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Abstract

This study presents a sliding mode controller design for DC motor speed control using opti-
mization algorithms. The design of sliding mode controllers typically requires expert input
during the parameter determination phase. Traditionally, these parameters are set through
trial-and-error methods based on the experience of specialists. However, this approach can
be both time-consuming and costly. The application of optimization methods automates the
parameter-tuning process, reducing human intervention and, in turn, minimizing both design
time and costs. The goal of this study is to enhance the performance of optimization meth-
ods by hybridizing them with chaotic systems. The random structures of chaotic systems
allow optimization algorithms to explore a broader solution space, thereby improving their
performance. The analyses conducted in this study reveal that hybrid chaotic algorithms
outperform their original ones. The data indicate that the use of hybrid algorithms generally
leads to a decrease in Steady-State Error. Additionally, it is observed that when all hybrid
algorithms are employed, the sliding mode controller does not exhibit any overshoot. The
results demonstrate that the sliding mode controller performs effectively, achieving low
settling time, rise time, and steady-state error, while also preventing chattering. Among
the methods examined, the sliding mode controller optimized with the Chaotic Henry Gas
Solubility Optimization algorithm delivers the best performance, ensuring optimal system
stability.

1. Introduction

Sliding Mode Controllers (SMCs) are recognized as an important controller in nonlinear dynamic system control, known for their robustness
and efficiency. One of the most important advantages of these controllers is their robustness to system uncertainties and disturbances. SMCs
are widely applied in fields such as robotics, aerospace, electric vehicles, energy systems, and automotive industries. However, to maximize
the performance of a sliding mode controller, precise tuning of specific controller parameters is essential. The accurate selection of these
parameters is critical for system stability. Traditionally, determining controller parameters has been done through trial and error, which is a
time-consuming and complex process. This problem can be overcome by optimization methods. Optimization methods allow the sliding
mode controller parameters to be tuned more efficiently. These methods simplify controller design, reduce human intervention, and enhance
system performance.
Optimization methods help to identify the most suitable parameters or strategies for a given system or process, thereby reducing costs,
increasing efficiency and improving processes. In the context of control systems, optimization methods serve as a crucial tool for enhancing
controller performance and making the system more robust. Moreover, in recent years, hybrid approaches have been developed to improve
the performance of optimization methods. One such approach involves hybridizing optimization methods with chaotic systems. Due to their
high sensitivity and randomness, chaotic systems facilitate a broader exploration of the solution space in optimization processes, leading to
better results.
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One of the commonly used optimization methods in the literature is the Henry Gas Solubility Optimization (HGSO) algorithm. This
algorithm simulates gas solubility behavior, providing a robust foundation for optimization tasks in various fields such as machine learning
and control systems [1, 2]. Furthermore, it can be further enhanced by integrating with other metaheuristic algorithms, such as Simulated
Annealing (SA), Harris Hawk Optimization (HHO), and the Aquila Optimizer (AQO) [3–6]. The hybridization of HGSO with other
metaheuristic algorithms has been shown to enhance the algorithm’s performance in terms of solution accuracy and convergence speed.
Additionally, there are applications of hybridizing the HGSO algorithm with opposition-based learning (OBL) strategies. Studies such
as OBL/HGSO for PID parameter optimization and CNN-OBL/HGSO for autonomous vehicle systems have been conducted [7, 8]. To
overcome certain limitations in engineering designs, researchers are increasingly using chaotic systems, characterized by sensitivity to
initial conditions and complex, unpredictable behavior. The integration of chaotic dynamics into optimization algorithms has been shown to
enhance the algorithms’ capabilities to escape local optima and improve convergence rates [9,10]. For instance, chaotic maps provide a more
structured level of randomness compared to traditional random processes, allowing optimization algorithms to explore the solution space
more effectively [10]. This is particularly important in the context of the HGSO algorithm, as chaotic hybridization can improve the search
capabilities of the HGSO algorithm by diversifying the exploration strategies used during optimization.
The random behaviors of chaotic systems within a structured framework have led to their hybridization with various metaheuristic optimization
methods. The studies in the literature related to this are as follows; Chaotic PID-controlled Particle Swarm Optimization (PSO), logistic and
tent map PSO for complex functions, chaotic quantum particle swarm optimization with support vector regression (SVRCQPSO), hybrid
multi-stage probabilistic selection particle swarm optimization supported by sine chaotic inertial weight and symmetric tangent chaotic
acceleration coefficients (MPSPSO-ST), chaotic PSO for fuzzy system parameter optimization, singer chaotic map hybrid PSO for laser
cutting problems (LPSPSO), quantum evolutionary algorithm for chaotic search strategy (QEA), evolutionary algorithms hybridized with
chaotic mapping-based Aquila optimizer (CMAOE), chaotic multi-objective evolutionary algorithms, chaotic simulated annealing for the
traveling salesman problem, wavelet chaotic simulated annealing neural network for the traveling salesman problem (WCSANN), chaotic
simulated annealing for multi-task optimization problems, chaotic whale optimization algorithm for production scheduling problems, chaotic
whale optimization algorithm tested with benchmark functions, and hybrid whale optimization algorithm with fractional chaotic map for
parameter estimation in wind-diesel power systems [11–26].
In this study, a sliding mode controller has been designed for the speed control of a DC motor. The parameters of the sliding mode controller
have been tuned by using optimization methods. Henry Gas Solubility Optimization (HGSO), Particle Swarm Optimization (PSO), Whale
Optimization Algorithm (WOA), Simulated Annealing (SA), and Evolutionary Algorithms (EA) optimization methods have been employed.
To examine the effects of chaotic systems on optimization methods, these algorithms have been hybridized with the Rössler, Duffing-Van
Der Pol, and Sprott-A chaotic equations [27]. The results of the Chaotic Henry Gas Solubility Optimization (CHGSO), Chaotic Particle
Swarm Optimization (CPSO), Chaotic Whale Optimization Algorithm (CWOA), Chaotic Simulated Annealing (CSA), Chaotic Evolutionary
Algorithms (CEA), HGSO, PSO, WOA, SA, and EA algorithms have been compared.
The paper consists of five sections. The first section provides a brief introduction and an evaluation of recent studies. The second section
presents information about the HGSO and CHGSO methods, as well as the chaotic system used. The third section deals with the optimization
of sliding mode controller (SMC) parameters for DC motor speed control. In the fourth section, the performances of the optimization
methods are compared. The fifth section presents an evaluation of the findings and the conclusions.

2. Materials and Methods

2.1. Henry gas solubility optimization algorithm

The Henry Gas Solubility Optimization Algorithm is a physics-based optimization method. This method is based on Henry’s Law, which
defines the relationship between the solubility of gases in liquids and the pressure of the gas on the liquid. According to Henry’s Law, at a
constant temperature, the solubility of gases in a liquid is directly proportional to the partial pressure of the gas. This algorithm considers
various factors that affect the solubility of gases in a liquid and aims to increase the solubility level of the gas within the system [28].
The HGSO algorithm takes place in 8 steps.
Step 1. Initialization process: The number of gases (population size N) and their positions are initialized according to the following equation:

Xi(t +1) = Xmin + r ∗ (Xmax −Xmin) (2.1)

The initial positions of the gas particles are established using equation (2.1). Here, Xmin and Xmax define the boundaries of the problem, r is a
random number between 0 and 1, and Xi denotes the position of the ith gas particle within the gas particle population. The initial values for
Henry’s constant, the partial gas pressure, and the constant (enthalpy) are assigned according to the following equation.

H j(t) = l1 ∗ r

Pi j(t) = l2 ∗ r

C j(t) = l3 ∗ r

(2.2)

According to equation (2.2), H j denotes the Henry constant of the cluster j, Pi j represents the partial gas pressure of the ith gas particle
within cluster j, C j is the enthalpy constant of cluster j and t indicates the number of iterations. It is important to note that l1, l2 and l3 are
constant values, with l1 = 0.05, l2 = 100 and l3 = 0.01 [28].
Step 2. Clustering: The gas particle population is segmented into clusters that each contain an equal number of gas particles. Because the
clusters consist of similar gases, the Henry and enthalpy constants are uniform across the clusters.
Step 3. Evaluation: Each gas particles within the clusters are assessed using the objective function. Following this assessment, the gas
particles are ranked from best to worst results.
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Step 4. Updating the Henry constant: The Henry constant is updated according to equation (2.3).

H j(t +1) = H j(t)∗ e−C∗[ 4
T (t)−

1
T 0 ]

T (t) = e−
t

iter

(2.3)

In equation (2.3), H j represents Henry’s constant of cluster j, T denotes temperature, T 0 = 298.15K is the reference temperature [28], t
refers to the current iteration, and iter is the total number of iterations.
Step 5. Updating the solubility: Gas solubility is updated according to equation (2.4).

Si j(t) = K ∗H j(t +1)∗Pi j(t) (2.4)

According to equation (2.4), Si j represents the solubility of ith gas particle in cluster j, Pi j denotes the partial gas pressure of ith gas particle
in cluster j, and K is a constant value.
Step 6. Updating the positions: The positions of gas particles are updated according to equation (2.5).

Xi j(t +1) = Xi j(t)+F ∗ r ∗⋎∗ (Xibest(t)−Xi j(t))+F ∗ r ∗a∗ (Si j(t)∗Xbest(t)−Xi j(t))

⋎= β ∗ e
− Fbest (t)+ε

Fi j (t)+ε

ε = 0.05

(2.5)

In equation (2.5), Xi j is the position of ith gas particle in cluster j, while r is a random number ranging from 0 to 1. Xibest refers to the
position of optimal gas particle, and Xbest denotes the position of optimal gas particle within the entire population. The parameter ⋎ indicates
the capability of the ith gas particle in cluster j to interact with other gases in its cluster. Parameter a defines the influence of gas particles on
the ith gas particle in cluster j (a=1), while β is a constant value. Fi j represents the value of the objective function for the ith gas particle in
cluster j, whereas Fbest refers to the value of the objective function for the optimal gas particle across the entire population. Additionally, F
is a flag (F=±1) that alters the direction of movement for the gas particle’s position.
Step 7. Escape from local optima: To escape the local optimum, the gas particles are organized, and the less effective gas particles are
identified. The selection process is carried out according to equation (2.6).

Nw(t) = N ∗ (r ∗ (M2 −M1)+M1)

M1 = 0.1

M2 = 0.2

(2.6)

Here, N is the gas particle number, Nw is the inferior gas particle number to be selected.
Step 8. Updating the positions of the worst agents: The positions of the gas particles chosen in step 7 are randomly updated within the global
boundaries of the problem.

Gi j(t +1) = Gmin + r ∗ (Gmax −Gmin) (2.7)

According to equation (2.7), Gi j represents the position of ith gas particle in cluster j and Gmin, Gmax denotes the global boundaries of the
problem. For clearer comprehension of the HGSO method, the pseudocode for the optimization algorithm is provided in Algorithm 2.1.

1: Initialization Xi (i = 1, 2,. . . N), number of gas types i, H j , Pi j, C j, l1, l2 and l3. equations (2.1) and (2.2)
2: Divide the population agents into the number of gas types (cluster) with the same Henry’s constant value H j.
3: Evaluate each cluster j.
4: Get the best gas Xibest in each cluster, and the best search agent Xbest .
5: while t < maximum number of iterations do
6: for each search agent do
7: Update the positions of all search agents using equation (2.5)
8: end for
9: Update Henry’s constant of each gas type using equation (2.3)
10: Update solubility of each gas using equation (2.4)
11: Rank and select number of worst agents using equation (2.6)
12: Update the position of the worst agents using equation (2.7)
13: Update the best gas Xibest , and the best search agent Xbest .
14: end while
15: t = t +1
16: return Xbest

Algorithm 2.1: Pseudo-code of HGSO algorithm [28]
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2.2. Chaotic Henry gas solubility optimization algorithm

Chaotic systems are dynamic systems that exhibit unpredictable behaviors due to their sensitivity to initial conditions, despite having a
deterministic structure. Among the most prominent characteristics of these systems are complexity, extreme sensitivity, and cyclic structures.
These features of chaotic systems present significant opportunities in optimization processes. In particular, chaotic structures enhance the
exploration capabilities of optimization algorithms, enabling them to avoid local optima and closer to global solutions.
The hybridization of optimization methods with chaotic systems utilizes the complex nature of these systems as an advantage, thereby
enhancing algorithm performance. This hybridization is typically implemented by integrating chaotic maps into optimization algorithms. For
example, the use of chaotic behavior in the exploration phases of traditional optimization algorithms expands the search area and increases
the probability of finding an optimal solution.
Hybridization is particularly successful in reducing the time to solution and improving the quality of the solutions obtained. The literature
indicates that hybrid optimization methods provide higher success rates. For these reasons, the Rössler chaotic system (2.8), the Duffing-Van
Der Pol Chaotic System (2.9), and the Sprott-A chaotic system (2.10) have been selected for hybridizing the HGSO algorithm in this
study [27, 29]. The equation and initial conditions for the Rössler chaotic system are provided below.

ẋ =−y− z

ẏ = x+a∗ y

ż = b+ z∗ (x− c)

(2.8)

The parameters and initial conditions are a = 0.2, b = 0.2, c = 5.7; x(0) =−9,y(0) = 0,z(0) = 0, respectively [30].

ẋ = y

ẏ = a∗ (1− x2)∗ y− x3 +b∗ cos(c∗ z)

ż = 1

(2.9)

The parameters and initial conditions are a = 0.2, b = 5.8, c = 3; x(0) = 0,y(0) = 0,z(0) = 0, respectively [27].

ẋ = y

ẏ = y∗ z− x

ż = 1− y2

(2.10)

The initial conditions are x(0) = 0,y(0) = 1,z(0) = 0 [29].

Figure 2.1: CHGSO Flowchart diagram [27]
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The main objective of this study is to boost the performance of the HGSO algorithm by utilizing the advantages and features offered by
chaotic systems. Unpredictability, which is the main feature of these systems, plays an important role in increasing the effectiveness of
optimization algorithms. Chaotic systems, due to their inherently complex structures, contribute to the creation of a richer and more effective
search space when integrated into algorithms. The non-repetitive and ergodic properties of chaotic systems enable the development of a
broader and efficient search strategy in stochastic searches. This property suggests that randomness can be used in optimization processes.
Specifically, the randomness in chaotic systems becomes an effective tool for improving the overall performance of the algorithm when
combined with randomly generated numbers (r) and the equations (2.1),(2.2),(2.5),(2.6),(2.7) [27]. When the HGSO algorithm is hybridized
with the Duffing–Van der Pol, Rössler, and Sprott-A chaotic systems, the resulting methods are denoted as Cd−vHGSO, CrHGSO, and
CsHGSO, respectively. The flow diagram of the CHGSO algorithm is presented in Figure 2.1 to provide a clearer understanding of the
chaotic updates integrated into the HGSO algorithm.

3. Modeling of Sliding Mode Controller for a DC Motor Application

The block diagram of the conventional SMC is presented in Figure 3.1.

Figure 3.1: Block diagram of the conventional SMC

The control signal applied to the U motor, the equivalent control signal (Ueq), and the switching control signal (Usw ) are presented in
Figure 3.1. The speed control of a DC motor has been implemented using SMC. The transfer function obtained for the speed control of the
DC motor is as follows;

ω(s)
Va(s)

=

Kt
JLa((

s+Ra
La

)( s+B
J

)
+ KbKt

JLa

) . (3.1)

The mathematical model of the DC motor is given in equation (3.1). In equation (3.1), Va is the applied voltage to the motor, Ra is the
resistance of the motor windings, La is the inductance of the motor windings, Kb is the electrical constant, J is the moment of inertia, B is the
damping constant, Kt is the mechanical constant, and ω is the angular velocity of the motor. In this study, the parameters of DC motor [27],
which were simulated for speed control, are presented in Table 3.1.

Parameter DC motor
Ra(Ω) 0.517
La(H) 0.0573
B 0.000244
J(kgm2/s2) 0.00000145
Kb(V s/rad) 0.0112
Kt(Nm/A) 0.0112
reduction ratio 1/52

Table 3.1: The parameters of the DC motor

For simplicity, the following variables have been defined in equation (3.2).

A =
Kt

JLa

D =
Ra

La
+

B
J

E =
Ra

La
∗ B

J
+

KbKt

JLa

(3.2)
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When the variable definitions are substituted into equation (3.1), the following equations (3.3)-(3.7) are obtained:

ω(s)
Va(s)

=
A

s2 +Ds+E
(3.3)

ω̈(t)+Dω̇(t)+Eω(t) = AVa (3.4)

x1 = ω(t)

x2 = ẋ1 = ω̇(t)

ẋ2 = ω̈(t)

(3.5)

X =
[
x1 x2

]T

y = x1 = ω(t)

u =Va(t)

(3.6)

ẋ2 = ω̈(t) =−Dω̇(t)−Eω(t)+AVa. (3.7)

In the design of SMC, the first step should be the design of the sliding surface. Typically, the switching function is chosen as a linear form of
the state variables, as shown in equation (3.8) [31].

s(X) =
[
s1(X) s2(X) · · · sm(X)

]T

C =
[
cT

1 cT
2 cT

3 · · · cT
m
]T

s(X) =CX

(3.8)

In traditional SMC, the expression commonly used for designing the sliding surface is in the form given by equation (3.9). Here,
λ ∈ R+Present a positive number denoting the gradient of the sliding surface, and n denotes the system order [31].

s(X , t) =
(

d
dt

+λ

)n−1
e(t) (3.9)

For example, in the case of a second-order system, the surface equation is given in equation (3.10).

s(X , t) =
(

d
dt

+λ

)2−1
e(t) = λe(t)+ ė(t) (3.10)

In SMC, during the design of the surface, where s(X , t) = ṡ(X , t) = 0 the error approaches zero. Therefore, the sliding mode is defined as
given in equation (3.11).

s(X , t) = λe(t)+ ė(t) = 0

ṡ(X , t) = λ ė(t)+ ë(t) = 0
(3.11)

The condition that ensures the system states reach or move towards the sliding surface is called the reaching condition. When the system is
under the reaching condition, its trajectory is in the reaching phase [31]. There are various approaches to the reaching condition in sliding
mode control, and the Lyapunov function is widely used. The Lyapunov function is represented by the following equation (3.12).

V (s) =
1
2

s2(t) (3.12)

Here, for stability, the conditions V > 0 and V̇ < 0 must be satisfied.

V̇ (s) =
1
2

d
dt

s2(t)≤−η |s(t)| (3.13)

In equation (3.13), η ∈ R+ denotes a positive real number. When the derivative of V (s) is taken, the stability condition described above
transforms into the form shown in equation (3.14).

ṡ(t)≤−η sign(s(t)) (3.14)
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According to equation (3.14), since there is a condition for reaching s(t) = 0 in finite time, it is referred to as the reaching condition. For
η > 0, the system state trajectories will reach the sliding surface s(t) = 0 and remain on that surface.
In SMC, for the design of the sliding surface, equation (3.15) can be used, and by utilizing equation (3.16) for the derivative of the sliding
surface function, if its derivative is set equal to zero. By substituting into the equation and simplifying, the following equations (3.17)–(3.21)
are obtained.

s(t) =Ce(t)+ ė(t) =C (ωr(t)−ω(t))+(ω̇r(t)− ω̇(t)) (3.15)

ṡ(t) = 0 =−K sign(s(t))

ṡ(t) =C (ω̇r(t)− ω̇(t))+(ω̈r(t)− ω̈(t)) = 0 =−K sign(s(t))
(3.16)

ṡ(t) =C (ω̇r(t)− ω̇(t))+ ω̈r(t)− (−Dω̇(t)−Eω(t)+uA) =−K sign(s(t)) (3.17)

ṡ(t) = (Cω̇r(t)−Cω̇(t))+ ω̈r(t)+Dω̇(t)+Eω(t)−uA =−K sign(s(t)) (3.18)

ṡ(t) = (Cω̇r(t)−Cω̇(t))+ ω̈r(t)+Dω̇(t)+Eω(t)+K sign(s(t)) =−u(t)A (3.19)

u(t) =
1
A
[Cω̇r(t)−Cω̇(t)+ ω̈r(t)+Dω̇(t)+Eω(t)+K sign(s(t))] (3.20)

u(t) =
1
A
[(D−C)ω̇(t)+Eω(t)+Cω̇r(t)+ ω̈r(t)+K sign(s(t))] (3.21)

In order to reduce chattering in SMC, the control signal is modified using a smooth sigmoid function. The resulting control signal is given in
equation (3.22).

u(t) =
1
A

[
(D−C)ω̇(t)+Eω(t)+Cω̇r(t)+ ω̈r(t)+K

(
s

|s|+δ

)]
0 < δ < 1

(3.22)

The parameters K, C, and δ in equation (3.22) are values that need to be determined. The block diagram of the designed system is shown in
Figure 3.2.

Figure 3.2: Block diagram of the designed system

4. Results

In this section, simulation results are presented to demonstrate the performance of the optimized controllers. Table 4.1 presents the parameters
used in optimization methods compared in the study.
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Method Parameters

CsHGSO

Number of iterations: 50
Cd−vHGSO Number of gas particles: 50
CrHGSO Number of clusters: 5

M1 = 0.1, M2 = 0.2
HGSO(2019)
[28]

L1 = 0.005, L2 = 100, L3 = 0.01

a, b, k = 1
e = 0.05

Cd−vPSO Number of iterations: 50
CrPSO Number of swarm: 50
CsPSO C1 = 2.1(Individual learning coefficient)
PSO(1998) [32] C2 = 2.1(Social learning coefficient)
Cd−vWOA
CrWOA Number of iterations: 50
CsWOA Number of whales: 50
WOA(2016)
[33]
Cd−vsA Number of iterations: 50
CrSA Number of materials: 50
CSSA Cooling rate: 0.98
SA(1987) [34]
Cd−vEA Number of iterations: 50
CrEA Number of parents: 20
CsEA Number of children: 4
EA(2002) [35]

Table 4.1: Algorithm parameters

The parameters K, C, and δ of the sliding mode controller, as specified in equation (3.22), have been optimized using the HGSO [28],
PSO [32], WOA [33], SA [34], EA [35], algorithms and chaotic variants. The parameters adjusted by these algorithms are presented in
Table 4.2.

Method C K δ Fitness
Cd−vHGSO 398.062587 209874.34347 0.329845 0.000384
CsHGSO 362.340149 208738.325916 0.306580 0.000385
Cd−vWOA 334.291252 209715.546287 0.273285 0.000386
CrHGSO 375.658937 208968.3768195 0.286351 0.000387
CrWOA 350.691352 209380.016280 0.268539 0.000388
HGSO 350.595683 209657.567603 0.192955 0.000390
CsWOA 310.583040 208472.372945 0.237463 0.000391
WOA 278.291252 208010.546287 0.207646 0.000392
SA 219.907082 209039.747574 0.18824 0.000398
CrSA 256.357642 201728.395761 0.452480 0.000420
Cd−vEA 282.926727 196335.511718 0.121435 0.000448
CsEA 320.415718 194239.978390 0.148088 0.000450
CrEA 294.671428 197376.736512 0.153561 0.000463
CsSA 307.340209 195382.379581 0.728305 0.000471
EA 367.261204 193033.390611 0.113622 0.000474
Cd−vSA 374.13673 196431.024497 0.926444 0.000501
PSO 340.435828 206990.671095 0.141625 0.000557
CrPSO 370.617110 180237.177519 0.356741 0.000642
CsPSO 385.144228 175253.264785 0.654917 0.000674
Cd−vPSO 387.398806 177413.126137 0.75771 0.000693

Table 4.2: The parameters of the SMC optimized by the algorithms for the DC motor

The parameters of the SMC optimized according to the error-based ITSE objective function are presented in Table 4.2. It is observed that
the best objective function result is provided by the Cd−vHGSO algorithm. Additionally, when the HGSO, WOA, and EA algorithms are
hybridized with the chaotic equation, a convergence toward the minimum of the objective function is observed.
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(a) The EA algorithm (b) The CrEA algorithm

(c) The CsEA algorithm (d) The Cd−vEA algorithm

(e) The SA algorithm (f) The CrSA algorithm

(g) The CsSA algorithm (h) The Cd−vSA algorithm

(i) The PSO algorithm (j) The CrPSO algorithm

Figure 4.1: The control signals generated by the algorithms for DC motor (Part 1)
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(k) The CsPSO algorithm (l) The Cd−vPSO algorithm

(m) The WOA algorithm (n) The CrWOA algorithm

(o) The CsWOA algorithm (p) The Cd−vWOA algorithm

(q) The HGSO algorithms (r) The CrHGSO algorithm

(s) The C− sHGSO algorithm (t) The Cd−vHGSO algorithm

Figure 4.1: The control signals generated by the algorithms for DC motor (Part 2)

Figure 4.1 presents the control signals generated by the optimized SMC for the DC motor. It can be observed that the chattering is reduced in
the optimization methods hybridized with chaotic equations. As the parameter δ in the smooth sigmoid function approaches one, the reduction
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in chattering is expected. When reviewing Table 4.2, it is evident that the δ values in the hybrid algorithms are closer to 1 compared to the
original algorithms. For this reason, it has been observed that hybrid algorithms are more effective in optimizing δ .

(a) The responses of the EA algorithms (b) Zoomed-in view of (a)

(c) The responses of the SA algorithms (d) Zoomed-in view of (c)

(e) The responses of the PSO algorithms (f) Zoomed-in view of (e)

(g) The responses of the WOA algorithms (h) Zoomed-in view of (g)

(i) The responses of the HGSO algorithms (j) Zoomed-in view of (i)

Figure 4.2: The step response of the optimized SMC for the DC motor.
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Figure 4.2, the speed responses of the DC motor controlled by the sliding mode controller to a unit step reference signal are presented.
In Figure 4.2d, it is observed that, except for the SA algorithm, the other algorithms demonstrate lower tracking errors when hybridized
with chaotic systems. An analysis of the control signals reveals that the EA and chaotic EA algorithms exhibit similar responses, and no
significant reduction in chattering is observed in Cd−vEA after hybridization. However, a noticeable decrease in chattering is observed in the
Rössler and Sprott-A systems. Although the rise time (Tr) and settling time (Ts) exhibit some degradation in the chaotic PSO algorithm
compared to the PSO, a notable reduction in chattering is achieved, indicating improved control smoothness. For the SA and chaotic SA
algorithms, although a slight improvement in chattering is noted after hybridization, there are deteriorations in rise time, settling time, and
steady-state error.In the evaluation of the WOA and chaotic WOA algorithms, it is noted that the chaotic WOA algorithms do not exhibit any
change in settling time and rise time. However, a significant improvement is observed in chattering and steady-state error. The analysis
of the results produced by the HGSO and chaotic HGSO algorithms reveals that hybridizing the HGSO algorithm with chaotic systems
leads to a reduction in steady-state error and an improvement in settling time. Additionally, while the rise time improves in Cd−vHGSO,
it remains unchanged in the other variants. An examination of the control signals indicates a significant reduction in chattering, where a
notable improvement in chattering is observed within the first 0.45 seconds, during which the system remains within the settling band in the
speed response.
Based on Figure 4.2, a detailed analysis of the effects of the algorithms on performance metrics is presented in Table 4.3 by examining the
responses of the DC motor to the unit step reference signal.

Algorithm Tr Ts(%1) Steady-State Error
Cd−vHGSO 0.068 0.084 0.0022
CrHGSO 0.070 0.088 0.0023
CsHGSO 0.070 0.086 0.0024
HGSO 0.070 0.090 0.0025
Cd−vWOA 0.070 0.088 0.0024
CrWOA 0.072 0.090 0.0026
CsWOA 0.072 0.090 0.0028
WOA 0.072 0.090 0.0030
Cd−vEA 0.082 0.096 0.0014
CrEA 0.082 0.098 0.0014
CsEA 0.080 0.094 0.0020
EA 0.078 0.102 0.0018
Cd−vSA 0.080 0.100 0.0094
CrSA 0.080 0.102 0.0092
CsSA 0.076 0.094 0.0058
SA 0.070 0.090 0.0026
Cd−vPSO 0.096 - 0.0140
CrPSO 0.098 - 0.0130
CsPSO 0.094 0.124 0.052
PSO 0.074 - 0.0175

Table 4.3: Comparison of the Step Response of the SMC for the DC motor

When examining the results presented in Table 4.3, the Friedman test was conducted to determine whether at least one of the methods could
be considered statistically acceptable. In accordance with common practice in the literature, the significance level was set at a = 0.05 [36].
When this test was applied to Table 4.3, the obtained p-value was 0.002727. Since p < a , H0 hypothesis (stating that the methods have
similar effects) was rejected, and the alternative hypothesis (H1, stating that there is a statistically significant difference among the methods)
was accepted.
Optimization algorithms were applied to a different DC motor whose parameters are provided in Table 4.4, and the performance was
evaluated based on rise time, settling time, and steady-state error criteria, as well as through the Friedman statistical test. Among the
compared methods, the CHGSO algorithm yielded the best overall performance across all evaluation metrics.

Parameter DC motor2
Ra(Ω) 0.6
La(H) 0.012
B 0.0167
J(kgm2/s2) 0.0167
Kb(V s/rad) 0.8
Kt(Nm/A) 2 0.8

Table 4.4: The parameters of the DC motors2

5. Conclusion

The results of this study demonstrate that hybridizing the HGSO, WOA, EA, and PSO algorithms with chaotic equations significantly
enhances control performance. The use of hybrid algorithms generally exhibits a tendency to decrease Steady-State Error. A lower
steady-state error means that the system remains in a position closer to the reference value in the long term, and this is an indicator of an
improvement in control performance. In addition, it has been observed that the SMC does not show any overshoot. While a significant
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improvement was achieved in the settling time (Ts) HGSO and EA algorithms for the 1% error band, it was found that the rise time (Tr)
remained constant in the HGSO and WOA algorithms. These findings offer an important advantage, especially in control applications that
require high precision.
In addition, chattering caused by high frequency switching in physical systems can negatively affect the life of systems. Chattering prevention
is of critical importance in terms of preventing damage to system components. The findings obtained in this study reveal that the SMC
with chaotic-based optimized parameters not only provides low settling time, rise time, and steady state error, but also offers an effective
performance in terms of chattering prevention.
In this context, the application of optimization algorithms in the parameter setting process of control methods reduces time and labor costs
by minimizing human intervention. According to the Friedman test, at least one of the applied methods exhibits a statistically significant
difference. The results of the study show that their performance can be improved by hybridizing optimization methods with chaotic systems.
SMC optimized by the Chaotic Henry Gas Solubility Optimization algorithm has provided optimal stability for the system by exhibiting the
best performance compared to HGSO, chaotic WOA, WOA, chaotic EA, EA, chaotic SA, SA, chaotic PSO, and PSO. When comparing
the chaotic systems among themselves, it is observed that optimizing the SMC with the Duffing–Van der Pol chaotic system yields better
controller responses compared to the Rössler and Sprott-A systems. These obtained results show that optimization methods integrated with
chaotic systems offer significant advantages in controller design and can provide valuable contributions to future studies in this field.
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