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Abstract: This study focused on the conversion of glucose into high-value chemicals, specifically furfural (FFR) and 5-

hydroxymethylfurfural (HMF), through hydrothermal reaction processes. Glucose was decomposed under subcritical water conditions 

(160-220 °C) in a Teflon-lined stainless-steel reactor, and the evolution of FFR and HMF products was examined over residence times 

ranging from 30 to 210 minutes. The highest yields of FFR and HMF were achieved at a temperature of 220 °C and a residence time of 

180 minute. Increasing the temperature from 160°C to 220°C and extending the residence time from 30 to 180 minutes enhanced the 

hydrolysis of glucose. The yields of FFR and HMF were determined using high performance liquid chromatography (HPLC). 
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1. Introduction 
Biomass, a plentiful and renewable carbon-neutral 

resource, holds immense potential for producing energy 

and chemicals to power sustainable industries of the 

future (Bridgwater, 2003). Processes aimed at biomass 

valorization for the production of chemicals and fuels are 

gaining increasing attention as a pathway to sustainable 

manufacturing (Ragauskas et al., 2006). Such 

developments can be achieved through clean, selective, 

and efficient processes utilizing renewable raw materials, 

with non-edible plant biomass serving as a globally 

abundant carbon source for producing bio-chemicals, bio-

fuels, and bio-energy (Cantero et al., 2015). Furan-based 

platform compounds, such as FFR and HMF, can be 

derived from biomass through hydrothermal conversion 

and further transformed into value-added chemicals and 

liquid fuels via hydrodeoxygenation, promoting efficient 

biomass utilization and mitigating environmental issues 

caused by excessive fossil fuel use (Zhao et al., 2021). The 

schematic representation of high-value applications of 

FFR and HMF is presented in Figure 1. Biomass, sourced 

from agricultural residues, wood, and herbaceous energy 

crops, consists of biopolymers like cellulose (35–50%), 

hemicellulose (25–30%), and lignin (25–30%) (Aida et al., 

2007). Cellulose, which serves as a source of glucose, is a 

major constituent of biomass (Bobleter, 1994). Glucose is 

a versatile molecule with great potential as a starting 

material for various productive processes, such as serving 

as feedstock in biological systems for the production of 

bio-fuels and bio-chemicals (Corma et al., 2007). FFR is 

produced from pentoses such as xylose, arabinose, and 

lyxose, whereas HMF is obtained from hexoses, with 

fructose and glucose being the most prevalent sources 

(van Putten et al., 2013). FFR, a furan ring containing a 

heteroatom and an aldehyde group, serves as an organic 

solvent to enhance the selectivity of aromatics and 

unsaturated compounds in various chemical reactions 

(Mariscal et al., 2016). FFR, with its aldehyde group and 

furan ring, is a highly reactive chemical used as a feedstock 

for producing over 80 types of value-added chemicals and 

liquid fuels (Bohre et al., 2015). FFR is a significant 

precursor for liquid fuels, as key biofuel components such 

as 2-methylfuran (MF), 2,5-dimethylfuran, and 

methyltetrahydrofuran (MTHF) can be obtained through 

its hydrogenation (Ahmad et al., 2022). The reactive 

chemical properties of HMF unlock a wide range of 

opportunities for valuable applications. HMF, with an 

additional hydroxyl group on C5 compared to FFR, 

exhibits greater reactivity, enabling a wider range of high-

value applications due to its enhanced chemical 

properties (Kucherov et al., 2018). 2,5-Furandicarboxylic 

acid (FDCA), a key derivative of HMF, is among the most 

thoroughly researched and is obtained through the 

oxygenation of HMF (Sajid et al., 2018). Additionally, HMF 

can be transformed into liquid fuels such as 2,5-

dimethylfuran and 5-alkoxymethylfurfural ethers through 

hydrogenolysis and esterification processes (Wang et al., 

2014). 
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Figure 1. Pathways for high-value applications of FFR and 

HMF (Zhao et al., 2021). 
 

The literature presents studies on the conversion of 

glucose into HMF and FFR. The study by Knezevic and 

colleagues provides valuable insights into the 

hydrothermal conversion of glucose, offering essential 

knowledge for sustainable chemical production processes 

(Knezevic et al., 2009). The yield of HMF from glucose 

reached 64% under conditions of 7 MPa, 200 °C, and 1.5 

hours (Lee et al., 2016). Achieved simultaneous 

production of FFR (42%) and HMF (34%) from glucose, 

focusing on optimizing yields (He et al., 2020). Attained 

high efficiency in transforming glucose and various 

carbohydrates into FFR and HMF utilizing heterogeneous 

acid catalysts (Agirrezabal-Telleria et al., 2014). 

Optimized the production of HMF and FFR from glucose 

using dilute acid catalysts, achieving the best results at 

moderate temperatures and low acid concentrations 

(Jaswal et al., 2022; Thunyaratchatanon et al., 2021). 

The primary objective of this study is to investigate the 

potential for producing the high-value-added compounds 

5-hydroxymethylfurfural (HMF) and furfural (FFR) 

through the chemical conversion of glucose, a renewable 

and sustainable carbon source, within a hydrothermal 

reaction medium. Considered as alternatives to fossil 

fuels, such biochemicals hold strategic importance for 

environmentally friendly energy and material production, 

aligning with the principles of green chemistry. The 

glucose conversion process presents significant potential, 

both scientifically and industrially, particularly for 

obtaining platform chemicals in biomass-based chemical 

synthesis. In this study, the chemical transformations of 

glucose under hydrothermal conditions were 

systematically investigated within a temperature range of 

160–220 °C and residence times varying from 30 to 210 

minutes. The reactions were conducted in Teflon-lined 

stainless steel reactors, and the liquid products obtained 

from each temperature-time combination were prepared 

using the solid-phase extraction (SPE) method. 

Quantitative analysis of the resulting products was 

performed using high-performance liquid 

chromatography (HPLC). For this analysis, a C18 column 

was employed, and HMF and FFR compounds were 

detected using a UV detector at a wavelength of 284 nm, 

with retention times of 7.17 and 10.05 minutes, 

respectively. A methanol/water mixture (18:82, v/v) was 

used as the mobile phase, with the flow rate set at 0.9 

mL/min. This analytical method ensured the accurate and 

reproducible measurement of HMF and FFR yields, 

thereby enhancing the scientific reliability and 

methodological rigor of the study. The research findings 

indicate that the HMF yield reached 13,946.08 mg/L, 

particularly at 220 °C with a residence time of 180 

minutes, while the FFR yield reached 864.21 mg/L at a 

residence time of 210 minutes. These results demonstrate 

that glucose can effectively decompose under appropriate 

hydrothermal conditions and that this decomposition can 

be controllably channeled into high-yield chemical 

synthesis. In conclusion, this study offers valuable insights 

into the chemical conversion processes of biomass-

derived feedstocks and strongly supports the potential of 

glucose for sustainable chemistry applications. 

Furthermore, the employed analytical approach (HPLC) 

stands out as a sensitive and reliable tool for evaluating 

such conversion reactions. 

 

2. Materials and Methods 
2.1. Chemical and Materials 

D -Glucose (P99%) was purchased from Sigma-Aldrich. 

HMF (99%) was obtained from Merck, while FFR (99%) 

was sourced from Acros-Organics. All commercial 

reagents were used as supplied without additional 

purification. Ultrapure water (conductivity of 18.3 MΩ 

cm⁻¹) was generated using a Zeneer Power I instrument 

from Human Corporation, USA, and was utilized to the 

mobile phase. HPLC grade methanol (≥99.9%) was 

sourced from Sigma-Aldrich and utilized for both the 

mobile phase and solid phase extraction (SPE). 

2.2. Experimental Studies 

A total of 2.0 g of glucose was weighed into a 50 mL 

stainless-steel reactor, mixed with 15.0 mL of distilled 

water, sealed, and placed in a preheated oven at 160, 180, 

200, or 220 °C for the required residence times before 

being cooled to room temperature. The slurries from the 

reactor were filtered using a Buchner funnel with filter 

paper to separate the solid and liquid products, after 

which the liquid product was subjected to solid-phase 

extraction to collect FFR and HMF. The resulting liquid 

product was subjected to solid-phase extraction (SPE) for 

the selective isolation of FFR and HMF, following the 

methodology outlined by Driffield et al., with minor 

modifications to suit the experimental setup (Driffield et 

al., 2005). The cartridge was conditioned by sequentially 

passing 2 mL of methanol and 2 mL of water, after which 

it was loaded with 1 mL of the liquid product derived from 

glucose. The cartridge was dried using dry air, eluted with 

2 mL of methanol, and the eluate was transferred to a vial, 

filtered through a 0.45 μm membrane, and analyzed by 

HPLC-UV. 
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2.3. HPLC Analysis 

After the reaction and extraction, the samples were 

analyzed using high-performance liquid chromatography 

(Thermo Dionex Ultimate 3000, USA), equipped with a UV 

detector, a pump system, and an automatic sample 

injector. The separation was performed using a C18 

column (5 µm, 120Å, 4.6 × 250 mm; Thermo Acclaim 120) 

with a constant injection volume of 10 μL. Based on the 

work of Ariffin et al. a methanol/water mixture was used 

as the mobile phase (Ariffin et al., 2014). The mobile phase 

consisted of methanol and water (18:82, v/v) with a flow 

rate of 0.9 mL/min. The column was washed with 

methanol between injections to minimize sample 

carryover. HMF and FFR were quantified at 284 nm using 

a UV detector, with retention times of 7.187 minutes for 

HMF and 10.133 minutes for FFR. The chromatograms of 

FFR and HMF obtained from the experiment conducted at 

220°C for 180 minutes are shown in Figure 2. The data 

were analyzed using the licensed Chromeleon Client 

software (Dionex Corporation, USA). 
 

 
 

Figure 2. Chromatograms of FFR and HMF. 

 

3. Results and Discussion 
The results presented in Table 1 and visualized in Figures 

3 and 4 clearly demonstrate the significant influence of 

both temperature and residence time on the yields of HMF 

and FFR during the hydrothermal conversion of glucose. 

 

Table 1. HMF and FFR amounts at specific reaction 

temperatures and times 
 

Temperature 

(°C) 

Reaction time 

(min) 

HMF 

(mg/L) 

FFR 

(mg/L) 

160 60 0.13 0.01 

180 60 0.64 0.02 

200 60 40.53 0.74 

220 60 453.28 8.32 

220 30 0.19 0.00 

220 60 453.28 8.32 

220 90 3468.71 74.99 

220 120 7590.26 205.58 

220 150 11198.55 552.97 

220 180 13946.08 700.55 

220 210 9640.26 864.21 

 

 

At a constant reaction time of 60 minutes, a temperature 

increase from 160 °C to 220 °C led to a substantial 

enhancement in HMF yield, rising from 0.13 mg/L to 

453.28 mg/L, while FFR yield only modestly increased 

from 0.01 mg/L to 8.32 mg/L (Figure 3). The results show 

that the increase in temperature has supported the rise in 

HMF and furfural amounts (Dashtban et al., 2012). This 

suggests that HMF formation is more sensitive to 

temperature changes within this range, a trend also 

supported by the literature (Zhang et al., 2021). When the 

temperature was fixed at 220 °C, increasing the reaction 

time progressively boosted product yields up to a critical 

point. As shown in Figure 4, HMF concentration peaked at 

13,946.08 mg/L at 180 minutes, but subsequently 

decreased at 210 minutes, indicating potential 

degradation or rehydration to humins or levulinic acid 

under prolonged thermal exposure (Girisuta et al., 2006). 

In contrast, FFR yield continuously increased across the 

entire time range, reaching its maximum (864.21 mg/L) at 

210 minutes. This may reflect the higher thermal stability 

of FFR and a possible delay in its formation pathway, 

potentially via intermediate degradation of sugars such as 

xylose or arabinose, even if glucose was the initial 

feedstock (Agirrezabal-Telleria et al., 2014). These results 

underline that the optimization of both reaction 
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temperature and duration is essential to maximize specific 

target compounds. Moreover, the steep increase in HMF 

yield between 90 and 180 minutes (from 3,468.71 mg/L 

to 13,946.08 mg/L) emphasizes a window of high 

productivity that could be exploited in continuous flow or 

semi-batch systems for industrial applications. These 

findings align with kinetic profiles described in prior 

studies (He et al., 2020; Jin and Enomoto, 2011), affirming 

the potential for glucose-based feedstocks to yield 

platform chemicals under finely controlled hydrothermal 

conditions. The results strongly support that fine-tuning 

operational parameters such as temperature and reaction 

time enables selective production of target compounds, 

providing a foundation for scalable and sustainable 

biomass valorization processes. 

 

 
 

Figure 3. The effect of temperature on HMF and FFR amounts (60 min.). 

 

 
 

Figure 4. The impact of reaction time on the amounts of HMF and FFR (220 °C). 

 
4. Conclusion 
The manuscript explores the hydrothermal conversion of 

glucose into high-value chemicals, specifically FFR and 

HMF. Using subcritical water conditions (160-220 °C) in a 

Teflon-lined stainless steel reactor, the study evaluates 

the effects of temperature (160°C to 220°C) and residence 

time (30–210 minutes) on the yields of FFR and HMF. The 

principal conclusions are enumerated as follows: 

 The study effectively focuses on optimizing HMF 

and FFR yields through controlled reaction 

temperatures and durations. It identifies optimal 

conditions (220°C for FFR and 180°C for HMF), 

showcasing practical applications for bio-based 

chemical production. 

 The use of HPLC analysis ensures precise 

quantification of product yields, reinforcing the 

study's credibility. The detailed experimental 

methodology adds reproducibility and 

transparency. 

 Highlighting the significance of glucose as a 
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renewable feedstock, the research underscores its 

potential for sustainable chemical synthesis. The 

findings contribute valuable insights for industries 

aiming to reduce reliance on fossil fuels. 

This study is well-structured and scientifically robust, 

offering a meaningful contribution to the field of 

sustainable biomass valorization. A comparative 

discussion with catalysts or reaction media could provide 

deeper insights into optimizing yields. Addressing 

potential environmental and economic implications of the 

proposed methods would broaden the research's impact. 

Exploring scalability for industrial applications would 

enhance the study’s relevance to commercial processes. 
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