from the experimental barn environment.
In total, 6,400 image frames were extracted and manually annotated with the open-source tool Labellmg, where
each cow was labeled using bounding boxes to define its spatial presence within the frame. To ensure proper
evaluation and minimize the risk of overfitting, the dataset was divided into training 70%, validation 20%, and
testing 10% subsets. During training, data augmentation techniques such as horizontal flipping, brightness
variation, and random scaling were applied to improve the model’s ability to generalize to different scenes and
lighting conditions.

The training was performed using the PyTorch framework on a standard workstation without GPU support.
Due to hardware limitations, the training process was optimized by adjusting parameters such as batch size (16)
and learning rate (0.001). The model was trained for 100 epochs, and convergence was observed without signs of
overfitting, supported by early stopping mechanisms based on validation loss trends. Model performance was
evaluated using standard object detection metrics. Mean Average Precision (mAP@0.5) was used as the primary
indicator of detection accuracy. Additionally, precision, recall, and F1-score metrics were calculated on the test
dataset. The results, summarized in Table 1, demonstrate that the model achieved high detection performance and
is suitable for real-time livestock monitoring in barn environments.

Table 1 presents the key training and evaluation parameters of the YOLOv10-based object detection model
developed in this study. The table summarizes the dataset size, data split proportions, and critical hyperparameters
such as batch size, learning rate, and training epochs. In addition, the table includes performance metrics such as
mAP@0.5, precision, recall, and F1-score, all of which indicate that the model is capable of accurately detecting
and tracking cows in real-time barn environments. These results confirm the model’s suitability for integration
into intelligent barn climate control systems.
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Table 1. Training configuration and performance metrics of the YOLOv10-based object detection model.

Metric Value
Dataset Size 6,400 images
Train/Val/Test Split 70% /20% / 10%
mAP@0.5 91.2%
Precision 94.5%
Recall 89.3%
F1-Score 91.8%
Training Epochs 100
Batch Size 16
Learning Rate 0.001
Annotation Tool Labellmg

3. Experimental Study

This study focuses on transforming barn climate systems into intelligent systems through the integration of
an Al-supported image processing model for real-time control. The system leverages various methodologies to
achieve this goal, with continuous monitoring of temperature and visual data. Visual data is captured using
HIKVISION DS-2CD1643G0-1ZS/UK cameras and transmitted to the system’s server via the RTSP protocol over
a network. Similarly, temperature data from the PT100 sensor is sent to the server through Modbus TCP protocol
using a PLC. The server processes these inputs and passes them to the Al-powered image processing model.

The implemented system continuously collects data from sensors and cameras and transmits it to the model
in real-time. Temperature data obtained from PT100 temperature sensors, and image data captured by cameras,
are processed and evaluated by the model. The model processes and analyzes the collected temperature and image
data, which generates intelligent decisions for system control and transmits them to the PLC via the server. The
PLC then executes these decisions to manage barn climate control systems, such as sprinklers and fans, enabling
real-time operation. When input data changes, the model adjusts its decisions, ensuring the system remains
dynamic and responsive. The model determines the activation of fans or sprinklers and the priority sequence
between these systems, ensuring efficient operation. Fans and sprinklers are not activated simultaneously to
prevent water from sprinklers being displaced by fans, which could result in wet feed or water reaching unintended
areas. Instead, either fans or sprinklers are activated depending on conditions, such as the number of cows within
the sprinkler range, ensuring water is not wasted and fan operation is not unnecessarily halted. The system is
designed to function according to these principles while being tailored to the barn’s layout for enhanced
functionality. Furthermore, its modular design allows for adaptation to various barn configurations, providing a
versatile and efficient solution. Figure 5 illustrates the barn’s top-down layout, showcasing the system’s design
flexibility and adaptability.
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Figure 5. Bird’s eye view of the barn where the work was conducted.
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To enable the YOLOVIO0 deep learning algorithm to monitor dairy cows in the barn, the algorithm is pre-
trained using datasets containing cow images and subsequently tested for accuracy. Once trained, the algorithm
can recognize cows as objects and is utilized to determine the number of cows within a specified area. Initially,
without any predefined area constraints, the algorithm detects all cows entering the camera’s frame, as illustrated
in Figure 6.

200
400
600
800
1000
1200

1400

0 500 1000 1500 2000 2500

Figure 6. Image of cows detected using AI-Powered object detection.

In the subsequent stage, a restricted area is defined, encompassing only the feeding zones for the animals. To
ensure object detection is confined to these specified areas, unique boundaries are set for each camera and the
corresponding paddocks (feeding zones) they monitor. These restricted areas also represent the spray range of the
sprinkler system. Defining these boundaries is crucial for determining the number of cows within the area. Each
camera has distinct coordinates for these zones, making them unique to its view. Consequently, the system
processes calculations and decisions independently for each camera. In a single barn, six cameras are installed,
and each connects to the system via its IP address. The restricted areas for each camera are defined exclusively
based on its field of view. Initially, footage from the cameras is reviewed, and a frame encompassing the desired
area is drawn over the images. Points are then marked on this frame to define the unique boundary for each camera.
These points represent the coordinates of the restricted area for each camera, forming a set of corner points that
outline the region. As depicted in Figure 7, the green line illustrates the boundary of the restricted area, while the
red dots denote the coordinate points marking the corners of the frame.

Figure 7. Camera-Specific frame lines and the coordinate points passed by the frame.
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After defining the restricted area, it is integrated into the algorithm. Object detection is then carried out specifically
within this zone in order to count the cows, as illustrated in Figure 8. By limiting detection to the designated area, the
analysis becomes more precise and avoids unnecessary noise from irrelevant regions. To further enhance the
interpretability of the image, the parts outside the defined zone are obscured with a dark blur, ensuring that attention
remains focused only on the relevant area where detection is performed.

1500 2000 2500

Figure 8. Counting cows using object detection within a defined area.

3.1. Evaluation of Data by the Algorithm and Sending Commands to Climate Control Systems

The algorithm makes decisions based on temperature data and the number of cows detected within the
restricted area captured by the relevant camera. If the number of cows within the restricted area exceeds a
predefined threshold, specific commands are transmitted to the barn cooling systems via the server and
subsequently through the PLC. For instance, if the threshold is set to 10, the condition is met when the count of
cows is 10 or more. Upon meeting this condition, the sprinkler system is activated based on the model’s decision,
ensuring that water is sprayed only when a sufficient number of cows are present in the area, thereby cooling them
effectively. If the required number of cows is not present in the area, the sprinkler system remains inactive,
reducing water usage. Furthermore, when the sprinkler system is not activated, the fans continue to operate,
preventing unnecessary interruptions in their operation.

Another parameter considered by the model is temperature data, which is included to ensure the system is
activated only when ambient temperatures exceed specific thresholds. Since the system aims to enhance animal
comfort while optimizing efficiency and resource usage, it remains inactive when temperatures are low, reducing
resource consumption. For instance, the temperature threshold for activating fans can be set at 17°C, while
sprinklers may require a threshold of 22°C. If the conditions are met—for example, when the temperature rises to
17°C or higher— fans are activated. However, for the sprinklers to operate, both temperature and cow count
parameters must satisfy their respective conditions. For instance, if the temperature is 22°C or above and the
number of cows is 10 or more, the sprinklers are activated, and the fans are deactivated. Additionally, the sprinkler
system’s activation duration is predefined based on research and experimental findings, ensuring minimal water
usage while maximizing efficiency. Once the specified time has elapsed, the system is automatically deactivated
through a command sent by the algorithm, preventing unnecessary resource usage and ensuring optimal
performance.

Furthermore, the algorithm’s activation thresholds, such as a minimum cow count of 10 or a temperature
value of 17°C, can be modified and updated via the interface used for managing and monitoring the PLC. These
adjustable activation parameters enable real-time control and customization to suit varying operational
requirements. As shown in Figure 9, the PLC interface allows for seamless updates and revisions of these
thresholds, ensuring the system remains adaptable and efficient in responding to dynamic environmental and
operational conditions.
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Min value: 0 Max value: 1000

Figure 9. Cow number lower value or temperature lower value update screen image via
PLC Interface.

Finally, the system operates with two different modes, which can be switched via the PLC interface. These
modes are: manual and automatic (where the climate control systems are managed by the artificial intelligence
model). In manual mode, both the sprinkler and fan systems can be controlled individually, allowing for manual
activation or deactivation of the selected climate control components. This operational feature makes it easier to
turn the system on or off when necessary. For instance, during system maintenance or when veterinary
professionals need to inspect the animals, the system can be turned off. Figure 10 illustrates the changes that can
be made through the PLC interface and the information that can be monitored.
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Figure 10. PLC mterface screen.

Through the PLC interface, real-time temperature data, the temperature threshold required for the activation
of the fan, the temperature threshold required for the activation of the sprinklers, information on which system
(fan or sprinkler) is currently operating in the respective barn section, the required number of cows for the sprinkler
system to activate in that section, the number of cows in the padlock area (within the restricted area or sprinkler
system range) in that barn section, and the duration for which the sprinkler system will operate can all be accessed.
This interface allows the system to be monitored remotely.

4. Results
4.1. Electromotive Force Effects and Diode Implementation
In the barn climate control system, the sprinkler systems are controlled by solenoid valves, which regulate

water flow. Solenoid valves are electromechanical components that convert electrical energy into mechanical
energy. They are used in the control of fluids such as water, gas, and oil. During the opening and closing of the
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solenoid valve, a phenomenon known as “counter-electromotive force” (back EMF) is generated. This is due to
the coil inside the valve, which acts as an inductor. When current passes through the coil, magnetic energy is
stored, and this energy can create voltage spikes that are high enough to damage sensitive circuit components. This
issue can disrupt the proper functioning of the system and has the potential to cause damage to system elements
and lead to additional costs. This problem was identified during operation and was proactively addressed. To
resolve this, it is necessary to protect the circuit components from the high voltage spikes caused by back EMF.
Diodes, which are circuit elements used to protect against such spikes, were employed. Diodes are used in
electronic circuits to block current in an unwanted direction [32]. With the use of diodes, the instantaneous reverse
current was blocked, making the system more reliable and efficient. When a diode is added to the circuit in the
direction of current flow, it prevents current from flowing in the opposite direction.

4.2. Effects of Power and Internet Interruptions on the System

In hot summer days, power and internet outages can disrupt the system’s operation. Power outages can be
avoided using electrical generation tools such as generators available at the facility. However, internet outages
hinder the correct operation of the model because data transmission and communication between system
components are facilitated via internet protocols. In the case of network failures, the system must have a structure
that can tolerate such situations. This ensures that the system is minimally affected by interruptions. In the event
of network issues, data should be backed up across different virtual machines to ensure that the connection remains
sustainable. This approach helps build a fault-tolerant system [33]. If the internet outage persists for a long period,
the system should deactivate itself, and the barn climate control components should remain in a continuous
working state to protect itself. This is because extended outages, lasting several days, may result in situations such
as failure to detect and monitor faults and the depletion of virtual machines’ storage capacities. This continuous
operation of the climate control systems follows the old operating principle until the internet connection is restored.
Therefore, even during an internet outage, the system will continue to operate in some capacity.

4.3. Real-Time Object Detection of the System

Unlike traditional barn systems, the preference for climate control systems managed by a real-time, Al-
powered end-to-end object detection model offers significant advantages to businesses by reducing the use of
resources such as labor, water, etc., through real-time operation. YOLOV10 is the tenth version of the object
recognition algorithm. This algorithm allows for real-time object detection by processing frames at a high rate per
second. Since real-time tracking provides advantages such as instant data generation and processing, it ensures
that the system operates with the principle of a dynamic mechanism [34]. With this real-time tracking, businesses
can reduce resource usage, allowing for continuous production. The use of intelligent systems eliminates the need
for constant human control, lifting a significant burden on the business. Additionally, the real-time data processing
and decision-making mechanism enable the climate control systems of the business to respond with variable
actions to changing conditions, ensuring stable livestock production and maintaining their welfare. This results in
a live and dynamic system.

4.4. Effects of Data Generation on the System

In contrast to traditional systems where data production and analysis are not typically involved, the
implemented intelligent system ensures continuous data production and analysis. This is important as it allows for
the development of new outcomes and observations that benefit the business through the generated data. A system
that produces data holds significant potential for the development of additional features and the execution of future
studies. For instance, the generated data could be utilized in future research related to animal health and

psychology.
4.5. Importance of Regional Control in the Barn

Within the scope of the study, the developed system was also evaluated in terms of its ability to monitor
different regions of the barn separately. This regional control made it possible to track animal behaviors and
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movement patterns in specific areas. During the observation process, the system successfully detected changes in
activity density, especially in feeding and resting zones. In some cases, a noticeable reduction in movement was
recorded in the rear sections, while increased clustering near feeding lines was also observed. These findings
indicate that the model can provide useful information for early detection of irregularities and support faster
intervention in region-specific issues.

4.6. Advantages of Using PLC

In the conducted study, an Arduino microprocessor, which is a more cost-effective device compared to a
durable device like PLC, was initially used. However, the microprocessor was unable to fully optimize its function
and could not respond adequately to the barn’s conditions and the system’s workload. As inefficient and unstable
operation would pose a significant issue, a more robust and durable device, the PLC, was chosen to ensure stability,
reliability, and optimization. Since the PLC also has a closed-loop structure, it is far more resilient to damage in
the harsh barn conditions and operates with better performance. Furthermore, although PLCs may appear more
costly than some microprocessors initially, they remain a cost-effective option in the long run due to their lower
maintenance costs and reliable operation.

4.7. Effect of Temperature on Milk Production

The data collected from the facility, when analyzed, yielded results similar to the literature information
mentioned in the introduction. According to this finding, the increase in temperature negatively affects the milk
production of the animals, which in turn leads to a decrease in the facility’s profitability. As shown in the graph in
Figure 11, after a certain temperature threshold, an inverse correlation is observed between temperature and milk
production. When the correlation coefficient for this relationship was calculated, it came out to be -0.64. This value
provides significant support for the hypothesis that there is an inverse relationship between temperature and
average milk production. The correlation coefficient of -0.64 implies that there is a negative correlation between
temperature and milk production, although this relationship does not hold true in all cases. According to the
analysis results, temperature does not negatively affect milk production when it is within the optimal range for
cows, but as the temperature rises significantly during the summer months, it negatively impacts milk production.
Subsequently, the reliability of the correlation was assessed using a t-test. The t-test value was —66.18, indicating
a strong statistical difference. In general, the larger the magnitude of the t-value, the greater the likelihood of a
significant relationship between the variables. When the p-value was calculated, it came out to be 0.0, which
indicates that the likelihood of the difference between temperature and milk production being due to random
chance is very low. Since the p-value is smaller than 0.05 (the typical significance level), it was concluded that
this correlation is statistically significant. Therefore, the t-value shows that these two variables are meaningfully
different from each other, while the very low p-value indicates that the correlation is not random and is indeed
statistically significant. The accuracy of the correlation was proven through the calculation of these values. As a
result, this analysis highlights the importance of making barn climate control systems intelligent.

As illustrated in Figure 11, milk production remained relatively stable between approximately 0 °C and 15 °C,
averaging around 34.5-35 kg per cow. However, once the temperature exceeded 20 °C, a gradual decline became
evident. Particularly after 25 °C, the average milk yield dropped below 32 kg, and in the 32-33 °C range, it fell
sharply to nearly 29 kg. This clear inverse pattern supports the statistical findings and demonstrates the temperature
sensitivity of dairy production. In conclusion, the results of the study confirm that rising temperatures negatively
affect milk production. This finding underscores the importance of using barn climate control systems to protect
animal welfare and ensure productivity. While this study did not directly measure the performance of intelligent
systems, the strong and statistically significant correlation between temperature and milk yield highlights the
potential value of more responsive, automated solutions. Future studies should investigate how smart control
systems may contribute to energy-efficient operation and further improvements in milk production under varying
environmental conditions.
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Average Milk Production Based on Temperature Ranges
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Figure 11. Average Milk Production by Temperature Ranges

4.8. Quantitative System Performance Evaluation

To complete the correlation analysis between temperature and milk production, various quantitative
indicators of system performance related to the Al-based climate control system were also evaluated in the study.
These quantitative indicators include the system’s response time to trigger conditions, water usage efficiency
encountered during the test period, and finally, the performance achieved in object recognition while detecting
COWS.

To determine the system response time, the average time between the detection of a trigger condition (e.g.,
reaching the cow number threshold and temperature threshold) and the activation of the relevant climate control
component (sprinkler or fan) was measured. The system showed an average response delay of 1.8 seconds, which
is acceptable for real-time operations in barn conditions. A comparative analysis was conducted between the
traditional timer-based sprinkler system and the Al-assisted decision system over a 10-day test period to determine
whether there was efficient water usage. The Al-based system achieved a 28% reduction in total water
consumption while maintaining similar or better animal comfort levels. This demonstrates the system’s capacity
to effectively optimize resource usage and provides an advantage in terms of efficiency. Another indicator, cow
detection accuracy, as detailed in Section 3.1, the YOLOv10-based object detection model achieved 91.2%
mAP@0.5 with 94.5% sensitivity and 89.3% recall. These figures validate the model’s ability to accurately detect
and count cows in restricted areas in real time, ensuring correct system activation according to the actual animal
presence.

These quantitative results show that the system not only conceptually improves barn operations, but also
provides measurable gains in terms of responsiveness, resource efficiency, and detection accuracy. Such results
are important to validate the applicability of the model in practical, real-life farm environments.

5. Discussion

The transformation of traditional barn climate control systems into intelligent and automated structures
represents an important step in modern livestock management. This was made possible by integrating image
processing technology supported by artificial intelligence. Throughout the integration process, different methods
were tried, and some adjustments were made as needed to improve performance. Barn ventilation and climate
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control systems serve two main purposes: protecting animal welfare and ensuring the durability of barn equipment.
Maintaining a stable environment for animals also helps prevent damage to equipment. The system developed in
this study addresses both goals by enabling automated, real-time monitoring and environmental regulation. One
significant advantage is the system’s ability to produce and process data, something the previous setup could not
do. This feature provides valuable insights that may guide future improvements. Also, the system allows remote
access to real-time data, helping users manage the barn environment more efficiently. While no critical
disadvantages were observed during the study, a few technical limitations emerged. The system relies on a stable
internet connection to activate Al-based decision-making. Although basic operations continue during outages,
extended disconnections can prevent smart functions from working. In addition, harsh barn conditions such as
humidity and dust posed challenges for electronic components. To address this, durable, water- and dust-resistant
equipment was used, and protective measures were implemented. Voltage spikes caused by sprinkler valve activity
were resolved with diodes to stabilize the system.

Several studies in the literature support and align with the approach taken here. Rebez et al. [35] examined
how Al-based tools can manage heat stress in ruminant animals, showing that real-time behavioral monitoring
helps reduce productivity losses. Li et al. [36] investigated air conditioning (AC) and evaporative cooling (EC)
systems, finding that AC systems offered better thermal comfort and could reduce energy consumption by up to
73%, even though their initial costs were higher. Macovoray et al. [37] tested different sprinkler flow rates and
timing strategies. Their results showed that a 1.25 L/min flow rate using a 3|3 on/off cycle conserved 37.2% more
water without lowering milk production. Similarly, SyNguyen-Ky and Katariina Penttild [38] improved the
effectiveness of natural ventilation systems in cold climates by calibrating energy models with long-term data.
Another study on the effects of climate change on animal health found that heat stress negatively impacts milk
yield and reproductive performance, and recommended the adoption of modern control systems and resilient
breeds as a response [39].

These studies all point to the growing role of smart and adaptable technologies in livestock farming and
support the approach taken in our study. Our system builds on these findings but offers a more integrated solution.
Unlike the systems above, which are often static or manually operated, this model includes dynamic activation
based on both environmental inputs and cow presence. It doesn’t just apply cooling on a timer—it responds to
real-time needs. While the system does not address every challenge related to barn climate management, it
demonstrates that targeted improvements through practical and adaptive design can yield meaningful results.
Taken together, these findings show that adapting climate control systems to real-time data and environmental
variability is not only possible, but increasingly necessary. The results of our work contribute to this evolving
landscape and highlight how smart, responsive systems can support more resilient and efficient livestock farming
practices. Future studies may explore the implementation of this system in barns of different sizes, animal breeds,
and geographic locations. Additionally, integrating predictive analytics or adaptive control mechanisms may
enhance the system’s responsiveness. The model’s architecture also opens opportunities for application in other
areas of precision agriculture, such as automated feeding or health monitoring systems.

6. Conclusion

In this study, an Al-powered smart cooling system was developed to address heat stress in dairy cattle, a
growing concern due to climate change. By integrating real-time object detection and data processing models into
barn operations, the system enables automated, adaptive control of cooling mechanisms based on actual animal
presence and environmental conditions. Unlike conventional systems, which rely on static timers, the proposed
system responds dynamically-activating cooling only when necessary and optimizing resource use. Experimental
results confirmed the system’s high performance: it achieved an average response time of 1.8 seconds, a 28%
reduction in water consumption, and an object detection accuracy of 91.2% mAP. Additional metrics such as
precision (94.5%), recall (89.3%), and an F1-score of 91.8% further validate the robustness of the model under
real-world barn conditions.

These findings demonstrate that the integration of artificial intelligence and image processing can significantly
improve operational efficiency, reduce environmental impact, and enhance animal welfare in livestock facilities.
Moreover, the transformation of traditional infrastructure into intelligent, data-generating systems represents a
meaningful step toward sustainable and precision agriculture. Future work may focus on adapting this framework
to different species, expanding its functionality under diverse environmental conditions, and incorporating
renewable energy or IoT-based scalability for broader agricultural applications.
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