
A MODIFIED ENTROPY ALGORITHM FOR PARALLEL
MONITORING

Paralel Monitörlerde Modifıye Edilmiş Entropi Algoritması

Ahmet ÖZMEN*

ABSTRACT

Performance evaluation and debugging of parallel systems rely on instrumentation that
traces or profiles program behavior. Software instrumentation that is statically inserted into
the program source, run-time libraries, or Operating System can gather redundant
information. The overhead incurred during run time to process and record this information
can increase the execution time of the program and can even change program behavior.
Static configuration of instrumentation, although simple, is not in general efficient in terms
of information gathered to overhead introduced. Information content of instrumentation
data typically depends on uncertainty of associated event to occur. This paper presents a
dynamic algorithm for software instrumentation to measure the amount of information
content of instrumentation data to be collected. This makes intelligent data collection for a
software monitoring system possible. The algorithm can be used in software
instrumentation to make monitoring system less intrusive looking at the information
content of instrumentation data before collected.

ÖZET

Paralel sistemlerin izlenmesinde ve program davranışının belirlenmesinde yapılan
performans analizi ve problem giderilmesi çalışmaları enstrumentasyona bağlıdır. Statik
olarak programa, kütüphaneye veya işletim sistemine ilave edilerek yapılan yazılım
enstrumantasyonu lüzumsuz bilgi toplayabilir. Çalışma anında; bu verileri toplarken, diske
kaydederken programın icra süresi artabilir, hatta davranışı bile değişebilir. Statik
enstrumantasyon kontrolü kolay olmasına rağmen, toplanan bilginin harcanan zamana oranı
dikkate alındığında pek verimli değildir. Bir enstrumantasyon verisinin taşıdığı bilgi, o
olayın olup olmayacağının kesin olmamasına bağlıdır. Bu çalışmada, yazılım
enstrumantasyonu sistemlerinde toplanan performans verilerinin değerlendirildiği dinamik
bir algoritma sunulmuştur. Böylece yazılım monitörleri için akıllı veri toplama sistemleri
mümkün olacaktır. Bu algoritma yazılım enstrumantasyon sistemlerinde kullanılarak
performans verisinin içeriğine bakılmak süratiyle, program icrasını daha az rahatsız eden
monitör sistemler yapılabilir.

Key Words: Software Performance Monitoring, Parallel Processing.

* Dumlupmar Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik
Mühendisliği, Kütahya

29

1.INTRODUCTION

Performance evaluation of parallel programs rely on monitoring run-time behavior.
Monitoring requires hardware or software instrumentation to capture run-time data from the
concurrent processes. Flexibility and portability make software instrumentation the widely
used alternative. However, it is intrusive because instrumentation introduces overhead that
perturbs the behavior of the original programs [5] [4], The large volume of information
gathered by a static software instrumentation is a problem because storing, processing and
presenting it consumes system resources such as memory, disk space and CPU time. Our
goal is to develop a dynamic instrumentation system that maximizes the amount of
information gained via instrumentation while minimizing the amount of overhead incurred
due that instrumentation. Although overhead can be measured with time, no techniques
have been introduced to measure the amount of information in performance evaluation.

This paper presents an algorithm called entropy based instrumentation. The original
entropy algorithm is modified to evaluate the information content of performance data. The
algorithm can be used to observe parallel execution progress, and to detect
program phases.

The concept of entropy is introduced as a measure of uncertainty of a random variable in
the Information Theory [7][8]. We use this concept to evaluate information content of
instrumentation data. Two aspects of the algorithm are:

• All the events that will occur during the execution can be known priori, but the
exact order is not known.

• The uncertainty of events occurrence increases information content of its data.

From the trace history and the current program status, we can calculate the information
content of the current instrumentation data. This happens every time execution progresses
and a new event occurs. Hence progress of the program can easily be observed from
entropy values. The following sections show how this algorithm is implemented and can
be used to detect program phases in a parallel monitoring environment.

2.ENTROPY

Entropy, H, is defined in Equation 1, where A' is a positive constant and n is the number of
possible events whose possibilities of occurrence p i.

n

shown that 0 < H < log (n) . The units in which theSince

entropy is measured depend on the base of the logarithm used in the definition. Bit and nats
are used for base 2 and e respectively.

The entropy H can also be interpreted as the average amount of information that a message
contains [2][3]. Suppose there is a message which could be either a, or a2 with probabilities
Pi — 1 and p 2 - 0 respectively; the entropy H is 0, which means the message contains no
new information. At the other extreme, suppose p : = p 2 = 1/2. The entropy is then H = 1
bit. Receiving the message clearly adds new information.

30

3.THE ALGORITHM

There are two concepts in the algorithm: a window that holds a sequence of events that
happened in the past, and a probability of transition scheme that describes the possibility of
an event sequence occurrence. An event in the right most position of the window is called
the most recent event, and an event which has just occurred and is not in the window is
called the destination event. Concerning a monitoring system a destination event represents
an event to be decided either to be processed (collected, time-stamped, forwarded) or not.
The length of a sequence to be observed determines the size of a window.

The probability of a windowed event sequence, p w, is a product of each repeated event's
probability in the window. Repetition is counted including the most recent event, however,
if a most recent event is different from the previous one, then p K is equal to the probability
of only that most recent event. For example, if we have the “AAAA” event sequence in the
window with probabilities p 0 = Pa, pi = po ot0, Pi =Pi cti, P3 = P2 ot2 respectively, where
pA is the probability of event A to occur and o ’s are the transition probabilities, then p w is
equal to:

PW=P0P\P2P3 (2)

The transition scheme between events is shown in Figure [I], The circle on the left
represents a most recent event and the circles on the right represent possible events at the
destination. The arcs between the circles show transitions both to a same kind of event and
to a different event with probabilities a and /? respectively, which are also known as
conditional probabilities.

most recent destination
event a - event

Figure 1. Trace Transition Diagram

If an event of interest occurs during program execution then it is more likely to occur again
than those of any other events due to repeated execution of program segments. Based on
this, the conditional probabilities can be assigned to the transitions properly. Any
unexpected event (such as sudden changes in a sequence) with a very low possibility will
produce a big modified entropy value, likewise an expected event sequence (occurrence of
similar events) at the destination will produce a smaller value. Table [1] shows example
transition probabilities assigned based on repetition count for a window size of three.

Table 1. a And P Values

/ a (3
0 0.5 0.5
1 0.7 0.3
2 0 .9 0.1

31

The algorithm dynamically maintains a window that holds event history. At each iteration,
the algorithm identifies both the most recent and the destination event. The transition table
is then checked to determine which transitive edge to use (see Equation 3).

I Pwai l°g (a,)
1 Pwßi log (Pi)

i f same event occurs,
otherwise. (3)

An Example:

Suppose we have a set of events containing four elements, namely A,B,C,D, with
probabilities to occur p, = 0.25 each. We use a window size of three and transition
probabilities shown in Table [1] to calculate the modified entropy values for two different
window positions in an event sequence (see Figure 2).

m o s t r e c e n t
e v e n t

____ I
A B C D D D D D D C B . . .

t' destina tion

A B C D D ^ D D b C B .
t

Figure 2. Example Sequence and the Window in Two Different Positions
In the first window position, repetition_count = 0, thus p w = 0.25. The
destination is different from the most recent event so ¡50 must be used in
Equation 3. Then modified entropy, H , can be calculated as H = 0.0866 nats for
K=l. Similarly, for the second window position; repetition count-2, p w = p 0
Pi p 2 = 0.253 0.5: 0.7 and a2 must be used in the Equation 3, and H is calculated
as H = 0.0006 nats.

Another Example:

For this example, the window size is set to 4, and transition probabilities shown in Table 2.
Now, we have 3 different events in the set: A,B,C. We assume the following dynamic
occurrences for the events, and the left most is the first event in the stream:
A B B B B C C C C C C C C C C C C C C C C A

Table 2. Transition Probabilities

/ a ß

0 0.1 0 .4 5
1 0 .3 0 .3 5
2 0 .6 0 .2 0
3 0 .9 0 0 5

The results are shown in Table 3 from the entropy generator tool. When the event stream
goes into a repetitive pattern, the entropy value drops dramatically.

32

Table 3. Entropy Values For An Event Stream (window size 4)

I t e r a t i o n C u r r . E v e n t W in d o w M o d . E n t r o p y
0 A * * * * 2 .1 8 8 7 5 9
1 B ^ * * * 2 .9 9 5 7 3 2
2 B B A * * 0 .0 9 4 8 2 4
3 B B B A * 0 .2 7 5 8 4 6
4 B B B B A 0 .1 9 5 0 4 4
5 C B B B B 2 .3 2 8 4 4 8
6 C C B B B 0 .7 1 6 8 7 3
7 C C C B B 1 .9 8 6 0 9 0
8 C C C C B 0 .3 9 0 0 8 7
9 C C C C C 0 .0 0 0 0 0 0

10 C C C C C 0 .0 0 0 0 0 0
11 C C C C C 0 .0 0 0 0 0 0
12 C C C C C 0 .0 0 0 0 0 0
13 C C C C C 0 .0 0 0 0 0 0
14 C C C C C 0 .0 0 0 0 0 0
15 C C C C C 0 .0 0 0 0 0 0
16 C C C C C 0 .0 0 0 0 0 0
17 C C C C C 0 .0 0 0 0 0 0
18 C C C C C 0 .0 0 0 0 0 0
19 C C C C C 0 .0 0 0 0 0 0

2 0 C C C C C 0 .0 0 0 0 0 0
21 A C C C C 2 .3 2 8 4 4 8

From the experiments, the modified entropy values drop if the events repeat. In time driven
monitoring systems, multiple samples are usually taken from the same segment. Next
section discusses how the entropy algorithm can be used for monitoring.

4.USE OF ENTROPY CONCEPT FOR MONITORING

We sketch out an example to show how the modified entropy algorithm can be used to
quantify information content. We assume that the monitoring system is event-driven. That
means event occurrences will be reported as soon as they occur. Assume a master-slave
program, where a master process dispatches the tasks to the slave processes; then every
process, including the master, works on its own share, and finally the master collects the
successive results (see Figure 3).

33

A d u m m y p a r a l l e l c o d e

m a in (){
s e n s o r_ c a l l (p ro g r a m _ s t) ;
i f (d is p a tc h e r) {

fo r(i = 0 ; i < p r o c ; i+ +) {
s e n s o r _ c a l l (s e n d _ i) ;
s e n d (m e s s a g e _ i) ;

}
} e ls e {

s e n s o r _ c a l l (r e c v 1);
r e c e iv e (m e s s a g e 1);

}
fo r(i = 0 ; i < 100; i+ +) {

s e n s o r _ c a l l (d o _ c a lc) ;
d o _ c a lc () ;

}
i f (¡d is p a tc h e r) {

s e n s o r c a l l (s e n d r e s) ;
s e n d (re s u l t) ;

} e ls e {
fo r(i = 0 ; i < p ro c ; i+ +) {

s e n s o r_ c a l l (r e c v _ re s) ;
r e c e iv e (re s u l t) ;

s e n s o r_ c a l 1(p ro g ra m _ s p) ;

}

Figure 3. An Instrumented Dummy Program

Lines with s e n s o r _ c a l l () in Figure 3 are function calls to the instrumentation library
with an event name as an argument. The procedure d o _ c a l c () does not contain any
instrumentation. Exit points of structures are not instrumented because at the same level
starting point of next structure generates a time stamp for the previous exit.

The next step is to calculate the modified entropy values for each instrumentation point for
window size four. The results are shown in the Table 4. The first column in the table shows
instrumentation points visited by the master and the second column shows the associated
modified entropy values. The rest of the nodes (which correspond to the slaves) behave in a
similar fashion.

34

Table 4. Modified Entropy Values For Node 0 and Node 1,2,3

E v e n t in n o d e O M o d . E n t r o p y (K = 1 0 0)
E v e n t in

n o d e l ,2 ,3
M o d . E n t r o p v

(K = 1 0 0)
p r o g s t 2 .6 6 5 9 5 1 P ro g s t 6 .9 3 1 4 7 2
s e n d 0 2 .6 6 5 9 5 1 R e c v l 6 .9 3 1 4 7 2
r e c v 0 2 .6 6 5 9 5 1 d o c a lc 6 .9 3 1 4 7 2
s e n d 1 2 .6 6 5 9 5 1 d o c a lc 0 .4 9 9 3 4 5
s e n d 2 2 .6 6 5 9 5 1 d o c a lc 0 .0 2 4 9 9 2
s e n d 3 2 .6 6 5 9 5 1 d o c a lc 0 .0 0 0 7 4 3
d o c a lc 2 .6 6 5 9 5 1 d o c a lc 0 .0 0 0 0 0 4
d o c a lc 0 .0 7 3 8 6 8 d o c a lc 0 .0 0 0 0 0 4
d o c a lc 0 .0 0 1 4 2 2 d o c a lc 0 .0 0 0 0 0 4
d o c a lc 0 .0 0 0 0 1 6 d o c a lc 0 .0 0 0 0 0 4
d o c a lc 0 .0 0 0 0 0 0 d o c a lc 0 .0 0 0 0 0 4
d o c a lc 0 .0 0 0 0 0 0 d o c a lc 0 .0 0 0 0 0 4

d o c a lc 0 .0 0 0 0 0 0 d o c a lc 0 .0 0 0 0 0 4
d o c a lc 0 .0 0 0 0 0 0 s e n d re s 0 .9 2 1 0 3 4
d o c a lc 0 .0 0 0 0 0 0 P ro g sp 6 .9 3 1 4 7 2
d o c a lc 0 .0 0 0 0 0 0
d o c a lc 0 .0 0 0 0 0 0

s e n d re s 0 .3 5 4 2 4 4
re c v re s 2 .6 6 5 9 5 1
re c v re s 2 .6 6 5 9 5 1
r e c v r e s 2 .6 6 5 9 5 1
r e c v re s 2 .6 6 5 9 5 1

p r o g s p 2 .6 6 5 9 5 1

The master produces different trace data from the slaves since its control flow is different.
After first few instrumentation points, the information content of the instrumentation data
drops dramatically for the master and the slaves. This is because the routine executes
repeatedly reporting the same event.

5.PHASE DETECTION RESULTS

Phase is a period of time when a program exhibits similar behavior. Programs can go
through several different phases during execution, such as initialization, computation,
communication etc.. These phases can be detected by observing CPU usage, or periods of
low/high message frequency [6].

To test our algorithm with real programs, we built a tool to process trace data collected with
an event-driven monitoring system. The results show that the algorithm can be used to
observe execution progress and to detect phases based on the performance data collected.

We conducted several experiments with an existing monitor (AIMS [9]). We present here
one of them, which is parallel matrix transpose program. The program is provided with the
AIMS performance monitor package, and “transposes” a matrix on the nodes of a
hypercube. Initially the matrix is distributed by rows among a certain number of processor;
at the end of the run, the matrix is distributed by columns. The following results are
obtained after processing the trace output of this program which runs on 16 hosts.

35

Figure 4. Master Processor: Modified Entropy Values For Matrix Transpose Program

Figure 5. Slave Processors 1-15: Modified Entropy Values For Matrix Transpose, They All
Behave Same As Expected

Figure [4] shows the master; it distributes the data to the slave nodes in row basis, and then
column basis. Figure [5] shows the slaves; the slaves (1 to 15) receive the data from the
master. The slaves all have similar characteristics, which are different from the master as
expected. The modified entropy value goes down when a program repeats similar activities,
and any changes make a peak in the graph. Both figures show execution progress and
changes in behavior.

Paradyn [1] uses timers and counters to detect the phases of an application. A timer
determines the length of an observation interval, and counters determine which event is
dominant in that interval. At the end of each interval counters are checked, and the

36

maximum is found. This maximum counter represents the phase. We do not use timers and
counters in our approach because our algorithm automatically determines a dominant event
during execution.

6. CONCLUSION

This paper presented the modified entropy algorithm and have described its use with
examples for phase detection and program progress observation. Progress observation
works both with event-driven and data-driven systems. Time-driven systems collect
runtime data in certain intervals, and samples are obtained from the execution. If samples
come repeatedly from the same segment, we must know that similar event data comes from
the sampler not because of the same segment executes repeatedly. It is not a repetitive
pattern of application but sampled data. To obtain similar behavior as in event-driven data
collection, samples must be removed between entry and exit of program constructs. Our
entropy based instrumentation algorithm eliminates redundant samples on the fly.

7. REFERENCES

Hollingsworth, J.K., Miller B.P. ve Callaghan, M.D., “The Paradyn Parallel Performance
Tools and PVM”, SIAM Press, 1994.
Jones, D.S. “Elementary Information Theory”, Claredon Press, Oxford, 1979.
Lim, S.J., “Two Dimensional Signal and Image Processing”, Prentice-Hall Inc., 1990
Özmen, A., “A Minimal Overhead Instrumentation System”, In Proceedings o f the
Fifteenth International Symposium on Computer and Information Sciences (ISCIS XV),
Istanbul, Turkey, October 2000.
Özmen, A., “Paralel Gözlemleme (monitör) Sistem Mimarisi”, In ELECO 2000 - Elektrik-
Elektronik-Bilgisayar Mühendisliği Sempozyumu, Bursa, Turkey, November 2000.
Özmen, A. and Lumpp, J., “Dynamic Configuration of Software Instrumentation in
Parallel Systems”. Proceeding o f The Twelfth International Symposium on Computer and
Information Sciences (ISCIS XII), Antalya, Ekim 1997.
Schwartz, L.S., “The Principals of Coding, Filtering and Information Theory”, Cleaver-
Hume Press, 1963.
Shannon, C.E., “The Mathematical Theory of Communication”, The University of Illinois
Press, Urbana, 1963.
Yan, J. “Performance Tuning with AIMS-An Automated Instrumentation and Monitoring
System for Multicomputers”, In Proceedings o f the 27th HICS, Wailea, Hawaii, January
1994.

37

