

# Yuzuncu Yil University Journal of Agricultural Sciences

(Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi)

https://dergipark.org.tr/en/pub/yyutbd



e-ISSN: 1308-7584

Research Article

## Estimation of CH<sub>4</sub> Emissions and Global Warming Potential of Marmara Region Small Livestock Sector with 2019 Refinement IPCC Tier-2 Method

# Büşra YAYLI\*<sup>1</sup>, İlker KILIÇ<sup>2</sup>

Bursa Uludag University, Agriculture Faculty, Department of Biosystems Engineering, Bursa, Türkiye

<sup>1</sup>https://orcid.org/0000-0002-0198-3550, <sup>2</sup>https://orcid.org/0000-0003-0087-6718

\*Corresponding author e-mail: busrayayli@uludag.edu.tr

#### **Article Info**

Received: 10.01.2025 Accepted: 04.06.2025 Online published: 15.09.2025 DOI: 10.29133/yyutbd.1617046

#### Keywords

Carbon footprint, Enteric fermentation, Goat, Manure management, Sheep **Abstract:** Livestock production is predominantly conducted in intensive farming operations, where large-scale production poses significant challenges related to waste management and environmental pollution. The Marmara Region represents a critical area in Türkiye where intensive animal feeding operations are widely practised. In contrast, goat and sheep farming in Türkiye generally rely on pasturebased or semi-intensive systems. This study aims to estimate methane (CH<sub>4</sub>) emissions from small ruminant farming in the Marmara Region over the past 20 years and to assess the resulting carbon footprint to evaluate its impact on global warming. Methane emissions were calculated using the Tier-2 methodology, incorporating the specific characteristics of the region and the general practices of small ruminant farming. Gross energy (GE) and methane emission factors (EF) were derived accordingly. For sheep, the gross energy was calculated as 22.5 MJ head-1 year-1, the methane emission factor from enteric fermentation (EFE) was 9.9 kg CH<sub>4</sub> head<sup>-1</sup> year<sup>-1</sup> and methane emissions from manure management (EF<sub>M</sub>) amounted to 4.3 kg CH<sub>4</sub> head<sup>-1</sup>year<sup>-1</sup>. Similarly, for goats, the GE was determined to be 24.6 MJ head<sup>-1</sup> year<sup>-1</sup>, while the EF<sub>E</sub>, and EF<sub>M</sub> were, 8.9 kg CH<sub>4</sub> head<sup>-1</sup> year<sup>-1</sup> <sup>1</sup>, and 4.4 kg CH<sub>4</sub> head<sup>-1</sup> year<sup>-1</sup>, respectively. The study found that CH<sub>4</sub> emission rates increased proportionally with the number of animals. To determine the carbon footprint resulting from CH<sub>4</sub> emissions, CO<sub>2</sub> equivalent values established by the Intergovernmental Panel on Climate Change (IPCC) were applied. Consequently, Balikesir and Çanakkale emerged as the cities with the largest carbon footprints from small ruminant farming within the Marmara Region.

**To Cite:** Yaylı, B, Kılıç, İ, 2025. Estimation of CH<sub>4</sub> Emissions and Global Warming Potential of Marmara Region Small Livestock Sector with 2019 Refinement IPCC Tier-2 Method. *Yuzuncu Yil University Journal of Agricultural Sciences*, 35(3): 403-414. DOI: https://doi.org/10.29133/yyutbd.1617046

#### 1. Introduction

The global population is expected to reach 8.5 billion by 2030, increase further to 9.7 billion by 2050, and potentially rise to 10.4 billion by 2100 (UN, 2024). With this population growth, the demand for primary food products will also rise, leading to an increase in inputs for both animal and crop production. The United Nations predicts that crop and animal food production will increase by 70% by 2050 to supply increasing food demand (FAO, 2009; Xu et al., 2021; Siddiqui et al., 2024). The rising demand for animal products in developing countries is referred to as the "animal husbandry revolution" (Thornton, 2015; Rojas-Downing et al., 2017). Animal husbandry is predominantly carried out on

intensive farms, where large-scale production results in waste and pollution issues, posing environmental and enterprise challenges.

In the face of various challenges confronting agriculture in the 21<sup>st</sup> century-such as a decreasing rural workforce, the need for increased food production, the demand for sustainable and efficient methods, and adaptation to climate change-the balance between food security, production efficiency, and environmental protection must be maintained. It is argued that if current climate adaptation efforts aimed at achieving net-zero emissions are not implemented, global warming could reach dangerous levels by 2050, as activities releasing CO<sub>2</sub> emissions surpass sustainable temperature thresholds (Shukla et al., 2022; European Commission, 2023; Scafetta, 2024).

Among anthropogenic activities, the most critical factors contributing to global warming are the combustion of fossil fuels, transportation, industrialization, industrial farming, consumption patterns, and deforestation. Crop production and animal breeding—essential for global food production—are among the most significantly impacted activities by climate change (Dinc et al., 2022; Ayinla et al., 2024). The livestock sector accounts for 14.5% of global greenhouse gas emissions (Gerber et al., 2013; Hur et al., 2023; Raihan, 2024). While the growing importance of global animal husbandry as a source of food input is undeniable, it also substantially increases greenhouse gas emissions, particularly CO<sub>2</sub> (carbon dioxide), CH<sub>4</sub> (methane), and N<sub>2</sub>O (nitrous oxide), thereby contributing significantly to global climate change (Yaylı and Kılıç, 2020). The primary sources of CH<sub>4</sub> emissions in animal farming are enteric fermentation and manure management. Enteric CH<sub>4</sub> emissions are particularly high in ruminant animals such as cattle and sheep. In contrast, poultry have simple stomachs and produce minimal CH<sub>4</sub> due to limited microbial fermentation (Dunkley et al., 2015; Yaylı, 2019). Similarly, animals such as horses, donkeys, mules, and pigs generate very low levels of CH<sub>4</sub> in their digestive systems, as they lack rumination and exhibit reduced CH<sub>4</sub> emissions. Additionally, excessive fertilizer application in intensive animal feeding systems leads to nutrient runoff into water bodies, increasing nitrogen and phosphorus levels, which in turn boost algae populations and trigger eutrophication (Eshel, 2014). Moreover, the production of forage crops in intensive systems can result in deforestation, habitat destruction, and biodiversity loss (Thornton, 2015; Williams, 2024).

The Intergovernmental Panel on Climate Change (IPCC) has developed Tier 1, Tier 2 and Tier 3 methodologies for estimating greenhouse gas emissions. The Tier 1 approach involves calculations based on default emission factors and reflects the number of animals. The Tier 2 method uses more detailed, country-specific data, taking into account parameters such as animal characteristics, feed composition, and manure management systems. The Tier 3 method applies when a country-specific methodology is developed, allowing for a highly detailed and precise calculation of emissions.

In Türkiye, the livestock sector is primarily dominated by poultry farming, as well as cattle and sheep breeding, within the scope of food production. The Marmara region stands out as the area where intensive animal feeding units are widely utilized. In the small ruminant category, the number of sheep increased by 3.2% in the first six months of 2024 compared to 2023, reaching 43 394 million heads, while the number of goats increased by 2.6%, reaching 10 571 million heads. Pasture-based and semi-intensive systems are commonly employed for goat and sheep breeding across Türkiye. In Marmara region, sheep and goat breeding in small ruminant farming is predominantly conducted on pastures during warmer periods and in pens during colder seasons.

This study aims to estimate the CH<sub>4</sub> emissions resulting from enteric fermentation and manure management in small livestock farming in the Marmara region over the past twenty years using the Tier-2 method and to assess the global warming potential of these emissions.

#### 2. Material and Methods

## 2.1. Study area

The Marmara Region is situated between 39° 15′ - 42° north latitude and 30° 45′ - 26° 45′ east longitude in the Northern Hemisphere. Located in the northwest of Türkiye, it is the second smallest region in the country after Southeastern Anatolia (Figure 1). Despite its small size, the region has a high population density, hosting one-third of Türkiye's urban population The Marmara Region does not exhibit a distinct climate type; instead, it has transitional characteristics between the Black Sea, continental, and Mediterranean climates. This climatic diversity supports the cultivation of a wide

variety of agricultural products. While the regional economy is predominantly based on industry and trade, the Marmara Region also has the highest proportion of cultivated land. This is facilitated by favorable conditions such as low slopes, fertile soils suitable for agriculture, and the adoption of modern agricultural techniques.



Figure 1. Provincial boundaries of the Marmara Region.

## 2.2. Animal Data

This study examined sheep and goat populations, which are widely utilized in small ruminant breeding in Türkiye. The Marmara Region demonstrates higher productivity in cattle, sheep, goat, and buffalo breeding compared to other regions (Uzabacı & Üstüner, 2023). Data on the number of sheep and goat in the region for the last two decades were obtained from the Turkish Statistical Institute (TUIK, 2024). Sheep constitute 78.7%, and goats 21.3%, of small ruminant breeding in the region (Tables 1–2). Balıkesir (33%) is the leading province in sheep breeding, while Çanakkale (30%) ranks highest in goat breeding (Figure 2). Over the last 20 years, the total number of sheep in the Marmara Region was 53 392 981, and the number of goats was 14 462 191.

Table 1. Sheep numbers in the Marmara Region between 2004 and 2023

| Year | Balıkesir | Bilecik | Bursa   | Edirne  | Kocaeli | Kırklareli | Sakarya | Tekirdag | Yalova  | Canakkale | Istanbul |
|------|-----------|---------|---------|---------|---------|------------|---------|----------|---------|-----------|----------|
| 2004 | 601 792   | 47 292  | 207 302 | 162 677 | 38 906  | 168 061    | 29 305  | 105 478  | 9 964   | 357 278   | 51 397   |
| 2005 | 687 400   | 52 213  | 233 531 | 182 834 | 42 713  | 176 326    | 29 295  | 117 215  | 13 840  | 328 919   | 47 895   |
| 2006 | 694 353   | 50 471  | 240 587 | 183 946 | 38 055  | 189 214    | 30 089  | 123 964  | 13 722  | 319 189   | 52 846   |
| 2007 | 666 707   | 49 530  | 246 090 | 199 734 | 38 017  | 179 779    | 26 174  | 127 507  | 9 3 7 9 | 312 556   | 74 466   |
| 2008 | 656 525   | 57 649  | 215 615 | 193 896 | 37 741  | 184 539    | 30 731  | 136 055  | 8 483   | 342 767   | 73 057   |
| 2009 | 607 537   | 55 785  | 240 959 | 185 817 | 27 679  | 159 497    | 27 109  | 124 877  | 7 290   | 347 173   | 69 321   |
| 2010 | 630 302   | 55 547  | 260 740 | 194 875 | 43 415  | 156 578    | 34 504  | 132 035  | 8 947   | 352 039   | 72 347   |
| 2011 | 660 787   | 65 943  | 280 587 | 209 615 | 47 819  | 164 925    | 38 807  | 259 095  | 14 134  | 373 155   | 69 446   |
| 2012 | 695 691   | 75 145  | 327 052 | 205 557 | 68 431  | 215 161    | 47 249  | 202 259  | 15 118  | 400 508   | 72 623   |
| 2013 | 791 355   | 77 325  | 334 892 | 251 426 | 72 456  | 245 155    | 54 604  | 180 659  | 17 361  | 415 543   | 74 229   |
| 2014 | 816 290   | 84 299  | 356 049 | 289 453 | 84 310  | 316 328    | 57 541  | 243 697  | 19 212  | 429 076   | 72 378   |
| 2015 | 792 896   | 76 427  | 351 444 | 288 917 | 77 104  | 303 426    | 53 081  | 227 771  | 20 340  | 442 621   | 100 255  |
| 2016 | 796 947   | 81 347  | 330 549 | 279 403 | 75 767  | 224 926    | 43 333  | 240 088  | 19 126  | 469 725   | 95 091   |
| 2017 | 984 381   | 97 109  | 392 466 | 275 480 | 78 355  | 259 008    | 46 015  | 255 052  | 21 350  | 458 250   | 110 858  |
| 2018 | 1 006 072 | 112 324 | 440 595 | 293 658 | 75 340  | 294 197    | 49 848  | 249 056  | 24 834  | 475 409   | 117 543  |
| 2019 | 1 112 323 | 137 988 | 494 594 | 299 256 | 81 973  | 276 161    | 56 203  | 257 249  | 23 193  | 489 443   | 133 022  |
| 2020 | 1 299 936 | 142 863 | 504 467 | 322 342 | 97 435  | 341 345    | 67 709  | 271 356  | 27 911  | 541 692   | 143 933  |
| 2021 | 1 495 379 | 156 577 | 512 040 | 357 976 | 96 292  | 349 248    | 75 062  | 315 020  | 33 082  | 592 111   | 151 556  |
| 2022 | 1 272 236 | 148 163 | 520 022 | 357 794 | 103 601 | 339 036    | 79 464  | 307 050  | 26 692  | 577 047   | 155 537  |
| 2023 | 1 183 486 | 132 997 | 519 221 | 307 009 | 105 619 | 306 075    | 76 416  | 290 976  | 25 986  | 570 799   | 141 050  |

| Year | Balıkesir | Bilecik | Bursa   | Edirne | Kocaeli | Kırklareli | Sakarya | Tekirdag | Yalova | Canakkale | Istanbul |
|------|-----------|---------|---------|--------|---------|------------|---------|----------|--------|-----------|----------|
| 2004 | 142 836   | 27 443  | 56 467  | 35 420 | 13 223  | 46 747     | 4 332   | 43 034   | 2 612  | 163 335   | 6 733    |
| 2005 | 148 832   | 27 987  | 60 068  | 39 565 | 11 297  | 51 687     | 9 332   | 44 252   | 2 475  | 166 819   | 5 552    |
| 2006 | 150 659   | 24 486  | 63 207  | 41 268 | 11 817  | 51 644     | 5 595   | 48 121   | 2 240  | 182 920   | 5 544    |
| 2007 | 154 717   | 24 135  | 64 602  | 39 521 | 10 404  | 43 396     | 10 554  | 41 825   | 1 589  | 206 241   | 7 391    |
| 2008 | 160 914   | 25 978  | 54 612  | 40 507 | 11 299  | 53 945     | 8 184   | 45 044   | 2 184  | 215 553   | 8 524    |
| 2009 | 141 842   | 25 650  | 52 855  | 37 528 | 7 856   | 42 055     | 6 919   | 43 533   | 1 826  | 195 813   | 10 178   |
| 2010 | 160 963   | 34 742  | 69 097  | 39 928 | 13 186  | 42 618     | 9 844   | 45 859   | 3 906  | 198 861   | 11 170   |
| 2011 | 164 745   | 41 506  | 95 944  | 41 433 | 15 965  | 48 666     | 12 030  | 48 589   | 4 082  | 204 206   | 12 200   |
| 2012 | 187 668   | 42 205  | 96 916  | 44 678 | 20 616  | 68 394     | 14 865  | 60 926   | 3 895  | 218 898   | 12 921   |
| 2013 | 202 338   | 42 955  | 107 121 | 54 121 | 24 835  | 76 633     | 20 130  | 56 881   | 4 653  | 227 131   | 14 221   |
| 2014 | 212 058   | 52 064  | 109 296 | 61 377 | 26 594  | 97 838     | 19 361  | 65 540   | 5 977  | 232 034   | 15 771   |
| 2015 | 207 334   | 41 093  | 107 379 | 57 717 | 25 653  | 95 490     | 18 128  | 60 257   | 6 169  | 237 228   | 15 666   |
| 2016 | 194 574   | 45 463  | 111 310 | 55 602 | 25 238  | 60 982     | 16 359  | 62 311   | 5 918  | 246 750   | 16 228   |
| 2017 | 188 518   | 43 028  | 80 001  | 55 218 | 25 151  | 61 932     | 16 230  | 55 824   | 4 007  | 238 592   | 21 914   |
| 2018 | 183 782   | 42 867  | 82 603  | 54 889 | 23 340  | 67 374     | 15 393  | 53 050   | 3 126  | 234 408   | 19 367   |
| 2019 | 171 635   | 49 964  | 84 931  | 56 054 | 24 981  | 56 978     | 16 972  | 51 824   | 3 046  | 226 106   | 16 942   |
| 2020 | 187 456   | 49 951  | 82 778  | 55 630 | 23 942  | 66 195     | 19 904  | 50 020   | 4 338  | 242 972   | 22 393   |
| 2021 | 189 650   | 45 889  | 80 050  | 60 380 | 22 536  | 62 914     | 19 431  | 49 951   | 6 003  | 258 355   | 22 113   |
| 2022 | 162 060   | 42 107  | 76 609  | 62 045 | 22 908  | 61 706     | 18 857  | 43 493   | 3 391  | 248 043   | 22 799   |

Table 2. Goat numbers in the Marmara Region between 2004 and 2023

2023

143 630

40 482

73 454

57 846

20 031

61 703

17 294

48 607

3 645

229 011

21 549

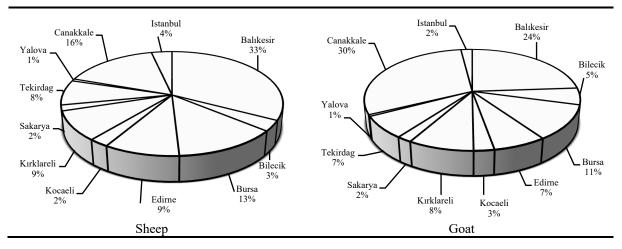



Figure 2. Small ruminant distribution by province in the Marmara Region.

## 2.3. CH<sub>4</sub> emissions from livestock and manure management: Tier-2 methodology

In this study, enteric CH<sub>4</sub> emission from small ruminants in the Marmara region is estimated based on the IPCC Tier 2 method. The Tier-2 method offers a more detailed and comprehensive approach, taking into account local characteristics, manure management systems, and regional variations in animal species, in contrast to the Tier-1 method, which solely considers the number of animals. Equation 1-9 presents the Tier-2 equations utilized to calculate the total energy required for the metabolic functions of animals.

The equations used in calculating CH<sub>4</sub> emissions from enteric fermentation and manure management resulting from the rumination of small ruminants are provided in Equation 10-12. In determining these emissions, the general manure systems of the region, along with the characteristics of the waste, were taken into account.

Certain coefficients have been established by the International Panel on Climate Change (IPCC) to evaluate the impact of agricultural animal husbandry on global climate change. To assess this impact, the IPCC has determined the CO<sub>2</sub> equivalence of CH<sub>4</sub> gas to be 25 kg over 100 years (IPCC, 2006).

$$NE_{m} = Cf_{i} * [Weight]^{0.75}$$

$$\tag{1}$$

NE<sub>m</sub>=Net energy required for maintenance (MJ day<sup>-1</sup>)

Cfi =a coefficient that varies according to each animal category (MJ day<sup>-1</sup> kg<sup>-1</sup>)

Weight = live-weight of animal (kg)

$$NE_a = C_a * Weight$$
 (2)

 $NE_a = Net energy for animal activity (MJ day<sup>-1</sup>)$ 

C<sub>a</sub> = coefficient corresponding to the nutritional status of the animal (MJ day<sup>-1</sup> kg<sup>-1</sup>)

NE<sub>m</sub>=Net energy required for maintenance (MJ day<sup>-1</sup>)

$$NE_g = [WG_{lamb/kid} * [a+0.5b(BW_i+BW_f)]/365$$
 (3)

 $NE_g = Net energy for growth (MJ day^{-1})$ 

WG<sub>lamb/kid</sub> = the weight gain (BW<sub>f</sub>-BW<sub>i</sub>)(kg year<sup>-1</sup>)

BW<sub>f</sub>= Live body weight at 1 year of age or live weight at the time of slaughter if slaughtered before 1 year of age (kg)

BW<sub>i</sub>=Live body weight at the time of weaning (kg)

a,b = constants for use in calculating  $NE_g$ 

$$NE_1 = [(5*WG_{weam})/365]*EV_{milk}$$
 (4)

 $NE_1$  = Net energy for lactation for sheep (MJ day<sup>-1</sup>)

WG<sub>weam</sub> = the weight gain of the lamb between birth and weaning (kg)

 $EV_{milk}$  = the energy required to produce 1 kg of milk (MJ kg<sup>-1</sup>)

$$NE_{wool} = [EV_{wool} * Pr_{wool}]/365$$
 (5)

 $NE_{wool} = Net$  energy to produce wool for sheep and goats (MJ day<sup>-1</sup>)

 $EV_{wool}$  = the energy value of each kg of wool produced (MJ kg<sup>-1</sup>)

 $Pr_{wool} = annual wool production per sheep (kg year<sup>-1</sup>)$ 

$$NE_{P} = C_{pregnancy} * NE_{m}$$
 (6)

 $NE_p$  = net energy required for pregnancy (MJ day<sup>-1</sup>)

C<sub>pregnancy</sub> = pregnancy coefficient

$$REM = [1.123 - (4.092*10^{-3}*DE) + (1.126*10^{-5}*DE^{2}) - (25.4/DE)]$$
(7)

REM = The ratio of net energy available in a diet for maintenance to digestible energy consumed

DE = digestibility of feed expressed as a fraction of gross energy

$$REG = [1.164 - (5.16*10^{-3}*DE) + [1.308*10^{-5}*DE^{2}] - (37.4/DE)]$$
(8)

REG = The ratio of net energy available for growth in a diet to digestible energy consumed

$$GE = [(NE_m + NE_a + NE_1 + NE_p)/REM) + (NE_g + NE_{wool})/REG] / DE$$
(9)

 $GE = Gross energy (MJ day^{-1})$ 

$$EF_{E} = [GE*(Y_{m}/100)*365]/55.65$$
 (10)

EF<sub>E</sub> = CH<sub>4</sub> emission factor from enteric fermentation (kg CH<sub>4</sub> head<sup>-1</sup>year<sup>-1</sup>)

 $Y_m$  = Percentage of gross energy in feed converted to methane

$$EF_{M} = (VS*365)[B_{o}*0.67* \sum \frac{MCF}{100} *AWMS]$$
(11)

 $EF_M = CH_4$  emission factor from manure management (kg CH<sub>4</sub> head<sup>-1</sup> year<sup>-1</sup>)

VS = Volatile solid excretion rates (kg dry matter head-1 day-1)

 $B_0$  = maximum methane producing capacity of manure produced in animals according to their categories (m<sup>3</sup> CH<sub>4</sub> kg<sup>-1</sup> of VS excreted)

 $0.67 = \text{conversion factor of m}^3 \text{ CH}_4 \text{ to kilograms CH}_4$ 

MCF = Methane conversion factors for manure management systems (%)

AWMS = Animal manure management system according to climate zone, dimensionless

$$VS = [GE*(1-(DE/100)+(UE*GE))]*[(1-Ash)/18.45]$$
(12)

VS = Volatile solid excretion rates (kg VS day<sup>-1</sup>)

UE = Urine energy expressed as a fraction of GE

Ash = Ash content of feed

18.45 = conversion factor for dietary GE per kg of dry matter (MJ kg<sup>-1</sup>).

## 2.4. Statistical Analysis

SPSS 29.0.2 software was used to evaluate differences in the calculated data. A one-way analysis of variance (ANOVA) was conducted at the p < 0.05 significance level, and Tukey's Honestly Significant Difference (HSD) test was employed for post hoc comparisons.

## 3. Results and Discussions

In this study, the characteristic features of the most commonly bred sheep and goat breeds in Türkiye were taken into consideration. For goats, the Hair and Saanen breeds are the most widely raised (Atac et al., 2014). In the Marmara Region, the predominant sheep breed is Kıvırcık, followed by Merino and Akkaraman (Taşkın & Kandemir, 2022). For the calculation of CH<sub>4</sub> emissions from small ruminant farming in the region, some coefficients were adopted from the IPCC report, while others were obtained from region-specific studies in the literature.

Equation 9 was used to calculate the total daily energy requirements (GE) of sheep and goats. The total energy requirement for small ruminants is calculated by considering the net energy requirements (NE<sub>m</sub>, Ne<sub>a</sub>, NE<sub>l</sub>, NE<sub>p</sub>, NE<sub>wool</sub>) and the digestibility of energy in feed (REM, REG) properties. Equations 1-6 were used to determine gross energy requirements. Equations 7-8 were used to calculate the energy obtained from feed. For the characteristic features of the animal species included in the equations, the goat breed commonly raised in the region, the Hair goat and the Saanen breed, and the sheep breed, the Kıvırcık sheep, were considered. There are some coefficients belonging to the animals in the Tier-2 equations. If these coefficients are not available or not determined specifically for the region, the coefficients determined by the IPCC can be used. Since there are no coefficients specific to Türkiye or the Marmara region, the coefficients in the equations were taken from the IPCC report.

The CH<sub>4</sub> emission factor from enteric fermentation was estimated using Equation 10 and the CH<sub>4</sub> emission factor from manure management was estimated using Equation 11. The conversion factor (Y<sub>m</sub>), which expresses the percentage of conversion of gross energy in feed into methane affecting the CH<sub>4</sub> emission factors from enteric fermentation for sheep and goats, was taken from the IPCC guide as 6.7 for sheep and 5.5 for goats. In the calculation of CH<sub>4</sub> emissions from manure management, the relevant coefficients are selected according to the management system by taking into account the climate characteristics of the region and the system in which the manure is managed. As a result of the calculations, the enteric CH<sub>4</sub> emission factor of a sheep per year was determined as 9.9 kg CH<sub>4</sub> and that of a goat as 8.9 kg CH<sub>4</sub> (Table 3).

Table 3. Metabolic energy requirements and methane emission factors for sheep and goats

|       | GE (MJ head <sup>-1</sup> year <sup>-1</sup> ) | EF <sub>E</sub> (kg CH <sub>4</sub> head <sup>-1</sup> year <sup>-1</sup> ) | EF <sub>M</sub> (kg CH <sub>4</sub> head <sup>-1</sup> year <sup>-1</sup> ) |
|-------|------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Sheep | 22.5                                           | 9.9                                                                         | 4.3                                                                         |
| Goat  | 24.6                                           | 8.9                                                                         | 4.4                                                                         |

In determining CH<sub>4</sub> emissions from manure, both manure and management system characteristics are considered. Manure characteristics include the amount of volatile solids (VS) and the maximum amount of CH<sub>4</sub> that can be produced from the manure (B<sub>0</sub>). Ideally, published data from national sources should be used for average VS values. However, since this data is not available, it was calculated with Equation 12, considering the feed characteristics used in the relevant livestock farming

in the region. Due to the unavailability of country- and region-specific data, the B<sub>0</sub> value was taken as the default value provided in the IPCC guide.

In selecting factors related to manure characteristics and management systems for the Marmara region, the region was evaluated in the context of Eastern Europe. In this region, manure is typically found in pastures for part of the year, making it impossible to accumulate. During colder seasons, animals are kept in shelters. When determining the Methane Conversion Factor (MCF), the weighted average of these two systems was used. Pasture management and solid storage were considered the basis for the system. CH<sub>4</sub> emission factors were calculated using the relevant data in based on Equation 11. The annual CH<sub>4</sub> emission factor from manure (EF<sub>M</sub>) for sheep was calculated to be 4.3 kg CH<sub>4</sub>, while for goats, it was calculated as 4.4 kg CH<sub>4</sub> (Table 3). The emission factors for both sheep and goats are similar to those determined for developed countries. Although Türkiye is a developing country, the Marmara region is the most developed region in the country in many respects. More advanced and modern methods are applied in livestock farming compared to other regions. Therefore, it is assumed that the emission factors in this region are higher.

By applying the same emission factors for sheep and goats across all provinces in the Marmara Region, the CH<sub>4</sub> emission rates from sheep and goat breeding over the past 20 years are presented in Tables 4–7 for each province. CH<sub>4</sub> emission rates have increased in direct proportion to the number of animals. Total CH<sub>4</sub> emissions calculated for the Marmara Region are 950 527 tons. The total CH<sub>4</sub> emissions generated solely by sheep amount to 758,180 tons, while emissions from goats account for 192 347 tons. Sheep account for 79.8% of the total CH<sub>4</sub> emissions, while goats contribute 20.2%. Of the total CH<sub>4</sub> emissions from small ruminant farming, 69.2% comes from enteric fermentation, while 30.8% is generated through manure management.

Significant differences were found between cities in enteric methane emissions and methane emissions from manure from small ruminants (p < 0.05). However, no significant differences were observed between cities in CH<sub>4</sub> emissions from sheep and goats over the years (p > 0.05).

Table 4. Annual enteric CH<sub>4</sub> emissions from sheep in the Marmara Region over the last 20 years (tons year<sup>-1</sup>)

| Year  | Balıkesir | Bilecik | Bursa  | Edirne | Kocaeli | Kırklareli | Sakarya | Tekirdag | Yalova | Canakkale | Istanbul |
|-------|-----------|---------|--------|--------|---------|------------|---------|----------|--------|-----------|----------|
| 2004  | 5 958     | 468     | 2 052  | 1 611  | 385     | 1 664      | 290     | 1 044    | 99     | 3 537     | 509      |
| 2005  | 6 805     | 517     | 2 312  | 1 810  | 423     | 1 746      | 290     | 1 160    | 137    | 3 256     | 474      |
| 2006  | 6 874     | 500     | 2 382  | 1 821  | 377     | 1 873      | 298     | 1 227    | 136    | 3 160     | 523      |
| 2007  | 6 600     | 490     | 2 436  | 1 977  | 376     | 1 780      | 259     | 1 262    | 93     | 3 094     | 737      |
| 2008  | 6 500     | 571     | 2 135  | 1 920  | 374     | 1 827      | 304     | 1 347    | 84     | 3 393     | 723      |
| 2009  | 6 015     | 552     | 2 385  | 1 840  | 274     | 1 579      | 268     | 1 236    | 72     | 3 437     | 686      |
| 2010  | 6 240     | 550     | 2 581  | 1 929  | 430     | 1 550      | 342     | 1 307    | 89     | 3 485     | 716      |
| 2011  | 6 542     | 653     | 2 778  | 2 075  | 473     | 1 633      | 384     | 2 565    | 140    | 3 694     | 688      |
| 2012  | 6 887     | 744     | 3 238  | 2 035  | 677     | 2 130      | 468     | 2 002    | 150    | 3 965     | 719      |
| 2013  | 7 834     | 766     | 3 315  | 2 489  | 717     | 2 427      | 541     | 1 789    | 172    | 4 114     | 735      |
| 2014  | 8 081     | 835     | 3 525  | 2 866  | 835     | 3 132      | 570     | 2 413    | 190    | 4 248     | 717      |
| 2015  | 7 850     | 757     | 3 479  | 2 860  | 763     | 3 004      | 526     | 2 255    | 201    | 4 382     | 993      |
| 2016  | 7 890     | 805     | 3 272  | 2 766  | 750     | 2 227      | 429     | 2 377    | 189    | 4 650     | 941      |
| 2017  | 9 745     | 961     | 3 885  | 2 727  | 776     | 2 564      | 456     | 2 525    | 211    | 4 537     | 1 097    |
| 2018  | 9 960     | 1 112   | 4 362  | 2 907  | 746     | 2 913      | 493     | 2 466    | 246    | 4 707     | 1 164    |
| 2019  | 11 012    | 1 366   | 4 896  | 2 963  | 812     | 2 734      | 556     | 2 547    | 230    | 4 845     | 1 317    |
| 2020  | 12 869    | 1 414   | 4 994  | 3 191  | 965     | 3 379      | 670     | 2 686    | 276    | 5 363     | 1 425    |
| 2021  | 14804     | 1550    | 5069   | 3544   | 953     | 3458       | 743     | 3119     | 328    | 5862      | 1500     |
| 2022  | 12595     | 1467    | 5148   | 3542   | 1026    | 3356       | 787     | 3040     | 264    | 5713      | 1540     |
| 2023  | 11 717    | 1 317   | 5 140  | 3 039  | 1 046   | 3 030      | 757     | 2 881    | 257    | 5 651     | 1 396    |
| TOTAL | 172 779   | 17 394  | 69 387 | 49 912 | 13 177  | 48 005     | 9 430   | 41 248   | 3 564  | 85 093    | 18 601   |

Table 5. Annual enteric CH<sub>4</sub> emissions from goat in the Marmara Region over the last 20 years (tons year<sup>-1</sup>)

| Year  | Balıkesir | Bilecik | Bursa  | Edirne | Kocaeli | Kırklareli | Sakarya | Tekirdag | Yalova | Canakkale | Istanbul |
|-------|-----------|---------|--------|--------|---------|------------|---------|----------|--------|-----------|----------|
| 2004  | 1 271     | 244     | 503    | 315    | 118     | 416        | 39      | 383      | 23     | 1 454     | 60       |
| 2005  | 1 325     | 249     | 535    | 352    | 101     | 460        | 83      | 394      | 22     | 1 485     | 49       |
| 2006  | 1 341     | 218     | 563    | 367    | 105     | 460        | 50      | 428      | 20     | 1 628     | 49       |
| 2007  | 1 377     | 215     | 575    | 352    | 93      | 386        | 94      | 372      | 14     | 1 836     | 66       |
| 2008  | 1 432     | 231     | 486    | 361    | 101     | 480        | 73      | 401      | 19     | 1 918     | 76       |
| 2009  | 1 262     | 228     | 470    | 334    | 70      | 374        | 62      | 387      | 16     | 1 743     | 91       |
| 2010  | 1 433     | 309     | 615    | 355    | 117     | 379        | 88      | 408      | 35     | 1 770     | 99       |
| 2011  | 1 466     | 369     | 854    | 369    | 142     | 433        | 107     | 432      | 36     | 1 817     | 109      |
| 2012  | 1 670     | 376     | 863    | 398    | 183     | 609        | 132     | 542      | 35     | 1 948     | 115      |
| 2013  | 1 801     | 382     | 953    | 482    | 221     | 682        | 179     | 506      | 41     | 2 021     | 127      |
| 2014  | 1 887     | 463     | 973    | 546    | 237     | 871        | 172     | 583      | 53     | 2 065     | 140      |
| 2015  | 1 845     | 366     | 956    | 514    | 228     | 850        | 161     | 536      | 55     | 2 111     | 139      |
| 2016  | 1 732     | 405     | 991    | 495    | 225     | 543        | 146     | 555      | 53     | 2 196     | 144      |
| 2017  | 1 678     | 383     | 712    | 491    | 224     | 551        | 144     | 497      | 36     | 2 123     | 195      |
| 2018  | 1 636     | 382     | 735    | 489    | 208     | 600        | 137     | 472      | 28     | 2 086     | 172      |
| 2019  | 1 528     | 445     | 756    | 499    | 222     | 507        | 151     | 461      | 27     | 2 012     | 151      |
| 2020  | 1 668     | 445     | 737    | 495    | 213     | 589        | 177     | 445      | 39     | 2 162     | 199      |
| 2021  | 1 688     | 408     | 712    | 537    | 201     | 560        | 173     | 445      | 53     | 2 299     | 197      |
| 2022  | 1 442     | 375     | 682    | 552    | 204     | 549        | 168     | 387      | 30     | 2 208     | 203      |
| 2023  | 1 278     | 360     | 654    | 515    | 178     | 549        | 154     | 433      | 32     | 2 038     | 192      |
| TOTAL | 30 760    | 6 853   | 14 323 | 8 817  | 3 390   | 10 848     | 2 489   | 9 069    | 668    | 38 922    | 2 574    |

Table 6. CH<sub>4</sub> emissions from sheep manure management in the Marmara Region over the last 20 years (tons year<sup>-1</sup>)

| Year  | Balıkesir | Bilecik | Bursa  | Edirne | Kocaeli | Kırklareli | Sakarya | Tekirdag | Yalova | Canakkale | Istanbul |
|-------|-----------|---------|--------|--------|---------|------------|---------|----------|--------|-----------|----------|
| 2004  | 2 588     | 203     | 891    | 700    | 167     | 723        | 126     | 454      | 43     | 1 536     | 221      |
| 2005  | 2 956     | 225     | 1 004  | 786    | 184     | 758        | 126     | 504      | 60     | 1 414     | 206      |
| 2006  | 2 986     | 217     | 1 035  | 791    | 164     | 814        | 129     | 533      | 59     | 1 373     | 227      |
| 2007  | 2 867     | 213     | 1 058  | 859    | 163     | 773        | 113     | 548      | 40     | 1 344     | 320      |
| 2008  | 2 823     | 248     | 927    | 834    | 162     | 794        | 132     | 585      | 36     | 1 474     | 314      |
| 2009  | 2 612     | 240     | 1 036  | 799    | 119     | 686        | 117     | 537      | 31     | 1 493     | 298      |
| 2010  | 2 710     | 239     | 1 121  | 838    | 187     | 673        | 148     | 568      | 38     | 1 514     | 311      |
| 2011  | 2 841     | 284     | 1 207  | 901    | 206     | 709        | 167     | 1 114    | 61     | 1 605     | 299      |
| 2012  | 2 991     | 323     | 1 406  | 884    | 294     | 925        | 203     | 870      | 65     | 1 722     | 312      |
| 2013  | 3 403     | 332     | 1 440  | 1 081  | 312     | 1 054      | 235     | 777      | 75     | 1 787     | 319      |
| 2014  | 3 510     | 362     | 1 531  | 1 245  | 363     | 1 360      | 247     | 1 048    | 83     | 1 845     | 311      |
| 2015  | 3 409     | 329     | 1 511  | 1 242  | 332     | 1 305      | 228     | 979      | 87     | 1 903     | 431      |
| 2016  | 3 427     | 350     | 1 421  | 1 201  | 326     | 967        | 186     | 1 032    | 82     | 2 020     | 409      |
| 2017  | 4 233     | 418     | 1 688  | 1 185  | 337     | 1 114      | 198     | 1 097    | 92     | 1 970     | 477      |
| 2018  | 4 326     | 483     | 1 895  | 1 263  | 324     | 1 265      | 214     | 1 071    | 107    | 2 044     | 505      |
| 2019  | 4 783     | 593     | 2 127  | 1 287  | 352     | 1 187      | 242     | 1 106    | 100    | 2 105     | 572      |
| 2020  | 5 590     | 614     | 2 169  | 1 386  | 419     | 1 468      | 291     | 1 167    | 120    | 2 329     | 619      |
| 2021  | 6 430     | 673     | 2 202  | 1 539  | 414     | 1 502      | 323     | 1 355    | 142    | 2 546     | 652      |
| 2022  | 5 471     | 637     | 2 236  | 1 539  | 445     | 1 458      | 342     | 1 320    | 115    | 2 481     | 669      |
| 2023  | 5 089     | 572     | 2 233  | 1 320  | 454     | 1 316      | 329     | 1 251    | 112    | 2 454     | 607      |
| TOTAL | 75 045    | 7 555   | 30 138 | 21 679 | 5 723   | 20 851     | 4 096   | 17 916   | 1 548  | 36 960    | 8 079    |

#### YYU J AGR SCI 35 (3): 403-414

Table 7. CH<sub>4</sub> emissions from goat manure management in the Marmara Region over the last 20 years (tons year<sup>-1</sup>)

| Year  | Balıkesir | Bilecik | Bursa | Edirne | Kocaeli | Kırklareli | Sakarya | Tekirdag | Yalova | Canakkale | Istanbul |
|-------|-----------|---------|-------|--------|---------|------------|---------|----------|--------|-----------|----------|
| 2004  | 628       | 121     | 248   | 156    | 58      | 206        | 19      | 189      | 11     | 719       | 30       |
| 2005  | 655       | 123     | 264   | 174    | 50      | 227        | 41      | 195      | 11     | 734       | 24       |
| 2006  | 663       | 108     | 278   | 182    | 52      | 227        | 25      | 212      | 10     | 805       | 24       |
| 2007  | 681       | 106     | 284   | 174    | 46      | 191        | 46      | 184      | 7      | 907       | 33       |
| 2008  | 708       | 114     | 240   | 178    | 50      | 237        | 36      | 198      | 10     | 948       | 38       |
| 2009  | 624       | 113     | 233   | 165    | 35      | 185        | 30      | 192      | 8      | 862       | 45       |
| 2010  | 708       | 153     | 304   | 176    | 58      | 188        | 43      | 202      | 17     | 875       | 49       |
| 2011  | 725       | 183     | 422   | 182    | 70      | 214        | 53      | 214      | 18     | 899       | 54       |
| 2012  | 826       | 186     | 426   | 197    | 91      | 301        | 65      | 268      | 17     | 963       | 57       |
| 2013  | 890       | 189     | 471   | 238    | 109     | 337        | 89      | 250      | 20     | 999       | 63       |
| 2014  | 933       | 229     | 481   | 270    | 117     | 430        | 85      | 288      | 26     | 1 021     | 69       |
| 2015  | 912       | 181     | 472   | 254    | 113     | 420        | 80      | 265      | 27     | 1 044     | 69       |
| 2016  | 856       | 200     | 490   | 245    | 111     | 268        | 72      | 274      | 26     | 1 086     | 71       |
| 2017  | 829       | 189     | 352   | 243    | 111     | 273        | 71      | 246      | 18     | 1 050     | 96       |
| 2018  | 809       | 189     | 363   | 242    | 103     | 296        | 68      | 233      | 14     | 1 031     | 85       |
| 2019  | 755       | 220     | 374   | 247    | 110     | 251        | 75      | 228      | 13     | 995       | 75       |
| 2020  | 825       | 220     | 364   | 245    | 105     | 291        | 88      | 220      | 19     | 1 069     | 99       |
| 2021  | 834       | 202     | 352   | 266    | 99      | 277        | 85      | 220      | 26     | 1 137     | 97       |
| 2022  | 713       | 185     | 337   | 273    | 101     | 272        | 83      | 191      | 15     | 1 091     | 100      |
| 2023  | 632       | 178     | 323   | 255    | 88      | 271        | 76      | 214      | 16     | 1 008     | 95       |
| TOTAL | 15207     | 3388    | 7081  | 4359   | 1676    | 5363       | 1231    | 4483     | 330    | 19242     | 1272     |

The value determined by the IPCC was used to calculate the carbon footprint resulting from CH<sub>4</sub> emissions in small livestock farming. The cities with the most significant impact on global warming potential, in terms of CO<sub>2</sub> equivalent emissions, are Çanakkale, Balıkesir, and Bursa (Figure 3).

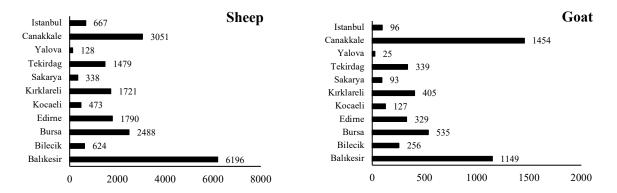



Figure 3. CO<sub>2</sub> equivalent of CH<sub>4</sub> emissions (kilotons of CO<sub>2</sub>) by city in the Marmara Region.

The CO<sub>2</sub> equivalence of CH<sub>4</sub> emissions over the last twenty years is considerable. When examining global warming potential on a CO<sub>2</sub> equivalence basis, an increase was observed in 2021, followed by a downward trend in the last two years (Figure 4). The increase in emissions in 2021 was primarily due to the rise in the number of animals that year. There is a positive correlation between the carbon footprint and the number of animals. Particularly in the breeding of lower-yield species, attempts to meet production demands by increasing animal numbers result in a higher carbon footprint.

#### YYU J AGR SCI 35 (3): 403-414

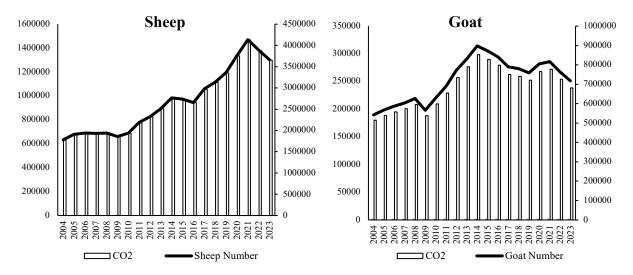



Figure 4. Small ruminants' CO<sub>2</sub> emissions footprint in the last 20 years (tonnes).

#### Conclusion

This study reveals the potential of  $CH_4$  emissions originating from small livestock farming in the Marmara region over the last 20 years and the size of the resulting carbon footprint. According to the study results, 69.2% of  $CH_4$  emissions from small livestock farming consist of enteric  $CH_4$ , while 30.8% come from manure management. Additionally, 79.8% of total  $CH_4$  emissions originate from sheep, while 20.2% come from goats. Significant differences (p < 0.05) were identified between cities in terms of enteric  $CH_4$  emissions from sheep and goat farming, as well as  $CH_4$  emissions from manure. However, when emissions were evaluated over the years, no significant differences were observed (p > 0.05). The carbon footprint of all  $CH_4$  emissions from sheep farming is approximately 19 Mt  $CO_2$  equivalent, whereas goat farming has a  $CO_2$  footprint of approximately 5 Mt  $CO_2$  equivalent. While the carbon footprints from emissions showed significant differences between cities (p < 0.05), no significant differences were observed across years (p > 0.05).

This study considered general characteristics, such as manure management and the breeds used in sheep farming, representing the Marmara region in calculating CH<sub>4</sub> emissions using the Tier-2 method. However, future studies should conduct more field research and create a national inventory by considering the characteristics that vary from region to region. More comprehensive policies can be developed for the sector, and more stringent measures can be taken within the scope of climate change adaptation for producers and the country.

## **Ethical Statement**

Ethical approval is not required for this study because no direct measurements were made on animals.

#### **Conflict of Interest**

All authors declare that there is no conflict of interest related to this article.

#### **Author Contributions**

The authors declare that they have contributed equally to the article. All authors declare that they have seen/read and approved the final version of the article ready for publication.

#### References

- Atac, F. E., & Burcu, H. (2014). The importance of hair goats in Turkey. *Journal of Agricultural Science and Technology*, 4(4), 364-369.
- Ayinla, R. A., Alao, O., Adesoji, S., Ayinla, R. A., & Olawuyi, S. O. (2024). Perceived effects of climate change on farm income: Insights from smallholder arable crops farmers in south-west Nigeria. *Yuzuncu Yil University Journal of Agricultural Sciences*, 34(4), 608-620. https://doi.org/10.29133/yyutbd.1501494
- Dinç, S. Ö., Künili, İ. E., & Çolakoğlu, F. (2022). Impact of climate change process on sustainable and safe food production. *Journal of Agricultural Faculty of Bursa Uludag University*, 36(2), 447-460. https://doi.org/10.20479/bursauludagziraat.994886
- Dunkley, C. S., Fairchild, B. D., Ritz, C. W., Kiepper, B. H., & Lacy, M.P. (2015). Carbon footprint of poultry production farms in South Georgia: A case study. *Poultry Science Association*, 24, 73-79. https://doi.org/10.3382/japr/pfu005
- Eshel, G., Shepon, A., Makov, T., & Milo, R. (2014). Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. *Proceedings of the National Academy of Sciences*, 111(33), 11996-12001. https://doi.org/10.1073/pnas.1402183111
- European Commission, (2023). 2050 long-term strategy. https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy en . Access date: 25.09.2024.
- FAO, (2009). Global agriculture towards 2050. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues\_papers/HLEF2050\_Global\_Agricul ture.pdf . Access date: 03.09.2024.
- Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). *Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities.* FAO, Rome.
- Hur, S. J., Kim, J. M., Yim, D. G., Yoon, Y., Lee, S. S., & Jo, C. (2023). Impact of livestock industry on climate change: Case study in South Korea—A review. *Animal Bioscience*, *37*(3), 405. https://doi.org/10.5713/ab.23.0256
- IPCC, (2006). Guidelines for national Greenhouse Gas Inventories. https://www.ipccnggip.iges.or.jp/public/ 2006gl/ . Access date: 07.10.2024
- Raihan, A. (2024). The interrelationship amid carbon emissions, tourism, economy, and energy use in Brazil. *Carbon Research*, 3(1), 11. https://doi.org/10.1007/s44246-024-00147-8
- Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. *Climate risk management, 16*, 145-163. https://doi.org/10.1016/j.crm.2017.02.001
- Scafetta, N. (2024). Impacts and risks of "realistic" global warming projections for the 21<sup>st</sup> century. *Geoscience Frontiers*, 15(2), 101774. https://doi.org/10.1016/j.gsf.2023.101774
- Shukla, P., Skea, J., Reisinger, A., Slade, R., Fradera, R., Pathak, M., Khourdajie, A., Belkacemi, M., van Diemen, R., Hasija, A., Lisboa, G., Luz, S., Malley, J., McCollum, D., Some, S., (eds.), P.V. (2022). *IPCC*, 2022: Climate Change 2022: Mitigation of Climate Change. Cambridge University Press.
- Siddiqui, S. A., Gadge, A. S., Hasan, M., Rahayu, T., Povetkin, S. N., Fernando, I., & Castro-Muñoz, R. (2024). Future opportunities for products derived from black soldier fly (BSF) treatment as animal feed and fertilizer-A systematic review. *Environment, Development and Sustainability*, 26(12), 30273-30354. https://doi.org/10.1007/s10668-024-04673-8
- Taşkın, T., & Kandemir, Ç. (2022). Marmara bölgesinde yerli ve kültür koyun ırklarının mevcut durumu. *Doğanın Sesi*, 5(9), 17-33.
- Thornton, P. K., Boone, R. B., & Ramírez Villegas, J. (2015). Climate change impacts on livestock. CCAFS Working Paper.
- TUIK, (2024). Livestock Statistics. Access date: 3.10.2024.
- UN, (2024). United Nations, Population. www.un.org. Access date: 19.03.2024
- Uzabacı, E., & Üstüner, H. (2023). Investigation of small ruminant and cattle livestock in the Marmara Region by simple correspondence analysis. *Harran University Journal of the Faculty of Veterinary Medicine*, 12(2), 209-215. https://doi.org/10.31196/huvfd.1364289

- Williams, J. (2024). Contribution of livestock farming to environmental pollution in China. *Journal of Animal Health*, 4(1), 43-53. https://doi.org/10.47604/jah.2510
- Xu, X., Sharma, P., Shu, S., Lin, T. S., Ciais, P., Tubiello, F. N., Smith, P., Campbell, N., & Jain, A. K. (2021). Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. *Nature Food*, *2*(9), 724-732.
- Yaylı, B. (2019). Calculation of Carbon And Water Footprints of Three Broiler Operations in Bursa Region And Determination Of Their Environmental Sustainabilities (Master's thesis, Bursa Uludag University (Türkiye)).
- Yaylı, B., & Kılıç, I. (2020). Estimation of global warming potential by Tier-1 method of dairy cattle farms. *International Journal of Biosystems Engineering*, 1(2), 79-86.