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ABSTRACT: Accurate classification of breast cancer histopathological images is essential for early 

diagnosis and effective treatment planning. This study presents a custom-designed Convolutional 

Neural Network (CNN) model developed to classify breast cancer histopathological images with 

enhanced accuracy and reliability. The research began by evaluating the performance of eleven pre-

trained transfer learning models, including Xception, InceptionV3, MobileNetV2, and EfficientNetV2B1, 

using a large histopathological dataset. Hyperparameters such as learning rates, loss functions, 

optimization algorithms, and data augmentation strategies were meticulously optimized during this 

process. Among the models, Xception and InceptionV3 exhibited the best performance, achieving 

accuracy rates of 89.89% and 92.17%, respectively, while MobileNetV2 and EfficientNetV2B1 showed 

significantly lower results. To address the limitations of transfer learning models and further enhance 

classification performance, a custom CNN model was developed. The proposed model incorporated 

advanced architectural features, including squeeze-and-excite mechanisms and group normalization, to 

improve feature extraction and model stability. This custom CNN achieved superior results, with an 

accuracy of 93.93%, precision of 94.15%, recall of 93.93%, and an F1-score of 93.98%. The findings 

emphasize the potential of custom deep learning models in advancing breast cancer diagnostics by 

providing higher accuracy and generalizability compared to traditional transfer learning approaches. 

The clinical application of the proposed model could significantly improve early detection and treatment 

planning by offering healthcare professionals a reliable and efficient diagnostic tool, ultimately 

contributing to better patient outcomes. 
 

Keywords: Breast Cancer, Convolutional Neural Networks, Squeeze-Excite, Transfer Learning 

1. INTRODUCTION 

Breast cancer continues to be one of the most commonly diagnosed malignancies across the globe 

and stands as a primary contributor to cancer-related deaths, especially among women [1]. As reported 

by the World Health Organization (WHO), around 2.3 million new breast cancer cases were diagnosed 

globally in 2020, resulting in 684,996 deaths, underscoring the significant impact of the disease on global 

public health. Projections indicate a steady rise in incidence, necessitating advancements in early 

detection and treatment strategies to improve patient outcomes [2]. Early diagnosis plays a crucial role 

in enhancing survival rates, emphasizing the need for accurate and efficient diagnostic techniques.   

Histopathological examination is the gold standard for diagnosing breast cancer, relying heavily on 

microscopic analysis of tissue samples. However, this approach is labor-intensive and subject to 

variability in interpretation, as it depends on the expertise and subjective evaluation of pathologists [3-

4]. While traditional imaging techniques such as mammography, ultrasonography, and magnetic 

resonance imaging (MRI) aid in initial detection [5], [6], histopathological analysis remains indispensable 

for confirming malignancy. Advances in computational methods, particularly artificial intelligence (AI) 

and machine learning, have introduced automated approaches to augment diagnostic accuracy and 

consistency. Deep learning, a subset of machine learning, has emerged as a transformative technology in 

mailto:cozdemir@siirt.edu.tr
mailto:cozdemir@siirt.edu.tr
mailto:%20kerimcelik1987@hotmail.com
https://orcid.org/0000-0002-9252-5888
https://orcid.org/0000-0001-6599-4200


Novel CNN Model for Breast Cancer Histopathological Image Classification 811 

 

medical imaging, demonstrating exceptional performance in tasks such as image recognition and 

classification [7]. CNNs, in particular, have shown remarkable capabilities in feature extraction and 

pattern recognition, making them highly suitable for analyzing histopathological images [8], [9]. CNNs 

leverage hierarchical structures to learn complex features, enabling accurate classification of benign and 

malignant tissues. Their applications extend to tumor detection, segmentation, and grading, addressing 

key challenges in cancer diagnostics [10], [11].  The use of transfer learning further enhances the 

potential of CNNs by leveraging pre-trained models to address specific classification tasks with 

improved efficiency [12-13]. Several studies have demonstrated the effectiveness of transfer learning 

models, such as ResNet and VGG, in achieving high classification accuracy [14], [15]. However, existing 

approaches often face limitations related to dataset variability, model complexity, and generalizability. 

This study aims to overcome these limitations by developing and evaluating a custom-designed 

CNN model optimized with advanced techniques, including squeeze-excite mechanisms and group 

normalization. The proposed model is designed to outperform existing transfer learning methods by 

providing higher accuracy, precision, and F1-scores. The methodology focuses on improving 

classification performance using histopathological images from the BreakHis dataset, enabling more 

reliable and reproducible diagnostic outcomes.   

Some of the main contributions of this study are: 

• Development of a custom CNN model optimized with squeeze-excite mechanisms and group 

normalization techniques to enhance feature extraction and classification performance. 

 

• Evaluation and comparison of eleven pre-trained transfer learning models, including Xception, 

InceptionV3, MobileNetV2, and EfficientNetV2B1, to benchmark performance. 

 

• Implementation of advanced data augmentation and hyperparameter optimization strategies to 

improve generalizability and robustness. 

 

• Achievement of higher accuracy, precision, and F1-scores compared to existing transfer learning 

methods, demonstrating the effectiveness of the proposed approach. 

 

The organization of this paper is as follows: In Section 2, an overview of relevant studies on deep 

learning techniques for histopathological image classification is presented. Section 3 outlines the 

materials and methods used, including information about the dataset and the proposed model 

architecture. Section 4 reviews the experimental results and assesses the model's performance. Finally, 

Section 5 provides a conclusion, summarizing the key findings, their significance, and offering 

recommendations for future research avenues. 

2. LITERATURE STUDIES 

Research on breast cancer classification has seen significant progress with the application of machine 

learning and deep learning techniques. Various studies have demonstrated the potential of these 

methods in improving diagnostic accuracy and efficiency. 

Veta et al. [16] highlighted the challenges associated with histopathological image analysis and 

emphasized the need for automated systems to reduce diagnostic variability. Their study formed a 

foundation for subsequent research focusing on computational methods. 

Bacha and Taouali [17] utilized Radial Basis Function Kernel Extreme Learning Machines (RTF-

ELM) with Differential Evolution for parameter optimization. Their approach achieved high 

classification accuracy by combining Kernel Principal Component Analysis (KPCA) for feature selection. 

Dai et al. [18] explored ensemble learning methods, specifically Random Forest (RF), to enhance 

classification performance. Their work demonstrated that ensemble techniques could outperform 

individual classifiers in terms of robustness and accuracy. 

Ara et al. [19] compared various machine learning algorithms, identifying Support Vector Machines 
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(SVM) and RF as top performers with accuracies exceeding 96%. Similarly, Naji et al. (2021) confirmed 

the superior performance of SVM classifiers with 97.2% accuracy. 

Shukla et al. [20] proposed a segmentation-based approach using Rotation Forest algorithms, 

achieving high accuracy rates in histopathological image classification. Their work emphasized the 

importance of image segmentation as a preprocessing step. 

Karthiga et al. [21] employed k-means clustering and Discrete Wavelet Transform (DWT) for 

segmentation, achieving 93.3% accuracy with Support Vector Machine classifiers. 

Mukkamala et al. [22] introduced Principal Component Analysis Networks (PCANet) for feature 

extraction, obtaining 97% accuracy using color-space transformations and SVM classifiers. 

George et al. [23] demonstrated the effectiveness of transfer learning using ResNet18, ResNet50, and 

AlexNet, achieving 96.88% accuracy by combining features through normalization pools. 

Han et al. [24] employed BreakHis datasets for multi-class classification, achieving 93.2% accuracy 

using CNN architectures. Their study highlighted the significance of dataset quality and diversity. 

These studies underscore the growing reliance on AI-driven techniques to enhance breast cancer 

diagnostics. However, challenges related to dataset heterogeneity, feature extraction, and model 

optimization remain prevalent. This paper builds upon these findings to develop a robust and optimized 

CNN model addressing these limitations. 

3. METHOD 

3.1. Datasets 

The dataset utilized in this study is the Breast Cancer Histopathological Images (BreakHis) dataset. 

This publicly available dataset contains 7,909 microscopic images of breast tumor tissues, divided into 

benign and malignant categories. The dataset was captured using a standard optical microscope with a 

magnification of 40x, 100x, 200x, and 400x, providing a diverse representation of histopathological 

variations. Each image in the BreakHis dataset is labeled according to its histological subtype, such as 

fibroadenoma or ductal carcinoma, allowing for both binary and multiclass classification tasks. The 

dataset consists of images in PNG format, each with a resolution of 700 x 460 pixels. For the purposes of 

this study, the data was divided into training, validation, and testing sets using an 80-10-10 split ratio. 

Stratified sampling was implemented to maintain consistent proportions of benign and malignant 

samples across all subsets. To improve the model's robustness and ability to generalize, data 

augmentation techniques such as rotation, flipping, and color variations were applied during training 

[25]. Figure 1 illustrates an image from the BreakHis dataset used in this study. The image has been 

magnified for better visualization. 

 

 
Figure 1. illustrates a representative image from the dataset. 
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3.2. Performance Metrics 

The effectiveness of the proposed approach is measured using various performance metrics, 

including accuracy, precision, recall (sensitivity), and the F1-score. Recall measures the percentage of 

actual positive cases correctly detected by the model, reflecting its capacity to identify true positives. 

Accuracy calculates the proportion of correctly classified instances, both positive and negative, within 

the entire dataset. Precision evaluates the proportion of true positives among all predicted positive cases, 

highlighting the reliability of the model's positive classifications. The F1-score, derived as the harmonic 

mean of recall and precision, offers a comprehensive evaluation by considering both false positives and 

false negatives. This metric is particularly useful for datasets with class imbalances or uncertain 

distributions, as it takes all errors into account [26] – [28]. A summary of the mathematical formulas for 

these metrics can be found in Table 1. 

 

Table 1. Mathematical formulas of the performance parameters. 

Parameter Formula 

Accuracy (TP + TN)/(TP + TN + FP + FN)*100 

Recall  TP/(TP + FN) 

Precision  TP/(TP + FP) 

F-Measure {2 × (Recall × Precision)}/( Recall + Precision) 

 

In these equations, the terms T, F, P, and N denote True, False, Positive, and Negative, respectively. 

For example, TP (True Positive) represents the number of correctly classified positive instances, while 

FN (False Negative) denotes the number of actual positive instances that were misclassified as negative. 

These metrics provide a comprehensive evaluation framework for assessing model performance. 

4. EXPERIMENTAL RESULTS 

In the experimental setup, several key hyperparameters were carefully selected to optimize model 

performance. A batch size of 32 was selected to optimize the balance between memory usage and 

computational efficiency. The initial learning rate was set to 0.001 and adjusted dynamically using a 

learning rate scheduler to facilitate better convergence. The Adam optimizer was employed due to its 

adaptive learning capabilities and reliable performance in deep learning applications. Categorical cross-

entropy was used as the loss function, suitable for the multi-class classification problem posed by the 

dataset. To enhance input data variability and reduce overfitting, data augmentation techniques such as 

rotation, flipping, and scaling were applied during training. The hyperparameters utilized for model 

training are detailed in Table 1. 
To improve training stability and prevent overfitting, early stopping and learning rate reduction 

techniques were employed. Specifically, the ReduceLROnPlateau callback was used to adjust the 

learning rate dynamically based on validation loss (factor=0.2, patience=5, min_lr=0.001), while early 

stopping was applied with a patience of 5 epochs to halt training when no further improvement was 

observed. Once the hyperparameters were determined, the images underwent a comprehensive 

preprocessing phase before being input into the model. Normalization was applied to ensure stable 

training and improve convergence speed. By scaling the pixel values of the images to the [0,1] range, the 

training process became more stable, reducing potential gradient explosion issues. Although 

normalization itself does not directly reduce training time, it contributes to a more efficient learning 

process, leading to faster convergence and improved model generalization. 
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Table 2. Hyperparameters used during training of models 

Hiperparameters Value 

Learning Rate Reduction  

- Monitor val_loss 

- Factor 0.2 

- Patience 5 

- Min Learning Rate 0.001 

Early Stop  

- Monitor val_loss 

- Patience 5 

Model Compile  

- Optimizer adam 

- Loss Function categorical_crossentropy 

- Metrics accuracy 

Train Epoch 200 epoch 

Input Image Size 128 x 128 

Activation Function relu 

 

After image preparation, data augmentation was applied to enhance the model's generalization 

capability and reduce overfitting. This process was implemented using TensorFlow's 

`ImageDataGenerator` method. The parameters used during the data augmentation process were as 

follows: 

 

• Rotation Range: 15° 

• Horizontal Flip: True 

• Shear Range: 0.1 

• Fill Mode: 'nearest' 

• Zoom Range: 0.1 

 

These augmentation techniques introduced variability in the training data, mimicking potential real-

world imaging conditions and improving the robustness of the model.  

 
Figure 2. Model architecture 

 

In the initial phase of the experimental studies, transfer learning models were evaluated to analyze 

their classification performance. Transfer learning leverages pre-trained models, which have been 

trained on large datasets, to achieve successful results on smaller datasets. In this study, widely used 

transfer learning models were employed, including Xception, VGG16, ResNet101V2, ResNet152V2, 

InceptionV3, InceptionResNetV2, MobileNetV2, DenseNet201, NASNetMobile, EfficientNetB1, and 

EfficientNetV2B1. In this study, the pre-trained transfer learning models were used with their default 

configurations without any fine-tuning. All layers remained unchanged, and no additional layers were 

added or frozen during the training process. 
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The models included in Table 3 were chosen to represent a broad and diverse selection of transfer 

learning architectures that are frequently used in the literature for medical and histopathological image 

classification. Our goal was to evaluate both lightweight models (e.g., MobileNetV2, NASNetMobile) 

and high-capacity models (e.g., InceptionV3, Xception, ResNet152V2) under a consistent evaluation 

framework. Fine-tuning was not applied to these pre-trained models in order to ensure fairness in the 

comparative analysis. Fine-tuning typically requires model-specific adjustments—such as deciding how 

many layers to unfreeze and setting optimal learning rates—which could have led to an unequal or 

biased performance evaluation. Since our focus at this stage was to assess each model’s baseline feature 

extraction capability, we retained their pre-trained weights and used a unified classification head for all 

architectures. This approach allowed us to identify their relative strengths without introducing 

variability arising from model-dependent fine-tuning strategies. 

The general architecture of the models used during the experimental studies is illustrated in Figure 

2. At the initial stage, feature extraction was performed using the pre-trained transfer learning models. 

On top of this base architecture, a global average pooling layer was added, followed by two fully 

connected layers for classification. The first fully connected layer consisted of 256 units, while the second 

layer contained 128 units, both employing the ReLU activation function. The final classification layer 

was designed with two output units and used a softmax activation function, tailored to the number of 

classes being classified. Following the preprocessing and data augmentation steps, experimental results 

were obtained using the transfer learning models. The outcomes of these experiments, including the 

performance metrics of the transfer learning models, are presented in Table 3.  

The model was trained and evaluated solely on the BreakHis dataset. The dataset was split into 90% 

training and 10% testing. Additionally, 10% of the training data was set aside for validation. 

 

Table 3. Transfer learning models performance results 

Model Accuracy(%) Precision(%) Recall(%) F1 Score(%) 

Xception 89.8905 91.1600 89.8905 90.1038 

VGG16 80.4549 80.2839 80.4549 80.3573 

ResNet101V2 71.7776 77.8722 71.7776 63.6512 

ResNet152V2 75.4844 83.3402 75.4844 76.2543 

InceptionV3 92.1651 92.1502 92.1651 92.1570 

InceptionResNetV2 84.9200 89.1306 84.9200 85.3941 

MobileNetV2 54.5072 66.1422 54.5072 55.3305 

DenseNet201 82.8138 83.7568 82.8138 81.4287 

NASNetMobile 61.5838 61.8993 61.5838 61.7357 

EfficientNetB1 25.5265 29.5405 25.5265 19.7398 

EfficientNetV2B1 58.3825 47.0670 58.3825 51.5666 

 

Table 3 presents the performance results of various transfer learning models, evaluated using 

accuracy, precision, recall, and F1-score metrics. These results provide important insights into the 

effectiveness of each model in classifying breast cancer histopathological images. Among the models 

tested, InceptionV3 and Xception exhibited the highest performance. The Xception model achieved an 

accuracy of 89.89%, precision of 91.16%, recall of 89.89%, and an F1-score of 90.10%. Similarly, the 

InceptionV3 model slightly outperformed Xception, with an accuracy of 92.17%, precision of 92.15%, 

recall of 92.17%, and an F1-score of 92.16%. DenseNet201 and InceptionResNetV2 also demonstrated 

notable performance, achieving accuracy rates of 82.81% and 84.92%, respectively, with high precision 

and recall values. On the other hand, VGG16 and ResNet152V2 models exhibited moderate results, with 

VGG16 achieving an accuracy of 80.45% and ResNet152V2 reaching 75.48%. Models such as 

ResNet101V2 and MobileNetV2 underperformed, with accuracy rates of 71.78% and 54.51%, 

respectively. NASNetMobile and EfficientNetV2B1 models displayed similarly low performances, 

achieving accuracy rates of 61.58% and 58.38%, respectively. EfficientNetB1 yielded the lowest 

performance among all models, with an accuracy of 25.53%, precision of 29.54%, recall of 25.53%, and an 

F1-score of 19.74%. 
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Overall, InceptionV3 and Xception outperformed the other models, demonstrating superior 

generalization and accuracy. Other models showed varying levels of success, highlighting their potential 

applicability to specific tasks. Following the transfer learning experiments, a custom CNN model was 

developed to address the unique characteristics of the dataset and further improve classification 

performance.  

The proposed CNN model consists of five convolutional layers, each designed with specific kernel 

sizes and filter numbers to optimize feature extraction. The first convolutional layer utilizes 64 filters 

with a 1x1 kernel size, followed by batch normalization and ReLU activation to stabilize learning. 

Additionally, a squeeze-and-excitation mechanism is applied at this stage to enhance channel-wise 

feature recalibration, ensuring the network focuses on the most relevant spatial information. This layer 

concludes with a 2x2 max pooling operation to reduce computational complexity. In the subsequent 

layers, the number of filters increases progressively to 96, 128, and 256 in the second, third, and fourth 

convolutional layers, respectively, all using a 3x3 kernel size. Each of these layers follows a structured 

design pattern, incorporating batch normalization, ReLU activation, squeeze-and-excitation blocks, and 

max pooling operations to maintain feature consistency and robustness. The final convolutional layer 

retains 256 filters and adheres to the same configuration, ensuring deep feature extraction. Following the 

convolutional blocks, the model employs global feature aggregation via a flattening layer, which is then 

passed through two fully connected layers with 256 and 128 neurons, respectively, both activated using 

ReLU. A dropout layer with a rate of 0.1 is introduced between the dense layers to mitigate overfitting. 

The final classification layer consists of two neurons with a softmax activation function, aligning with 

the binary classification task. The entire architecture was optimized using L2 regularization (λ=1e-4) and 

the 'he_normal' kernel initializer to enhance weight initialization stability. Hyperparameter tuning was 

conducted systematically, with a batch size of 32, an initial learning rate of 0.001, and the Adam 

optimizer. The categorical cross-entropy loss function was used in conjunction with accuracy as the 

evaluation metric. A full breakdown of the model architecture is provided in Figure 3, illustrating the 

sequence of convolutional, pooling, and dense layers along with their configurations. This model design 

effectively balances computational efficiency with high classification accuracy, as demonstrated in the 

experimental results. 

 

 
Figure 3. Proposed architecture 

 

To ensure a fair comparison, the proposed model was trained, validated, and tested using the exact 

same dataset splits and preprocessing pipeline as used in the transfer learning experiments. Specifically, 

the dataset was split into 80% training, 10% validation, and 10% testing subsets using stratified 

sampling. Moreover, all hyperparameters (such as learning rate, optimizer, batch size, number of 

epochs, and data augmentation parameters) were kept consistent with the previous experiments. This 

allowed for a direct and unbiased comparison between the proposed model and the baseline transfer 

learning models. 
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Table 4. Model Performance Results 

Model Accuracy (%) Precision(%) Recall(%) F1 Score(%) 

Xception 89.89 91.1600 89.8905 90.1038 

InceptionV3 92.16 92.1502 92.1651 92.1570 

Proposed Model 93.93 94.1583 93.9343 93.9892 

 

As presented in Table 4, the proposed model outperformed the top-performing transfer learning 

models, Xception and InceptionV3, from the previous experimental studies. The proposed model 

achieved the highest metrics across accuracy, precision, recall, and F1-score, demonstrating its 

superiority over other models. The proposed model attained an accuracy of 93.93%, surpassing all other 

models and indicating its high capability to make correct predictions. Additionally, its precision of 

94.15% highlights its effectiveness in accurately identifying positive classes. The recall rate of 93.93% 

indicates the model's capacity to accurately identify true positives. With an F1-score of 93.98%, the 

model shows a well-balanced performance between precision and recall, reinforcing the reliability of the 

proposed approach. Figure 4 illustrates the accuracy and loss trends of the model throughout both 

training and validation phases. These graphs offer valuable insights into the model's convergence 

process and its ability to generalize effectively to new, unseen data. 

 

 
Figure 4. Loss and Accuracy Graph of the Proposed Model 
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Moreover, the confusion matrix shown in Figure 5 provides a comprehensive examination of the 

model’s classification performance. It illustrates how true positives, true negatives, false positives, and 

false negatives are distributed, offering a detailed evaluation of the model's classification accuracy.

 
Figure 5. Confusion Matrix of the Proposed Model 

 

The performance of the custom CNN model significantly exceeded that of the transfer learning 

models. Specifically, the incorporation of squeeze-and-excitation mechanisms and the optimized layer 

architecture contributed to the improvement in classification accuracy and overall performance. The 

model not only excelled in terms of accuracy but also achieved higher precision, recall, and F1-scores 

compared to transfer learning models. This success underscores the ability of the proposed CNN model 

to generalize more effectively on the dataset and learn complex features more efficiently. These findings 

reinforce the contribution of this study to the literature, demonstrating the efficiency of the proposed 

model for specific classification tasks. The superior performance of the custom CNN model establishes it 

as a reliable and effective solution for histopathological image classification, providing a valuable 

benchmark for future research. 

5. CONCLUSION 

In this study, a custom-designed CNN model was developed for the classification of breast cancer 

histopathological images, and its performance was compared against various transfer learning 

techniques. The primary objective of this research was to identify the most effective model architecture 

and hyperparameters for breast cancer detection. The experimental results thoroughly evaluated the 

performance of widely used transfer learning models, including Xception, VGG16, ResNet101V2, 

ResNet152V2, InceptionV3, InceptionResNetV2, MobileNetV2, DenseNet201, NASNetMobile, 

EfficientNetB1, and EfficientNetV2B1. 

In the initial phase of the experiments, pre-trained transfer learning models were utilized for image 

classification tasks. These models, trained on large-scale datasets, were fine-tuned with optimized 

hyperparameters such as learning rate, loss functions, optimization algorithms, and data augmentation 

techniques. Data augmentation, aimed at enhancing the model's generalization ability and preventing 

overfitting, included techniques such as rotation, zooming, cropping, and horizontal flipping. The 
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models were evaluated using key performance metrics, including accuracy, precision, recall, and F1-

score. 

Among the transfer learning models, Xception and InceptionV3 demonstrated the highest 

performance, achieving accuracy rates of 89.89% and 92.17%, respectively, along with superior precision, 

recall, and F1-scores. Conversely, models such as MobileNetV2 and EfficientNetV2B1 exhibited lower 

accuracy rates of 54.51% and 58.38%, respectively, indicating limitations in their ability to capture the 

complexity of histopathological images. To further improve classification performance, a custom CNN 

model was developed. This model incorporated advanced architectural features, such as squeeze-and-

excitation mechanisms and group normalization, to enhance feature extraction and model stability. The 

architecture consisted of multiple convolutional layers supported by batch normalization and ReLU 

activation functions. The CNN model presented in this study attained an accuracy of 93.93%, precision 

of 94.15%, recall of 93.93%, and an F1-score of 93.98%, surpassing all transfer learning models. These 

outcomes emphasize the efficacy of the proposed architecture and optimization strategies in classifying 

breast cancer histopathological images. The results of this research carry important implications for 

advancing automated systems for breast cancer detection. The superior performance of the proposed 

CNN model underscores the potential of custom deep learning architectures to achieve high accuracy 

and reliability in medical image analysis. Future research could further enhance these results by 

exploring more complex model architectures and integrating additional data augmentation techniques. 

Moreover, the clinical application of such models could provide healthcare professionals with powerful 

tools for early detection and treatment planning of breast cancer. Incorporating these models into 

current diagnostic processes could enhance the accuracy and speed of diagnoses, thereby leading to 

better patient outcomes. 

In conclusion, this study demonstrates the potential of deep learning models, particularly custom 

CNN architectures, to advance breast cancer image classification. The proposed model establishes a 

robust benchmark for future research and development in this field, highlighting the importance of 

domain-specific model design and optimization in achieving superior performance in medical imaging 

tasks. 
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