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Abstract 
While numerous studies in the literature focus on the classification of color 

images using deep learning algorithms, there is a notable gap in research 

dedicated to the classification of binary images. Although Convolutional 

Neural Networks designed for binary images tend to exhibit lower 

performance compared to those for color images, their processing speed 

is significantly faster, as the input data for binary images is reduced by a 

factor of 24 compared with the 8-bit color images. This study aims to 

develop network architectures that operate with high efficiency in 

applications requiring only binary images, such as signature recognition, 

barcode reading, QR code scanning, and handwriting analysis. For this 

purpose, a new Bi-CNN(Binary image-CNN) network architecture was 

designed using existing layers. Then, a special loss function was used to 

improve the performance of this architecture. By integrating the 

classification layer called Si-CL(Signature-Classification) into Bi-CNN, a 

new architecture called Bi-CL-CNN emerged. Both Bi-CNN and Bi-CL-

CNN were trained on two datasets. The first dataset, Shape-DU, was 

specifically created for testing these networks. The second dataset, 

MPEG-7, serves as a benchmark dataset. The performance of the trained 

networks is compared with three previously trained networks, namely 

GoogleNet, ResNet50 and DenseNet201. The empirical evaluation 

demonstrated that the Bi-CL-CNN network significantly outperformed the 

other models in both accuracy and computational speed. These findings 

underscore the robustness and efficiency of the proposed models in 

handling binary image datasets. 

Keywords: Convolutional neural network, deep neural network, image 

classification, binary image, loss function 
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Öz 
Literatürdeki pek çok çalışma, derin öğrenme algoritmalarını kullanarak 

renkli görüntülerin sınıflandırılmasına odaklanırken, ikili görüntülerin 

sınıflandırılmasına yönelik araştırmaların sınırlı olduğu 

gözlemlenmektedir. İkili görüntüler için tasarlanan Evrişimli Sinir Ağ 

mimarileri, renkli görüntülere kıyasla genellikle daha düşük performans 

sergilemekle birlikte, ikili görüntülerdeki giriş verilerinin 8 bitlik renkli 

görüntülere göre 24 kat daha az bilgi içeriyor olması, işlem hızlarının 

önemli ölçüde artmasına neden olmaktadır. Bu çalışmanın amacı, yalnızca 

ikili görüntüler gerektiren uygulamalar —örneğin, imza tanıma, barkod 

okuma, QR kod tarama ve el yazısı analizi— için yüksek verimlilikle 

çalışan ağ mimarileri geliştirmektir. Bu hedef doğrultusunda, mevcut 

katmanlardan yararlanarak yeni bir Bi-CNN ağ mimarisi tasarlanmıştır. 
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Introduction 

Binary images are images that carry only two color values (black and white) and are ideal for fast 

processing due to their simple, low-dimensional structure, which makes them widely used in 

applications as diverse as optical character recognition (OCR), handwriting analysis, document 

scanning, and object recognition. However, this simple structure makes it possible for deep learning-

based models such as convolutional neural networks (CNNs) to more effectively learn complex patterns 

and features in binary images, while traditional image processing methods are limited. CNNs have 

demonstrated exceptional performance across a variety of computer vision tasks, including image 

classification [1], image splicing [2], image segmentation [3], and object recognition [4]. Deep learning, 

which involves mining high-dimensional data for potential features through model training [5], has 

proven particularly effective in these applications. Several CNN architectures, such as LeNet [6], 

Xception [7], and VGGNet [8], have gained popularity due to their ability to address specific problems 

through various design choices and extensive parameterization. Consequently, the performance of a 

CNN model is influenced by both its architectural design and the specific problem it is intended to solve. 

The architecture and configuration of CNN models, including layer types and hyperparameter settings, 

have a direct impact on their efficacy [9]. Building an effective CNN model for a given problem often 

involves a trial-and-error process, which can be computationally intensive and time-consuming. 

Therefore, designing a suitable CNN model for tasks such as binary image classification (e.g., medical 

imaging, QR codes, and document analysis) is particularly challenging due to the complexities involved 

in hyperparameter tuning and architectural design. 

Image classification involves processing an image to extract probabilities for the classes that best 

describe it. Computers interpret images as arrays of pixel values, typically ranging from 0 to 255, 

depending on the image's resolution and size. These pixel values serve as inputs for classification 

algorithms, which then output the probability of the image belonging to a particular class. CNNs achieve 

classification by isolating low-level features, such as edges and curves, through a series of convolutional 
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Ardından, bu mimarinin performansını artırmaya yönelik özel bir kayıp 

fonksiyonu geliştirilmiş ve Si-CL(İmza-Sınıflandırma) adı verilen 

sınıflandırma katmanı, Bi-CNN(İkili CNN)’e entegre edilerek Bi-CL-

CNN olarak adlandırılan yeni bir mimari ortaya çıkmıştır. Hem Bi-CNN 

hem de Bi-CL-CNN, iki farklı veri kümesi üzerinde eğitilmiştir. İlk veri 

kümesi olan Shape-DU, bu ağları test etmek amacıyla özel olarak 

oluşturulmuştur. İkinci veri kümesi olan MPEG-7 ise kıyaslama amacıyla 

kullanılmıştır. Eğitilen ağların performansı, GoogleNet, ResNet50 ve 

DenseNet201 gibi daha önce eğitilmiş üç ağ ile karşılaştırılmıştır. 

Deneysel sonuçlar, Bi-CL-CNN ağının, doğruluk ve hesaplama hızı 

açısından diğer modellerden anlamlı derecede daha iyi performans 

gösterdiğini ortaya koymuştur. Bu bulgular, ikili görüntü veri kümelerinin 

işlenmesinde önerilen modellerin sağlamlık ve verimliliğini 

vurgulamaktadır. 

Anahtar Kelimeler: Evrişimli sinir ağı, derin sinir ağı, görüntü 

sınıflandırma, ikili görüntü, kayıp fonksiyonu 
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layers. This process allows CNNs to identify and leverage both low-level features (e.g., lines, colors, 

dots) and high-level features, which are used to characterize more complex patterns and objects within 

an image [10]. CNNs are trained on large datasets to effectively recognize and extract these high-level 

features [11]. 

When dealing with color images, which consist of three RGB channels, each pixel is represented by a 

vector of red, green, and blue values [12]. This increases the data dimensionality that CNNs must 

process, resulting in more parameters and longer training times. The increased complexity of color 

images can make it challenging for CNNs to identify key features and patterns. For example, 

distinguishing subtle details in images such as flowers can be difficult. Nevertheless, CNNs have been 

successfully applied to various tasks involving color images, including object detection, image 

segmentation, and classification. Techniques such as image normalization, data augmentation, and 

transfer learning have been developed to enhance CNN performance on color images. These methods 

help CNNs handle the complexities associated with color data, improving their effectiveness and 

efficiency. 

Binary images, while useful for segmentation algorithms, contain fewer pixel-related features compared 

to color images [13]. The simplicity of binary images—storing only binary values—makes them 

computationally efficient but often results in lower CNN performance compared to color images due to 

the absence of color information. Despite these challenges, binary images are widely used in various 

applications, including optical character recognition (OCR) systems for handwriting, license plate 

recognition, and bank check processing [14]. Finding and creating datasets of binary images is 

challenging, and CNN performance on such images generally falls short compared to color images. To 

address these issues, have developed the "Shape-DU" binary image dataset specifically for this study 

and proposed two CNN models, Bi-CNN and Bi-CL-CNN, to enhance binary image classification 

performance. The Bi-CNN model, developed as a standard CNN model, was evaluated using cross-

entropy loss. For the Bi-CL-CNN model, which employs a specialized Si-CL loss function designed for 

classifying handwritten signatures, we compared the performance of this classification layer against Bi-

CNN and pre-trained models. The proposed models are intentionally designed to be lightweight to 

ensure fast classification even on devices with limited processing power, such as portable computers. 

Compared the classification performance of these new models against a range of state-of-the-art 

classifiers, including deep neural networks. 

Although extensive research has been conducted on image classification, a notable gap exists in studies 

focused specifically on binary image classification. This work specifically addresses the challenge of 

binary image classification, a critical task with important practical applications in fields such as medical 

imaging, document analysis, and automatic recognition systems. Despite the simplicity of binary 

images, their effective classification presents unique challenges, primarily due to the lack of rich pixel-

level information compared to color images. The central objective of this study is to enhance the efficacy 
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of CNNs in binary image classification tasks. This endeavor involves the proposal of specialized models 

that can effectively address the inherent challenges posed by binary data. This work aims to contribute 

to the field in several key areas: 

• Proposal of Two CNN Models: Propose two novel CNN models for binary image classification. 

Unlike existing methods, these models have been developed with special configurations that can 

work more efficiently with binary data. 

• End-to-End Solution: By utilizing deep neural networks, our models eliminate the need for manual 

feature selection and extraction, offering a comprehensive end-to-end solution. This aims to solve 

some previously unsolved challenges, especially considering the simple structure of binary images. 

• Introduction of the Shape-DU Dataset: In order to contribute to the research community working in 

this area, we introduce the Shape-DU dataset, which consists of 20 classes and is widely available. 

This dataset will be an important resource for researchers in the field of binary image classification. 

• Hyperparameter Optimization: Performed extensive hyperparameter optimization to identify the 

optimal settings for models, resulting in the selection of the model with the highest classification 

accuracy. This optimization process enables to make specific adjustments for better performance on 

binary images. 

• Specialized Loss Function: The Bi-CL-CNN model uses a loss function specifically developed for 

binary image classification. This loss function is designed to improve the classification accuracy of 

the models and offers a significant innovation compared to other works in the field. 

The remainder of this paper is organized as follows: Section 2 provides a brief overview of CNNs and 

relevant prior work. Section 3 describes the methodology and datasets used. Section 4 presents the 

experimental results and discussion. Finally, Section 5 offers conclusions and suggestions for future 

research based on the findings of this study. 

Related Studies 

Classification involves dividing a dataset into distinct classes based on shared characteristics. 

Classification algorithms initially learn this distribution from a given training set and subsequently 

classify test data with unknown class labels. Image classification models, in particular, take an image as 

input and predict its class membership. With the substantial advancements in deep learning, researchers 

have significantly contributed to the field of image classification. In the early stages, traditional machine 

learning algorithms were utilized for image classification. However, with the remarkable progress in 

deep learning networks, significant advancements have been achieved using CNNs. The primary 

advantage of CNN architectures over traditional machine learning algorithms is their ability to extract 

features directly from raw data [15]. 

Gao et al. proposed a CNN-based algorithm for rotating pixels in binary images and compared its 

performance with Matlab’s rotation algorithm. The results indicated that Matlab’s algorithm performed 
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more effectively on binary images [16]. Mujawar et al. introduced a novel CNN architecture using the 

MNIST dataset, which comprises handwritten binary images. Their CNN architecture, implemented in 

Matlab, was compared against Stacked Autoencoder (SAE), Neural Network (NN), and Deep Belief 

Network (DBN) algorithms. The CNN architecture achieved a commendable performance with a 96% 

accuracy rate, outperforming the other algorithms [17]. Muscle injuries and fractures are prevalent and 

can often be overlooked by medical professionals. To address this issue, Chittajallu et al. developed a 

three-layer CNN architecture designed to identify fractures in X-ray (grayscale) images. Their 

experimental results demonstrated that the architecture provided accurate predictions [18]. 

Scanlan evaluated the performance of a supervised binary image classification model on the Kaggle 

Dogs and Cats dataset. Despite the tendency of CNNs to overfit, the use of dropout layers mitigated this 

effect, resulting in a training accuracy of 96% [19]. Yang et al. conducted shape classification 

experiments using the Animal, MPEG-7, Swedish Leaf, and ETH-80 datasets. They achieved accuracies 

of 88.85% for the Animal dataset, 96.27% for the MPEG-7 dataset, 98.31% for the Swedish Leaf dataset, 

and 97.93% for the ETH-80 dataset, surpassing the results of previous methods [20]. 

Patel et al. introduced a technique to analyze shape components and enhance shape-specific data. They 

utilized two different binary image datasets, Animal and MPEG-7, and compared classification results 

using two pre-trained CNN models (VGGNet and GoogLeNet) [21]. 

Early detection of pneumonia, caused by a common virus, is crucial for controlling the disease's 

progression. Ramya et al. employed a Hybrid Neural Network (HNN) approach to diagnose pneumonia 

with high accuracy using Chest X-ray (CXR) images [22]. Dermoscopic images provide detailed 

information for analyzing skin lesions. Jayalakshmi et al. explored the classification of dermoscopic 

images to determine whether skin lesions are benign or malignant. They proposed a Batch Normalization 

CNN architecture for lesion identification and image classification, achieving an accuracy improvement 

to 89.30% [23]. 

Feature extraction from images can be challenging. Ramanjaneyulu et al. utilized the VGG-16 model in 

a deep learning framework to extract features from image databases, yielding successful results [24]. 

Wang et al. developed a system to detect and mitigate traffic congestion. Initially, they tested a 

traditional feature extraction method on a database with over 30,000 images. Subsequently, they created 

and tested a CNN-based architecture called TrafficNet, derived from AlexNet and VGGNet, using the 

same image dataset. The results demonstrated that TrafficNet significantly outperformed the traditional 

method, achieving 90% accuracy [25]. 

Hafeez et al. propose a hybrid quantum neural network (H-QNN) model designed for binary image 

classification. By combining the strengths of quantum computers and classical neural networks, this 

model is able to compute with high efficiency on noisy intermediate scale quantum (NISQ) devices. The 

model achieves 90.1% accuracy using a compact quantum circuit of two quantum bits combined with a 
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classical convolutional architecture. Moreover, the H-QNN model also performs well in image retrieval 

tasks, solving the problem of overfitting in small data sets [26]. 

Deepak et al. proposed a novel Hybrid Quantum-Qlassical Neural Network (H-QNN) for binary image 

classification using MNIST dataset. The integration of quantum technology with traditional neural 

network structures has provided significant opportunities to improve classification accuracy and 

efficiency. H-QNN outperformed traditional CNN and QCNN models by achieving 99.7% accuracy 

[27]. 

Korkut et al. provided a comparative analysis of CNN architectures for binary image classification and 

examined the advantages of transfer learning. The performance of leading CNN models such as 

MobileNetV3, VGG19, ResNet50 and EfficientNetB0 were evaluated for skin cancer classification. The 

impact of transfer learning on these architectures was investigated and their strengths/weaknesses were 

identified [28]. 

Hafez et al. proposed a hybrid quantum neural network (H-QNN) model for binary image classification 

that combined the advantages of quantum and classical neural networks. By integrating a classical 

convolutional structure with a compact quantum circuit of two qubits, the model worked efficiently on 

noisy quantum devices. H-QNN improved classification performance with an accuracy of 90.1% and 

solved the overfitting problem for small data sets [29].  

Bai and Hu proposed a novel quantum neural network (QNN) using alternately controlled gates on 

MNIST dataset for binary image classification. The proposed QNN exponentially reduced the number 

of qubits required by encoding image data with quantum superposition using quantum probability image 

coding (QPIE) [30]. 

Kiger et al. proposed a new method combining binary Markov images and transfer learning for malware 

detection. The experiments were successful in terms of accuracy and speed, but at the same time, it 

might require more computational resources compared to traditional ML approaches [31]. A 

comparative summary of methods used in binary image studies, the accuracy achieved, and the datasets 

employed is presented in Table 1. 

Table 1. Comparison of studies on binary images 

Related work Employed method(s) Dataset Accuracy(%) 

Mujawar et al. [17] CNN MNIST 96 

Chittajallu et al. [18] CNN Their own dataset 80.45 

Scanlan [19] CNN Kaggle Dogs vs Cats 96 

Yang et al. [20] 
SVM Animals 88.85 

MPEG-7 96.27 

Patel et al. [21] 
SVM Animals 91.65 

MPEG-7 98.41 

Ramya et al. [22] HNN CXR images dataset 98 

In existing literature, while the success of deep learning methods in color image classification has 

progressed significantly, work on binary image classification is more limited. Although binary images 
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are faster to process than color images, deep learning models for these types of images can often 

underperform. However, these challenges can provide significant advantages in applications where 

speed and efficiency are critical, such as signature recognition, barcode reading, QR code scanning and 

handwriting analysis. In existing literature, CNN-based methods proposed for binary images have been 

applied with limited success. In this context, this study aims to develop highly efficient network 

architectures that work only with binary images. 

Material and Methods 

In the subsections that follow in this part, the models created to benchmark the recommended model, 

the Bi-CNN and Bi-CL-CNN models, and the dataset structure are all fully detailed.  

Datasets Construction 

Each image in the dataset was preprocessed to enhance data quality, which significantly impacts the 

performance of the proposed CNN model, as highlighted by this study [32]. The preprocessing phase 

involved several key steps: initially, each image was resized to 224 by 224 pixels. Subsequently, all 

images in the dataset were converted to binary format. The preprocessing tasks were fully automated 

using a custom script, as illustrated in Figure 1. 

 
Figure 1. An example of the pre-processing stage of the suggested model 

In this study, two different datasets were utilized. Specifically, a dataset was tailored for this research, 

termed the "Shape-DU" dataset, which comprises binary images of 20 distinct shapes, including square, 

triangle, directional arrow, and others. Each of the 20 classes within the Shape-DU dataset contained 

100 binary images. An example of the images representing the classes in the "Shape-DU" dataset is 

shown in Figure 2. 
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Figure 2. “Shape-DU” Dataset Overview 

The second dataset utilized in this study was the MPEG-7 dataset [33], which contained binary images 

representing 70 distinct animal species, including birds, elephants, dogs, cats, and others. Each of the 

70 classes within this dataset comprised 20 binary images. An example image illustrating the classes in 

the MPEG-7 dataset is presented in Figure 3. 

 
Figure 3. MPEG-7 Dataset Overview 

The performance of the proposed CNN models was influenced by the preprocessing stages applied to 

the dataset. To enhance the performance of the Bi-CNN model, every binary image in the dataset was 

preprocessed. Specifically, each image was resized to 224 by 224 pixels. 

The proposed models present an effective approach for classifying binary images. An overview of the 

proposed methodology is illustrated in Figure 4. This approach consists of three key components: 

preprocessing, feature extraction, and classification. Each component plays a crucial role in the overall 

process, contributing to the efficacy of the image classification task. 
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Figure 4. Block schematic illustrating the suggested approach. 

Background 

Classification of binary images has an important place in the field of computer vision (CV), and CNNs 

play a critical role in this process. The architecture of CNNs consists of a multilayer structure designed 

to extract features from binary images. These layers make an important contribution to the classification 

of binary images by providing the ability to identify local features of images and combine them in more 

complex ways. For example, as shown in Krizhevsky et al. [35], deep network structures provide higher 

accuracy rates in object recognition and segmentation tasks in binary images compared to traditional 

machine learning methods. 

In binary images, feature extraction is divided into two main categories: low-level and high-level 

features. Low-level features refer to basic elements such as edges, texture and contrast, while high-level 

features cover more complex tasks such as object recognition and classification. By processing these 

two types of features together, CNNs can extract meaningful inferences from binary image data. For 

example, the first convolution layers are used to recognize edges and basic patterns in binary images, 

while subsequent layers combine these simple features and move on to more complex object recognition 

processes. This progressive structure allows CNNs to achieve higher accuracy rates in the classification 

of binary images [36]. 

Machine learning involves a set of methods and algorithms that allow the model to learn from the data. 

CNNs, as a sub-branch of machine learning, stand out with their ability to optimize learning processes 

in binary images. These models greatly automate the process of learning from binary image data, while 

reducing the need for hyperparameter tuning and feature engineering. As the depth and complexity of 

CNNs increase, the overall performance and accuracy of binary images also increases. For example, 

research by He et al [37] demonstrates the effectiveness of deep networks in binary image classification 

tasks. In this context, the learning capabilities of CNNs on binary images increase the applicability of 

innovations in machine learning. 

The choice of the loss function in CNNs is crucial for classification tasks. The loss function measures 

the difference between the model's predictions and the actual labels and plays a fundamental role in 
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guiding the learning process. The Binary Cross-Entropy loss used in binary classification tasks is a 

particularly common choice in this field. This loss function helps to minimize the misclassifications of 

the model and directly affects the performance of the model [38]. An incorrect choice of loss function, 

on the other hand, can negatively affect the learning process of the model, leading to incorrect 

predictions and poor performance. Therefore, correctly determining the loss function is critical to 

improve the overall classification performance of binary images. 

The modular design of CNNs allows for the addition of such different layers, providing flexibility in 

image classification and facilitating the development of application-oriented solutions. Each layer 

fulfills a specific function, giving it the ability to adapt to different sets of binary images and tasks. This 

modular structure allows users to experiment with different layers and combinations of structures during 

the research and development process, helping to achieve better performance and results. In particular, 

Szegedy et al. in [39] investigated the effects of different layer combinations on performance in binary 

images. Therefore, choosing CNNs for binary image classification offers a great advantage both 

theoretically and practically. 

Optimization algorithms also play a critical role in the learning process of CNNs. In binary images, 

algorithms such as Stochastic Gradient Descent (SGD), Adam and RMSprop are used to update the 

weights and improve the performance of the model. These optimization processes are performed with 

continuously updated parameters to minimize the loss function of the model. Since the effective use of 

loss functions directly affects the success of the model, it is one of the critical elements that should be 

considered together with optimization algorithms [40]. 

As a result, CNNs have become a preferred method for binary image classification due to their high 

performance, modular structure and efficient feature extraction processes. The integration of low- and 

high-level features, loss function and the effective use of optimization algorithms increase the power of 

these models and have an important place in the field of binary image classification. The success of 

CNNs in this field is further strengthened by the combination of deep learning and machine learning 

methods. 

In terms of feature extraction techniques, both Bi-CNN and Bi-CL-CNN models employ a set of 

complex methods designed to extract relevant features from binary images. The convolutional layers in 

these models are responsible for capturing basic low-level features such as edges, textures and basic 

patterns, which are essential for the initial stages of image classification. As the network deepens, these 

basic features are combined to create increasingly complex, high-level features such as object 

recognition and classification. Furthermore, batch normalization is applied after the convolutional layers 

to standardize activations, thus improving model convergence and reducing training time. This 

combination of convolutional layers, ensemble normalization, and pooling operations allows models to 

effectively extract both low-level and high-level features, which is critical for achieving optimal 

classification performance in binary image tasks.
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Bi-CNN And Bi-Cl-CNN Models Configuration 

This paper presents two different CNN models for the classification of binary images: Bi-CNN and Bi-

CL-CNN. Both models consist of 44 layers in total, differing only in the classification layers. The 

remaining 43 layers are the same in both models, including the ranking and hyperparameter settings. 

The process starts with the input layer, followed by a convolution layer with 8 filters and the application 

of the ReLU activation function. After the initial convolution and activation stages, an additional 

convolution layer and activation function are applied to further refine the features. The model is then 

supplemented with batch normalization, maximum pooling and dropout layers. 

The reason for using batch normalization after convolution and the ReLU activation function is that it 

improves the overall performance of the model and reduces the training time. This layer corrects the 

distribution of activations by calculating the mean and standard deviation of each mini-batch. Thus, it 

enables the network to learn faster while reducing the risk of overlearning [41]. Especially for deep 

networks, batch normalization helps to optimize the model faster by using higher learning rates. This is 

recognized as an important development in the field of deep learning. 

The max pooling layer minimizes information loss by reducing the image size, while at the same time 

reducing computational costs. By reducing the output of each convolution layer to a certain size, it 

preserves important features and allows the model to generalize better. Research shows that maximum 

pooling increases the ability to preserve local variations of features [42]. This is critical in ensuring that 

salient objects and details are preserved, especially in binary images. 

The dropout layer is a technique used to prevent the model from overlearning. It increases the 

generalization ability of the model by randomly turning off neurons at certain rates during the training 

process. Dropout has been proven by many studies to improve the accuracy of the model and provide a 

more robust learning process [43]. Therefore, dropout layers in Bi-CNN and Bi-CL-CNN models 

contribute to make the model more robust during training. 

To extract image features, this study applied four iterations of a sequence of Convolution, ReLU 

activation function, Convolution, ReLU activation function, Batch Normalization, Maximum Pooling 

and Dropout layers. During these iterations, the number of convolution filters was systematically 

increased by a factor of 8, 16, 32 and 64. This structure increases the learning capacity of the model and 

allows for richer feature extraction. Consistent with the convolution layers, a Fully Connected (FC) layer 

with 128 units is used by applying the ReLU activation function. After the FC layer, the Batch 

Normalization and Dropout layers come into play again. The Fully Connected layers, together with the 

combination of Batch Normalization and Dropout, are repeated with a staggered number of units: 128, 

64, 32. 

The output layer of the Bi-CNN model classifies the images into 20 different classes using a fully 

connected layer of 20 units with a softmax activation function. Cross-entropy is used as the loss function 
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in this model. On the other hand, the Bi-CL-CNN model uses Si-CL [44], a special loss function 

developed for handwritten signature images. This special loss function was chosen to evaluate the 

effectiveness of the model on binary images and to investigate its impact on different datasets. 

The main difference between the Bi-CNN and Bi-CL-CNN models lies in the change in the classification 

layers. All other layers and hyperparameter settings are the same between the two models. Therefore, 

only the classification layers are changed in order to evaluate the impact of the custom loss function on 

training time and classification accuracy. The only modification made to the Bi-CNN architecture to 

create the Bi-CL-CNN architecture is the replacement of the classification layer with the Si-CL layer. 

This change is considered as an important step to improve the classification accuracy of the model. 

Figure 5 shows the layer layouts of the Bi-CNN architecture. 
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Figure 5. Graph representing the suggested Bi-CNN model 

Models Training 

The training process of the model was carried out with an optimized strategy to improve its performance. 

In this context, the Adam optimization algorithm was used. Adam is an extension of Stochastic Gradient 

Descent (SGD), which automatically adjusts the learning rate for each parameter. This allows for a faster 

and more efficient learning process, especially when working with large datasets and deep networks 

[45]. The Adam algorithm provides adaptive learning rates for each parameter by combining the first 
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moment (mean) and second moment (variance) estimates. In this way, the updates of the model become 

more stable and converge faster [46]. 

Hyperparameter optimizations also play an important role in model training. Hyperparameters are values 

that directly affect the training process and results of the model. In this study, various hyperparameter 

values were tested and the best-performing ones were determined. The hyperparameters include critical 

parameters such as learning rate, batch size, dropout rate and number of layers. 

The learning rate also plays an important role in the hyperparameter settings. The learning rate 

determines the magnitude of the model's weight updates. A too low learning rate slows down the training 

process, while too high a learning rate may cause the model's learning process to become unstable [47]. 

Therefore, different values were tested to determine an optimal learning rate. Batch size refers to the 

number of samples that the model will use in each update step. Small batch sizes provide more frequent 

updates, but require more computation time, while large batch sizes provide fewer updates, but use more 

memory for each update [48]. In this study, different batch sizes were experimented with and the best 

results were obtained. 

Dropout rates are another important step in hyperparameter optimizations. Dropout rate is a technique 

used to prevent overfitting. This rate determines the probability of randomly turning off neurons during 

training. Choosing an appropriate dropout rate is critical in increasing the generalization ability of the 

model. Also, the number of layers is a factor that determines the depth of the model. More layers can 

increase the capacity of the model to learn more complex relationships; however, excessive deepening 

can lead to difficult learning [49]. 

The hyperparameter values expressed in bold in Table 2 produced the best results in the experiments. 

These values significantly improved the overall performance of the model and optimized the efficiency 

of the training process. Moreover, this optimization process enabled a better success rate in the 

classification of binary images. 

In conclusion, the Adam optimization algorithm and a systematic hyperparameter optimization process 

played a critical role in the training phase of the model. The careful selection of the hyperparameters 

improved the overall performance of the model and provided an effective solution for binary image 

classification tasks. 

Table 2. Tested values and hyperparameters (the optimal value for every parameter is bolded.) 

Hyper-parameter Experimented values 

Dropout rate of Conv layers 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

Dropout rate of the final fully connected layer 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

Learning rate 1xe−𝟑, 1𝑥𝑒−4, 1𝑥𝑒−5, 1𝑥𝑒−6, 1𝑥𝑒−7 

Batch size 8,16, 32, 64, 128 

Activation function ReLU, 𝑒𝐿𝑈, 𝑃𝑅𝑒𝐿𝑈, 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈, 𝑡𝑎𝑛ℎ, 𝑠𝑜𝑓𝑡𝑚𝑎x 

Optimization algorithms 𝐴𝑑𝑎𝑚, 𝑅𝑀𝑆𝑝𝑟𝑜𝑝, Adadelta, 𝑆𝐺𝐷 
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CNNs offer a highly effective architecture in the field of deep learning, finding a wide range of 

applications in image processing and classification tasks. These networks are designed with a modular 

structure. This means that each component can be independently optimized and replaced as needed. The 

modular structure is characterized by the arrangement of layers in a specific order and sequence of 

operations. A typical CNN architecture consists of convolution layers, activation functions, pooling 

layers and fully connected layers. Each module fulfills a specific function. Convolution layers are used 

to extract features from images, while activation functions come into play to speed up the learning 

process and increase the non-linearity of the network. Pooling layers reduce the computational burden 

of the model by summarizing the information, while fully connected layers perform classification. This 

modular structure increases the ability of researchers to modify and optimize specific components, 

which makes it possible to develop more flexible and efficient models [50]. 

In addition to modular structures, the use of specialized loss functions also plays a critical role in the 

success of CNNs. Instead of traditional loss functions, this study uses a custom loss function designed 

for a specific application. Specifically developed for binary classification tasks such as handwritten 

signature images, the Si-CL loss function optimizes the model's learning process and increases 

sensitivity to certain types of errors. This special loss function improves the classification accuracy of 

the model, leading to a better performance on binary images [44]. Consequently, careful design and 

implementation of special loss functions is an important strategy to improve the overall performance of 

CNNs. 

The dataset used in this study was created with a structure in which 80% of the total data was used for 

training and 20% was reserved for testing. Another 20% of the training set is reserved for the validation 

process of the model. This approach is critical to evaluate the performance of the model during training 

and to avoid overfitting. While the training data is actively used in the learning process of the model, 

the validation set is used to monitor the overall performance of the model and perform parameter 

adjustments. The test data is used to evaluate the real-world performance of the model after the training 

process is completed. 

During the training process, the early stopping method was also used to reduce overfitting. This method 

involves monitoring the performance of the model on the training data as well as on the validation data 

at each epoch. If the model does not improve its performance on the validation set for a certain number 

of consecutive epochs, the early stopping mechanism is activated. This prevents overfitting of the model 

and helps to ensure more general and robust learning [51]. Thus, the efficiency of the training process 

is increased and the overall performance of the model is optimized. Early stopping also allows the 

training time to be managed efficiently, thus saving time and resources. 

The "Shape-DU" and "MPEG-7" datasets were employed to train the Bi-CNN and Bi-CL-CNN models, 

as well as the benchmark models discussed in the subsequent sections. Consequently, the results across 
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two distinct datasets were assessed. Moreover, the performance of both the benchmark models and the 

proposed Bi-CNN and Bi-CL-CNN models was evaluated separately for each dataset. 

Benchmarking Models 

In this study, popular transfer learning architectures such as GoogleNet, DenseNet201 and ResNet50 

are used to compare the classification performance of two different proposed models. Transfer learning 

is a technique based on the reuse of pre-trained models for a similar task. This method accelerates the 

learning process of the model and improves the overall performance, especially when the dataset is 

limited [52]. Transfer learning is a powerful tool for maximizing the ability of deep learning models to 

learn complex features. 

GoogleNet is characterized by its multi-layered architecture and “Inception” modules. This architecture 

allows the model to learn features at various scales by using filters of different sizes simultaneously. 

Thus, it can capture different details in images more effectively [53]. The depth and complexity of 

GoogleNet improve its overall performance and accelerates the learning process. 

DenseNet201 is notable for its dense connections between layers. This architecture increases the 

information flow and strengthens the learning ability of the model by transmitting the output of each 

layer to the next layer. Thus, higher accuracy is achieved with fewer parameters and the risk of 

overlearning is reduced [54]. These features of DenseNet201 make a significant contribution to improve 

the overall performance of the model. 

ResNet50 is an architecture built on the concept of “Residual Learning”. It allows deeper networks to 

be trained efficiently by using skip connections to solve the problem of gradient loss during the training 

of deep networks [55]. In this way, the learning process of deep structures becomes more stable and the 

overall accuracy of the model is increased. 

The selection of these three models was based on their success in the field of deep learning and their 

flexibility in various tasks. Each model can be adapted quickly and efficiently through transfer learning, 

thus improving the classification performance of binary images. In this paper, present the performance 

of the two proposed models and compare them with these pre-trained models. Table 3 illustrates the 

comparative performance of the proposed models against these pre-trained models. Additionally, Table 

4 provides a comparison of the trainable parameters of the benchmark models used in this study, 

employing the transfer learning technique. 

In this study, the final classification layers of these pre-trained models were excluded from the newly 

generated models. As illustrated in Figure 6, a fully connected layer was incorporated into the model 

following the foundational layers, substituting the initial classification layers. These custom models 

were then employed to classify binary images across two distinct datasets. 
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Table 3. Comparison of the proposed models with pre-trained models 

Pre-Trained Models Top-1 Accuracy Depth 

GoogleNet 66.5 22 

Densenet201 77.3 201 

Resnet50 74.9 50 

Bi-CNN 71.3 29 

Bi-CL-CNN 72.4 29 

Top-1 accuracy is a metric that measures the success of the classification model in predicting the correct 

class with the highest probability and refers to the proportion of correctly predicted instances. This 

metric checks whether the true class matches the highest probability predicted by the model and is 

widely used as a measure of classification success [56]. 

 

Figure 6. An example of how benchmarking models are built 

Table 4. An analysis comparing the number of trainable parameters in each deep neural network's 

applied transfer learning version and original version. 

Models Total number of parameters trained 

without freezing layers 

Total number of parameters 

trained with freezing layers 

Googlenet 5.6M 7.1K 

Resnet50 25.6M 14.3K 

Densenet201 20.2M 3.8K 

Bi-CNN 2.1M - 

Bi-CL-CNN 2.1M - 

Experimental Results 

The developed models and transfer learning approaches are tested on MPEG7 and our own Shape-DU 

binary image datasets. These datasets represent different application domains, allowing a comprehensive 

evaluation of the performance of the model under various scenarios. Various evaluation metrics such as 

accuracy, precision, recall and F1 score were used to measure the classification performance. 

Accuracy is a measure of how many of the model's total predictions are correct. This metric plays an 

important role in understanding the overall success of the model; however, it can be misleading in 
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imbalanced datasets. Accuracy is calculated in terms of true positives (TP) and true negatives (TN). 

True positives are instances that the model correctly classifies as positive, while true negatives are 

instances that the model correctly classifies as negative. However, false positives (FP), i.e. instances that 

the model incorrectly classifies as positive, and false negatives (FN), i.e. true positive instances that the 

model incorrectly classifies as negative, should also be considered in this measure. 

Precision assesses how many of the instances that the model classifies as positive are actually positive. 

That is, it shows the accuracy of the instances where the model says “yes”. This metric is critical in 

situations where false positives are important. Precision is defined as the ratio of true positives (TP) to 

total positive predictions (TP + FP). Recall measures how well the model detects true positive samples. 

That is, it is calculated as the ratio of true positives (TP) to total true positives (TP + FN). This metric 

shows how many true positive examples the model correctly classifies and focuses on reducing false 

negatives. The F1 score provides a combined assessment of the two metrics, showing the balance 

between precision and recall. Especially in imbalanced data sets, the F1 score more accurately reflects 

the overall performance of the model. Therefore, it is important to use these metrics together to ensure 

an accurate assessment. Equation 2 shows accuracy, equation 3 shows precision, equation 4 shows 

recall, and equation 5 contains the formulas for F1-score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TP⁡+⁡TN)

(TP+FP+TN+FN)
              (2) 

Precision =
TP

(TP⁡+⁡FP)
                (3) 

Recall =
TP

(TP⁡+FN)
               (4) 

F1⁡Score⁡ = 2⁡x
Precision⁡x⁡Recall

(Precision⁡+⁡Recall)
              (5) 

In addition to the aforementioned metrics, training time is also considered as a performance benchmark 

for deep learning (DL) platforms.  In machine learning processes, datasets are usually divided into three 

different subsets: (1) a training set for model training, (2) a validation set to evaluate the training effects, 

and (3) a test set to evaluate the final accuracy of the model. This structure allows the evaluation of the 

effectiveness of the learning process and the overall performance of the model. 

In this study, 20% of the total dataset is designated as the test set. The remaining data is further 

partitioned by allocating 80% to the training set and 20% to the validation set. As a result, the dataset is 

structured such that 64% is used for training, 16% for validation and 20% for testing. These proportions 

are critical for the model to train correctly and improve its performance. The training set is actively used 

in the learning process of the model, while the validation set is used to evaluate the overall performance 

of the model and to perform hyperparameter adjustments. 

The confusion matrix, which evaluates the class separation ability of a classifier, is a standard tool used 

to analyze the performance of the model in detail. The elements of the confusion matrix help us to 

understand the success of the model by showing the correctly and misclassified examples. In this 
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context, the effectiveness of the proposed models in classifying binary images is evaluated using the 

confusion matrix. 

Furthermore, Table 5 contains the details of the datasets used in this study and the number of instances 

within each set, clearly showing which data was used in the training and testing processes of the model. 

This structure increases the reliability of the results obtained when evaluating the overall performance 

of the model. 

Table 5. Summary of the datasets utilized in this research 

Datasets Training set Validation 

set 

Test set Number of 

classes 

Number of samples 

in each class 

Total 

images 

Shape-DU 1280 320 400 20 100 2000 

MPEG-7 896 224 280 70 20 1400 

Experiments With the Shape-DU Dataset 

A dataset of binary images, designated as "Shape-DU," was utilized to train and evaluate both the 

benchmark and proposed models. Table 6 summarizes the accuracy of these models assessed when using 

the "Shape-DU" dataset, based on experimental results. Among the five models tested, the Bi-CL-CNN 

model demonstrated the highest performance, achieving an accuracy of 93.18%. 

Figure 7 and Figure 8 present the accuracy graphs computed during the training phases of the Bi-CNN 

and Bi-CL-CNN models. The accuracy results obtained from the "Shape-DU" dataset are as follows: 

the Bi-CNN model achieved an accuracy of 90.63%, while the benchmark models performed as follows: 

DenseNet201 attained 84.38%, GoogleNet achieved 78.15%, and ResNet50 reached 78.13%. 

Additionally, Figure 9 illustrates the accuracy values of the benchmark models obtained from the 

"Shape-DU" dataset. 

Table 6. Classification performances of the models after training and assessment on the "Shape-Du" 

dataset 

CNN models Accuracy (%) Precision (%) Recall (%) F1-score (%) 

TGoogleNet 78.15 78.23 78.15 78.18 

TDenseNet201 84.38 84.42 84.38 84.40 

TResNet50 78.13 78.10 78.13 78.11 

Bi-CNN 90.63 90.59 90.63 90.60 

Bi-CL-CNN 93.18 93.02 93.18 93.09 
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Figure 7. Accuracy and loss graphs of the Bi-CNN model for the training and validation sets obtained 

during training with the “Shape-DU” dataset 

 
Figure 8. Accuracy and loss graphs of the Bi-CL-CNN model for the training and validation sets 

obtained during training with the “Shape-DU” dataset
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Figure 9. Accuracy and loss graphs of the benchmark model for the training and validation sets 

obtained during training with the “Shape-DU” dataset 

Due to their intricate and deep architectures, extensive data processing requirements, and numerous 

parameters, CNN models necessitate considerable training time, even on high-performance computing 

systems with advanced processing speeds and large memory capacities. Accordingly, Table 7 presents 

the training times for each CNN model when evaluated using the "Shape-DU" dataset. 

Table 7. Training times for the models used on the “Shape-DU" dataset 

CNN Models Training Time 

TGoogleNet 92 min. 15 sec. 

TDenseNet201 129 min. 45 sec. 

TResNet50 75 min.  35 sec. 

Bi-CNN 87 min. 22 sec. 

Bi-CL-CNN 81 min. 33 sec. 

The experimental results reveal that the ResNet50 model was the fastest, completing its training in 4535 

seconds. The Bi-CL-CNN and Bi-CNN models followed, with training durations of 4893 seconds and 

5242 seconds, respectively. Among the benchmark models, DenseNet201 exhibited the greatest depth, 

resulting in the longest training time. The training times shown in the table correspond to the fine tuning 

process only. These times reflect the process of making the pre-trained weights more appropriate for the 

"Shape-DU" dataset. This refers to the process of adapting the model to the new data and differs from 

training from scratch or inference time, as this process requires less time and computational resources. 

When comparing the training times of the Bi-CNN and Bi-CL-CNN models, differences are noted, 

attributable to the distinct loss functions employed. Specifically, the loss function utilized in the Bi-CL-

CNN model accelerates the training process by providing more accurate error feedback. This custom 

loss function allows the model weights to be optimized more quickly during the tuning phase, resulting 
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in faster training time. Consequently, significant variations in network performance, in terms of both 

speed and accuracy, are observed due to the application of the specialized loss function. These 

differences emphasize the importance of carefully choosing the loss function, as it can significantly 

affect both the computational efficiency of the model and its success in achieving high accuracy. 

Experiments With the MPEG-7 Dataset 

The "MPEG-7" binary image dataset was utilized to train and evaluate the Bi-CNN and Bi-CL-CNN 

models, along with other benchmark models. Table 8 summarizes the accuracies of the models based 

on the "MPEG-7" dataset, as determined from the experimental results. The Bi-CL-CNN model 

exhibited the highest performance among the five models, achieving an accuracy of 99.18%. Figures 10 

and 11 display the accuracy graphs for the Bi-CNN and Bi-CL-CNN models, respectively, as recorded 

during their training phases. 

The accuracy results for the "MPEG-7" dataset are as follows: the Bi-CNN model attained an accuracy 

of 95.91%, DenseNet201 achieved 95.16%, GoogleNet reached 91.50%, and ResNet50 recorded an 

accuracy of 89.50%. Figure 12 illustrates the accuracy values for the benchmark models derived from 

the "MPEG-7" dataset. 

Table 8. Classification performances of the models after training and assessment on the "MPEG-7" 

dataset 

CNN models Accuracy (%) Precision (%) Recall (%) F1-score (%) 

TGoogleNet 91.50 91.29 91.52 91.40 

TDenseNet201 95.16 94.92 95.05 94.98 

TResNet50 89.50 89.12 89.54 89.33 

Bi-CNN 95.91 95.73 95.80 95.76 

Bi-CL-CNN 99.18 99.02 99.22 99.12 

 
Figure 10. Accuracy and loss graphs of the Bi-CNN model for the training and validation sets 

obtained during training with the “MPEG-7” dataset 



Özkan                                                                      Sinop Uni J Nat Sci 10(1): 289-318 (2025) 

  E-ISSN: 2564-7873 

 

310 

 

 
Figure 11. Accuracy and loss graphs of the Bi-CL-CNN model for the training and validation sets 

obtained during training with the “MPEG-7” dataset 

 
Figure 12. Accuracy and loss graphs of the benchmark model for the training and validation sets 

obtained during training with the “MPEG-7” dataset 

The analysis of the experimental results using the “MPEG-7” dataset and the training times for each 

CNN model are presented in Table 9.  

Table 9. Training times for the models used on the "MPEG-7" dataset 

CNN models Training Time 

TGoogleNet 79 min. 30 sec. 

TDenseNet201 127 min. 17 sec. 

TResNet50 76 min.  25 sec. 

Bi-CNN 72 min. 15 sec. 

Bi-CL-CNN 65 min. 16 sec. 

Table 9 shows that the Bi-CL-CNN model is the fastest model, completing the training in 3916 seconds. 
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It was followed by the Bi-CNN and ResNet50 models, which completed the trainings in 4335 and 4585 

seconds, respectively.  Consistent with the results from the Shape-DU dataset, DenseNet201 had the 

longest training time. 

The overarching conclusion from these results is that training times increase with the depth of the neural 

network. A comparative analysis of training times and accuracy rates for the Bi-CNN and Bi-CL-CNN 

models underscores the significant role of the classification layer. The use of the specialized loss 

function in the Bi-CL-CNN model facilitates faster error feedback, thereby reducing overall training 

time. This indicates that the choice of loss function has a substantial impact on the network's 

performance, with implications for both speed and accuracy. 

Discussion 

In evaluating the performance of the proposed models on the "Shape-DU" dataset, which was specifically 

developed for this study, the models demonstrated favorable outcomes. To ensure a rigorous and unbiased 

comparison, it is crucial to test the models using established datasets commonly utilized in prior research. 

Consequently, the "MPEG-7" dataset was employed alongside the "Shape-DU" dataset for comparative 

analysis. The results of the assessments using the "MPEG-7" dataset are summarized in Table 10, 

providing a detailed overview of the findings. 

Table 10. Comparing similar studies that were trained and assessed using the "MPEG-7" dataset 

References Method used Accuracy (%) 

Yang et al. [20] SVM 96.27 

Patel et al. [21] SVM 98.41 

Bicego et al. [57] CNN+SVM 98.10 

Govindaraj et al. [58] k-NN 95.09 

Jayasumana et al [59] SVM 96.57 

Bi-CNN CNN 95.91 

Bi-CL-CNN CNN 99.18 

The evaluation of the MPEG-7 dataset reveals that Support Vector Machines (SVM) and their 

hybridization with CNN yield high accuracy rates. Specifically, Patel et al. [21] achieved the highest 

accuracy of 98.41% using SVM alone. Similarly, Bicego et al. [57] demonstrated competitive performance 

with a CNN-SVM hybrid approach, attaining an accuracy of 98.10%. 

In contrast, our proposed models, Bi-CNN and Bi-CL-CNN, exhibit notable advancements. The Bi-CNN 

model achieved an accuracy of 95.91%, while the Bi-CL-CNN model surpassed all other methods with an 

impressive accuracy of 99.18%. This substantial improvement highlights the Bi-CL-CNN model's superior 

capability in classifying binary images from the MPEG-7 dataset. 

The enhanced performance of the Bi-CL-CNN model can be attributed to its advanced architecture, which 

significantly improves feature extraction and classification accuracy. The integration of the Class-Level 
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(CL) component within the Bi-CL-CNN model likely provides additional contextual information, thereby 

facilitating more precise classification. 

Overall, these results underscore the efficacy of our proposed models, particularly the Bi-CL-CNN, in 

elevating classification accuracy for binary images in the MPEG-7 dataset. This suggests that our approach 

has the potential to establish new benchmarks for classification performance in this domain.  

The superior performance of the Bi-CL-CNN model can be attributed to its innovative architecture, 

specifically the incorporation of the Class-Level (CL) component. This enhancement likely improves the 

model's ability to capture detailed features and contextual information, contributing to its increased 

accuracy. Due to the different loss functions in the proposed models, Table 11 presents a comparison of 

training times. 

Table 11. Comparison of training times of Bi-CNN and Bi-CL-CNN models. 

Datasets Bi-CNN Bi-CL-CNN Ratio of Bi-CL-CNN to Bi-CNN 

Shape-DU  87 min. 22 sec. 81 min. 33 sec. 1.071 

MPEG-7 72 min 15 sec. 65 min 16 sec. 1.107 

In addition, this study compares the performance of Bi-CNN and Bi-CL-CNN models and the computation 

time of each model. The results show that a significant speed difference occurs between the models, which 

can be attributed to the nature of the loss functions used. 

For the Shape-DU dataset, the Bi-CNN model took 87 minutes and 22 seconds to process, whereas the Bi-

CL-CNN model completed the task in 81 minutes and 33 seconds, demonstrating approximately 7.1% 

faster performance. In the MPEG-7 dataset, the Bi-CNN model's processing time was 72 minutes and 15 

seconds, while the Bi-CL-CNN model reduced this to 65 minutes and 16 seconds, resulting in a 10.7% 

increase in speed.  

The primary reason for these differences lies in the structural variations of the loss functions used. The Bi-

CNN model employs the classic cross-entropy loss function, which is widely utilized to minimize the 

discrepancy between the model output and the target class. However, this loss function may extend 

processing time, especially when dealing with high-dimensional datasets and multi-class problems. 

Conversely, the Bi-CL-CNN model utilizes the Si-CL function, which more effectively models the 

similarities and differences between data points, resulting in a faster learning process. The Si-CL loss 

function is particularly beneficial in complex tasks, where it enhances both the speed and accuracy of the 

model. 

In conclusion, the Si-CL loss function employed in the Bi-CL-CNN model provides a more efficient 

learning process compared to the cross-entropy loss function used in the Bi-CNN model. This efficiency 

is reflected in the significant reductions in processing times observed. Particularly in large and complex 

datasets, the speed advantage conferred by the Si-CL loss function makes the Bi-CL-CNN model a more 

suitable option for applications where processing time is critical. This study underscores the effectiveness 
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of the Si-CL loss function in enhancing the performance of deep learning models. The results confirm that 

this loss function is effective not only for its intended purpose but also in improving the classification 

performance of binary images, validating its broader applicability in image classification tasks. 

The Bi-CNN and Bi-CL-CNN architectures offer notable advantages over other models. A significant 

benefit is their capacity to achieve high-precision classification with a relatively small number of training 

examples, thanks to the robust feature extraction capabilities inherent in CNNs. However, a key 

disadvantage is the substantial training time required due to the large number of parameters to be 

processed. Despite this limitation, the results indicate that these models are both highly effective and 

satisfactory for binary image classification. Consequently, they hold promise as valuable tools in 

applications such as barcode reading, QR code scanning, and handwriting analysis. Their precision and 

feature extraction capabilities make them particularly suited for these tasks. Future research will focus on 

further optimizing these models and assessing their performance on additional datasets and more complex 

classification tasks. 

Conclusion 

The convenience and benefits of technology have made the identification and detection of objects in digital 

photographs increasingly important. Although many studies have been carried out in the fields of machine 

learning and image processing, there is a lack of adequate methods for categorizing binary images. In this 

paper, we introduce two innovative CNN-based models, Bi-CNN and Bi-CL-CNN, for categorizing binary 

images. Two different datasets are used to evaluate the effectiveness of Bi-CNN and Bi-CL-CNN models. 

First, the “Shape-DU” dataset is used to train and evaluate these models. The experimental results show 

that the Bi-CNN model performs well with an accuracy of 93.18%, while the Bi-CL-CNN model achieves 

90.63% accuracy. Three different CNN models were used to compare the effectiveness of Bi-CNN and 

Bi-CL-CNN models. The Bi-CL-CNN model performed the best among the benchmark models with an 

accuracy of 99.18%. Moreover, the training time of the Bi-CL-CNN model was found to be shorter since 

it provides a more accurate error transformation of the loss function in the classification layer.  

Future studies aim to develop various strategies to improve the performance of the proposed Bi-CNN and 

Bi-CL-CNN models. First, diversifying the datasets will be a critical step to strengthen the generalization 

capability of the model; in this regard, the integration of larger and heterogeneous datasets for different 

application domains will allow for evaluating the effectiveness of the model under various conditions. 

Furthermore, the application of data augmentation techniques and regularization methods to address the 

problem of overlearning can increase the robustness of the model. Optimization of model architectures can 

be achieved by adapting pre-trained networks through transfer learning, which has the potential to offer 

performance improvements on more complex data sets. The study of different loss functions and 

optimization algorithms can also make the model learning processes more efficient. The integration of 

advances in this field into industrial applications will increase the practical utility of these models in real-
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world scenarios, and working on potential use cases in various fields such as health, safety and automation 

will expand the impact of the research. In this regard, the innovative approaches offered by the proposed 

models will continue to make significant contributions both to the academic literature and to the applied 

fields. 
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