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 ABSTRACT  

 

The central nervous system (CNS) is one of the most complex and vital systems of the human 

body and is particularly interrelated with all other systems. Treatment modalities targeting the 

CNS as well as those targeting other systems may directly or indirectly affect the CNS. 

Especially in cases of polypharmacy, drug-drug interactions (DDIs) can lead to severe problems.  

The widespread use of drugs that have an effect on the CNS and the unpredictability of possible 

interactions between these drugs both complicate the treatment processes of patients and 

considerably increase health costs. In this study, a novel method based on Graph Convolutional 

Neural Networks (GCN) is proposed to predict CNS-related DDIs. The proposed approach 

utilizes a data fusion method by exploiting both graph structures and physical properties of drug 

molecules. This integrated approach enabled a more comprehensive and reliable prediction of 

drug interactions. The developed model achieved 98.67% accuracy and 0.994 AUC in the 

training process and 98.40% accuracy and 0.991 AUC in the validation process. A Graphical 

Interface (GUI) was designed to make the developed model easily usable by users. The 

integration of molecular structure and interaction network data sets a new benchmark for 

reliability and accuracy in DDIs prediction, addressing a critical need in modern healthcare 

systems. The developed methods and tools have significant potential for predicting drug 

interactions in the drug discovery process and in polypharmacy situations.  
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1 INTRODUCTION 

The central nervous system is one of the most complex and vital systems of the human 

system, regulating a wide range of physiological and psychological processes such as cognitive 

functions, emotional regulation, motor skills, sensory perception, homeostasis and behavioural 

responses [1], [2]. This system, composed of the brain and spinal cord, coordinates these 

processes through complex interactions of neurotransmitters, neuropeptides and other bioactive 

molecules [3]. The disruption of these processes and changes in their effectiveness due to 

various reasons cause serious problems. To eliminate these problems, modern medicine tries to 

find solutions by using drugs. CNS drugs used in the treatment of neurological and psychiatric 

disorders aim to have a therapeutic effect by targeting neurochemical instabilities in this system 

[4], [5]. These drugs regulate neurotransmission by modulating target receptors or enzymes, 

thereby alleviating or eliminating disease symptoms. However, the complex and dynamic 

nature of the CNS makes the effects of these drugs difficult to predict and increases the 

likelihood of off-target effects, i.e. unwanted side effects [6]. Furthermore, CNS drugs' 

pharmacokinetic and pharmacodynamic properties may show inter-individual and intra-

individual variability, which may affect drug efficacy and safety [7]. Especially under 

polypharmacy conditions, the simultaneous use of multiple CNS-effective drugs may trigger 

pharmacologic interactions. These interactions may lead to decreased drug efficacy or increased 

toxic effects of drugs [8]. Therefore, a comprehensive understanding of the mechanisms of 

action, pharmacological properties and possible interactions of CNS drugs is critical for 

developing rational treatment strategies, implementing individualized treatment approaches 

and ensuring patient safety. Therefore, it is increasingly essential to understand these complex 

drug interactions in the CNS better to improve clinical practice.  

Drug-drug interactions represent a complex and vital aspect of modern 

pharmacotherapy and have an increasing prevalence in today's clinical practice, especially in 

the management of CNS-affecting drugs and the prevalence of polypharmacy due to 

comorbidities. DDIs occur when two or more drugs administered simultaneously modify the 

pharmacokinetic and/or pharmacodynamic properties of two or more drugs [9]. 

Pharmacokinetic interactions can affect the drug's absorption, distribution, metabolism and 

excretion processes, altering the plasma concentration and, thus, the bioavailability of the drug 

[10]. Central nervous system drugs are susceptible to such interactions and can have serious 

clinical consequences as they target complex networks of neurotransmission and 

neurotransmitter systems [11]. DDIs may lead to a decrease in the expected therapeutic efficacy 
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of drugs, the occurrence of unintended adverse effects, variability in treatment response, 

prolonged hospitalisation and even increased treatment costs [12]. In clinical practice, 

prediction of DDIs and assessment of risk factors are vital for patient safety and optimal 

treatment outcomes. In this context, a deep understanding of the pathophysiological 

mechanisms of DDIs and the development of advanced methods that can predict these 

interactions are essential to support clinical decision-making. 

Traditional experimental methods are time-consuming, costly and inadequate for DDIs 

determination, especially for large-scale monitoring. In recent years, these limitations have 

increased the need for highly efficient and fast DDIs prediction methods. Deep learning 

algorithms have emerged as a promising alternative in this field [13], [14], [15]. Deep learning 

approaches are a machine learning subfield based on multilayer artificial neural networks that 

can automatically learn and generalise patterns from complex data sets. By integrating a wide 

range of biological and pharmacological data, such as chemical structures of drugs, 

pharmacological properties, gene expression profiles, protein interaction networks and clinical 

data, deep learning algorithms can excel in predicting DDIs [16], [17]. In particular, deep 

learning models, such as Graph Neural Networks (GNNs), can model the molecular structure, 

sequential properties and relational structure of drugs to provide high accuracy and reliability 

in DDIs prediction [18], [19]. Deep learning-based approaches have the potential to accelerate 

the drug development process, assess the safety of potential drug combinations and contribute 

to the development of personalised treatment approaches by predicting DDIs that are difficult 

to determine experimentally. Moreover, deep learning-based DDIs prediction methods play an 

essential role in the design of clinical trials, drug safety monitoring and pharmacovigilance 

applications. Therefore, further exploration of the potential of deep learning in the field of DDIs 

prediction and integration of this technology into clinical applications is of great importance 

for patient safety and treatment efficacy. 

Machine learning and deep learning-based approaches for predicting DDIs can utilise 

various feature vectors and data formats to represent drugs. Chemical structures, 

pharmacological classifications, biological activities, gene expression profiles, protein 

interaction networks and clinical information of drugs are frequently used data types to model 

and predict DDIs [20], [21]. Properly processing of this data and its input to deep learning 

models significantly impacts DDIs prediction performance. In particular, the Simplified 

Molecular Input Line System (SMILES) representation of the molecular structure of drugs is 

one of the best and most reliable data forms for deep learning algorithms. SMILES strings allow 
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a drug molecule's atomic structure, chemical bonds, branch points and cycles to be encoded as 

a one-dimensional text string [22]. In recent years, combining deep learning-based methods and 

SMILES representations has led to significant advances in DDIs prediction. On the other hand, 

although similarity matrices are used in DDIs prediction, these methods involve extra 

computational steps before application [23]. This brings with it several limitations for 

similarity-based DDIs estimation methods.  

Similarity-based methods are based on the assumption that similar drugs will have 

similar interactions based on the similarities between the feature vectors of the drugs. The 

advantage of these methods is that they are straightforward and intuitive [24]. However, the 

choice of similarity measures in DDIs prediction can significantly affect the estimation 

performance. This leads to user-dependent analyses. On the other hand, Matrix Factorization 

Methods try to solve the missing data problem by decomposing the DDIs matrix into low-

dimensional latent matrices [25]. The advantage of these approaches is that they can efficiently 

handle large and sparse DDIs matrices. However, these methods may have limitations in 

elucidating the underlying mechanisms of drug-drug interactions (DDIs), which hinders their 

ability to enhance performance when integrated with deep learning models. In contrast, graph-

based approaches model drug interaction networks by representing drugs and their interactions 

as nodes and edges, offering a more structured and interpretable framework for understanding 

DDIs. GNNs give better results than other methods due to their ability to capture complex 

relational patterns in drug molecular structures or interaction networks.  

Many studies are using GNN methods for DDI prediction. The HetDDI model uses a 

Heterogeneous Graph Neural Network (HGNN) to predict DDI by integrating the molecular 

structures of drugs with external biomedical information [26]. This model improves its ability 

to effectively predict unobserved interactions by collecting information from various sources. 

In contrast, the generalization capabilities are improved through pre-training methods that 

transform drug SMILES into molecular graphs and initialize node embeddings. Another 

approach, the Knowledge Graph Neural Network (KGNN) framework, addresses the 

limitations of existing models by capturing high-order structures and semantic relationships in 

knowledge graphs [27]. By expanding the receptive field to include information multiple steps 

away from each entity, KGNN more effectively models long-distance correlations between 

drugs and their potential interactions and outperforms traditional models. On the other hand, 

the EmerGNN model is a GNN-based method that focuses on predicting interactions for 

emerging drugs for which comprehensive DDIs data is often unavailable [28]. By extracting 
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pathways between drug pairs and incorporating relevant biomedical concepts, EmerGNN 

delivers DDI predictions with higher accuracy than existing methods, making it particularly 

useful for novel therapeutic agents. The AutoDDI model is a method that automates the design 

of GNN architectures specifically for DDIs prediction [29]. This approach uses reinforcement 

learning to optimise the architecture based on various datasets. It helps to achieve high 

performance on real-world datasets while significantly reducing the time and expertise required 

for manual design. Another notable approach in the literature is the HGNN-DDI model [30]. 

This model utilised attentional mechanisms within GNNs to improve DDIs prediction accuracy. 

It further enhanced its prediction capabilities by integrating attention layers to focus on essential 

features in drug interaction data. In conclusion, GNNs show promising results in DDIs 

prediction.  

This study proposes a novel GNN-based deep learning method to predict interactions 

between drugs that are effective in the CNS. Aiming to overcome the limitations of traditional 

approaches, this deep learning model addresses key challenges such as the need for extensive 

data preprocessing, the complexity of handling multi-parametric models, and the reliance on 

similarity-based methods. Traditional approaches often struggle with these issues, limiting their 

predictive accuracy and generalization capabilities. In contrast, the proposed model integrates 

SMILES strings representing the molecular structures and physicochemical properties of drugs 

with graph-based neural networks, offering a more efficient and accurate alternative for drug 

interaction prediction. This integration allows for more accurate modelling of interactions by 

considering both the atomic-level structure of drugs and their relational structure in interaction 

networks. While SMILES represent and efficiently encode the chemical structure of drug 

molecules, GNNs offer the ability to learn the complex relationships and interactions between 

these structures. The main contributions and novelties of the proposed method to DDIs 

prediction are (1) its ability to model the molecular structure and interaction networks of drugs 

simultaneously, (2) the ability to provide higher performance using fewer data pre-processing 

parameters compared to other deep learning models, such as similarity matrix-based methods, 

and (3) its ability to perform a more comprehensive DDIs prediction by integrating both 

structural and relational information. In this context, the proposed method significantly 

improves existing DDIs prediction approaches and contributes to more accurate and reliable 

detection of interactions between CNS drugs. The findings of this study are expected to improve 

drug selection and safety in clinical applications and lead to new approaches in drug discovery 

and development processes. 
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2 PROPOSED METHOD 

To predict CNS drug interactions, a novel deep learning model has been developed that 

model the molecular structure of drugs with a graph-based approach and integrates this 

structural information with associative information in interaction networks. The proposed 

method consists of finding drug pairs that affect CNS activity among drug interaction pairs, 

preprocessing these interaction pairs and classifying the interaction processes. In the first stage, 

interaction data between CNS drugs and SMILES strings and properties representing the 

chemical structures of these drugs were obtained from DrugBank, a comprehensive drug 

database. A series of complementary and holistic data preprocessing procedures were applied 

to the identified data. In the DrugBank dataset, drug pairs without SMILES strings or 

physicochemical properties were removed from the selected data after text mining.  SMILES 

strings expressing the molecular structure of drugs were converted into graphical form. During 

this conversion process, the strings were standardised using tokenisation and padding 

techniques, thus making them suitable for the model's input format. A graph convolutional 

neural network-based method was developed to predict drug interactions.  This model aims to 

learn the interaction patterns by considering the molecular structure of drugs as a graph 

structure, considering the atomic level properties of drugs and their neighbourhood 

relationships. This approach is designed better to understand molecular structures' complex 

patterns and interactions. The developed deep learning model was trained with the information 

obtained from the dataset, and the parameters of the model were adjusted to minimise the 

prediction error using appropriate optimisation algorithms. Finally, the model's performance 

was evaluated using various metrics such as accuracy, precision and area under the ROC curve. 

The proposed method provides a more comprehensive analysis by modelling the molecular 

structure of drugs and their relational structure in interaction networks simultaneously. It aims 

to make more reliable DDIs predictions compared to existing methods. In addition, a user 

graphical interface has been designed to enable experts in the field to use the developed method.  
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Figure 1. Flowchart of the CNS-DDI method. 

3 MATERIALS AND METHODS 

3.1 Dataset 

This study applied a comprehensive data mining approach to model drug interactions 

and train the developed deep learning models. Accurate modelling of drug interactions is of 

critical importance in the field of pharmacology, especially for predicting and preventing 

adverse effects that may occur in polypharmacy situations. In this context, we used DrugBank 

version 5.1.13, which provides information about drugs and their biological targets and is 

widely used in bioinformatics and chemoinformatics [31]. DrugBank version 5.1.13 contains a 

total of 17,430 different drugs and drug interactions between these drugs. In this study, the 

dataset was filtered with a focus on CNS drugs and a subset of 156,179 drug interactions for 

722 drugs was created.  

A text-mining process was conducted on the DrugBank dataset to identify CNS-related 

drug interactions. In this process, two main interaction types were emphasised to identify CNS-

related interactions. In the DrugBank dataset, the types of interactions between drugs are 

expressed by various textual relations. The first data type selected for the study is the increase 



M. A. Pala / BEU Fen Bilimleri Dergisi 14 (2), 907-929, 2025 

 

 914 

in CNS depressant activity when two drugs interact. In the DrugBank dataset, this interaction 

type is expressed as “DrugA may increase the central nervous system depressant (CNS 

depressant) activities of DrugB”. Drug A and Drug B represent the names of the interacting 

drugs. In the collection of the dataset, we selected drugs that secondarily increase the risk or 

severity of CNS depression by entering into an interaction. This second type of interaction is 

described in the DrugBank dataset as “The risk or severity of CNS depression can be increased 

when DrugA is combined with DrugB”. A series of text-mining methods were applied to the 

DrugBank dataset to identify these two types of drug interactions. For each interaction record, 

relevant drug names, SMILES strings and molecular weights, LogP values, molecular weights 

and Monoisotopic Mass values were selected for all drugs and interaction pairs. In the data 

cleaning phase, duplicate interaction records and rows with missing SMILES information were 

removed from the dataset. In addition, the information of other data rows with missing 

information was completed using the PubChem database [32]. Unvalidated or inconsistent 

SMILES strings were removed from the dataset, and automated checks ensured the consistency 

of the dataset. As a result, a two-class dataset consisting of drug interaction pairs that increase 

CNS depressant activity and increase CNS depression risk was created. As a result of this 

process, 142,864 drug interactions that can increase the risk or severity of CNS depression and 

13,315 drug interaction pairs that can increase CNS depressant activity were obtained in the 

dataset. There are 156,179 drug interaction pairs in the data set created by applying data mining. 

Table 1 provides the various drug interaction pairs found in the dataset. For classification 

processes, this leads to a class imbalance problem. In order to overcome this problem, the 

weighted Synthetic Minority Over-sampling Technique (SMOTE) method was applied to the 

minority class of drug pairs that increase CNS depressant activity, as will be discussed in the 

following sections.  
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Table 1. Examples of various drug interaction pairs in the dataset. 

Interaction Type: Drug A may increase the central nervous system depressant (CNS 

depressant) activities of Drug B 

Drug A Drug B 

  

  

Interaction Type: The risk or severity of CNS depression can be increased when Drug A 

is combined with Drug B 

Drug A Drug B 
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3.2 SMILES 

SMILES, a widely used notation system, was used to represent the molecular structure 

of drugs. SMILES is a notation format expressing drug molecules' atomic structure and 

chemical bonds as a one-dimensional ASCII string. This system allows chemical structures to 

be quickly processed and analysed in a computer environment. SMILES strings represent atoms 

with symbols, bonds with signs and branching with parentheses and numbers. It uses numbers 

to close loops. SMILES notation has been widely used in various fields, such as chemical 

computing, drug discovery and molecular modelling. This study used SMILES strings for each 

drug in the drug interaction data obtained from the DrugBank dataset. Molecular 

representations of drugs were obtained through these strings, and drug molecular formats were 

used as input feature data for the developed deep-learning model. The one-dimensional 

structure of SMILES strings makes it easier for deep learning algorithms to learn and analyse 

molecular structures automatically. This way, drug chemical properties and interactions can be 

modelled more effectively. Using the SMILES representation in our study allowed the model 

to directly and effectively understand the molecular structures of drugs. 

3.3 SMILES to Graph 

A transformation step from SMILES representations to graph structures was performed 

to transform the molecular structures of the drugs as input to the deep learning model. This 

transformation process transformed the molecular structures into a format suitable for graph-

based neural networks by treating the atoms of molecules as nodes and the chemical bonds 

between atoms as edges. First, each SMILES string is converted into a molecule object. This 

function analyses the SMILES string to create a data structure representing the atoms and bonds 

of the molecule. The open-source RDKit library was used for this transformation [33].  If the 

SMILES string is incorrect or not recognised by RDKit, the transformation process for this 

molecule is skipped. Then, node and edge features were extracted from the molecule object. 

For nodes, the atomic number of each atom was used. The atomic number of drug molecules is 

a fundamental parameter representing each atom's uniqueness and chemical properties. 

Therefore, the atomic numbers of the molecules were determined as the node matrices of the 

graphs.  

The starting and ending atomic indices of each chemical bond and the bond type were 

recorded for the edges. Bond types refer to single, double, triple or aromatic bonds represented 

by RDKit with numerical values. These values allow the model to distinguish between different 
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bond types. This information was recorded as edge indices and bond properties. As a result of 

these steps, a node array containing atomic numbers, an edge array containing edge indices and 

a bond property array containing bond types were obtained for each drug molecule. In addition, 

during data preparation, the molecular weights, LogP values, molecular weights and 

Monoisotopic Mass of the drugs were included in this representation as an array. This array 

structure represents the graph structure for input to the deep learning model.  

3.4 SMOTE 

A data augmentation method based on SMOTE was applied to address the class 

imbalance in the drug interaction dataset and to enable the model to learn the minority class 

better. Since in drug interaction data, the number of drug pairs that can increase CNS depressant 

activity in the interacting CNS is significantly less than the number of drug pairs that can 

increase the risk or severity of CNS depression; such class imbalance can cause problems in the 

training process of the model [34]. Therefore, using the weighted SMOTE data augmentation 

strategy, the number of samples in the minority class was increased, allowing the model to 

balance learning from both classes during training and validation. 

The SMOTE method creates new synthetic instances from existing instances in the 

minority class. The basic SMOTE algorithm finds k-nearest neighbours for each minority class 

instance. It makes a new synthetic instance by randomly selecting a point between these 

neighbours and the original instance. This process aims to reduce class imbalance by increasing 

the number of instances in the minority class. The weighted SMOTE technique used in this 

study aims to optimise the boosting process by assigning different weights to different data 

samples. These weights are determined according to the importance and difficulty of the 

available examples. During the model's training, higher weights are given to the more critical 

or more difficult instances so that the model focuses on these instances. A weight was first 

assigned to each instance in the training dataset for the weighted SMOTE implementation. 

These weights are set high for interacting instances and lower for non-interacting instances. 

When applying SMOTE for the minority class for interaction pairs, new synthetic examples 

were created by considering these weights. In the Weighted SMOTE method, the new data point 

to be generated is the convex combination of the two selected points in the feature space. 

Mathematically, the new synthetic sample 𝑥new is defined as in equation 1. 

𝑥new = 𝑥𝑖 + 𝜆𝑤𝑖(𝑥𝑧𝑖 − 𝑥𝑖)     (1) 
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 Here, 𝑥𝑖 denotes a random sample selected for a minority class, and  𝑥𝑧𝑖 denotes a point 

selected from its k-nearest neighbors of the same class. 𝑤𝑖 is the weight coefficient assigned to 

instance 𝑥𝑖. 𝜆 is a multiplier chosen in the range [0,1] and controls the degree of interpolation.  

In our study, instead of directly modifying the structural representations of chemical 

molecules, the weighted SMOTE method interpolates in feature space to generate new synthetic 

samples. Thus, variations of synthetic data based on the properties of existing compounds were 

generated. Furthermore, during the data generation process, a control mechanism was added 

through the RDKit library to prevent the generation of completely random or invalid molecules 

from the new synthetic data. Random data points were generated to replace the data that failed 

this control mechanism. Thus, the process of increasing the minority of data was realized. As a 

result of weighted SMOTE process, 142,864 drug interactions that can increase the risk or 

severity of CNS depression and 142,864 drug interaction pairs that can increase CNS depressant 

activity were obtained in the dataset. 

3.5 Graph Convolutional Network  

Graph-based neural networks are deep learning models that have recently received 

significant attention for modelling correlated data structures, especially for analysing complex 

networks such as chemical compounds and biological interactions. [35]. GNNs, unlike 

traditional neural networks, consist of structures that can receive relational data as input through 

nodes and edges instead of one-dimensional strings. In this way, GNNs are model structures 

that perform well in classifying data in non-oclide geometries such as molecular structures, 

social networks and interaction networks. GCNs are neural networks with a more specialised 

structure of GNNs [36]. GCNs is a method that applies a convolution process on the graph data 

used as input, initially through randomly determined filters, and then produces results through 

a series of operations. The most potent aspect of GCNs compared to other graph-based methods 

is that they allow a sharper understanding of spatial features from the data in the graph structure.   

In GCN methods, a graph is defined as 𝐺 = (𝑉, 𝐸). In the graph definition, 𝑉 is defined 

as the set of nodes and 𝐸 ⊆ 𝑉𝑥𝑉 is defined as the set of edges. To operate on the graph, node 

features are usually expressed by a feature matrix 𝑋 ∈ ℝ𝑁𝑥𝐹. Where 𝑁 is the number of nodes 

and 𝐹 is the feature size of each node. The edge information is represented by the adjacency 

matrix 𝐴 ∈ 𝑅𝑁𝑥𝑁. The graph convolution process propagates neighbourhood information over 

nodes by combining node features. This process is expressed as follows: 
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𝐻(𝑙+1) = 𝜎(�̂�𝐻(𝑙)𝑊(𝑙))     (2) 

Where 𝐻(𝑙) is the node features in the l-th layer, �̂� is the normalised adjacency matrix 

and 𝑊(𝑙) is the learnable weights. The normalised adjacency matrix �̂� balances the effect of 

node neighbourhoods, provides numerical stability, and is expressed as follows.  

�̂� = �̃�−1/2�̃��̃�−1/2      (3) 

Where �̃� = 𝐴 + 𝐼 is the self-connections of nodes are included by adding the unit 

matrix. �̃� denotes the degree matrix of �̃�. Hence, for a graph-level classification, node features 

are pooled and then classified: 

𝑧 = 𝑃𝑜𝑜𝑙(𝐻(𝐿)),  �̂� = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥( 𝑧)    (4) 

In this update rule, the features of each node are updated with a weighted average of the 

features of its neighbouring nodes and a learnable weight matrix [37]. Degree normalisation 

ensures nodes with many neighbours have less influence on the update process. This way, the 

model learns to balance, and nodes with many neighbours are not over-dominated. 

The GCN architecture used in this study consists of multiple GCN layers with non-linear 

activation functions applied between them. These layers aim to learn the structural and 

relational properties of atoms within drug molecules, represented as graph structures, to obtain 

more meaningful features for DDI prediction. After the GCN layers, the obtained node features 

are aggregated and passed through fully connected layers to predict the presence or absence of 

drug interactions. Using a GCN-based architecture allows us to effectively model the molecular 

structure of drugs and improve DDI prediction performance. The developed model is designed 

to process drug molecules as graph-structured data, where nodes represent atoms and edges 

represent chemical bonds. The model operates on two separate graph inputs, each 

corresponding to one of the interacting drug molecules. Each input graph consists of three 

components: node features, including atomic numbers of atoms; edge indices, which define the 

connectivity between atoms; and global molecular descriptors that encode additional molecular 

characteristics. The dimensions of these inputs are dynamically determined based on the largest 

molecule in terms of node count and the most complex molecule in terms of edge count within 

the dataset. This design enables the model to efficiently handle molecules of varying sizes. 

The graph input of each drug is first processed by a custom graph convolution layer, 

which takes node features and edge indices as input and applies the message-passing 

mechanism to propagate information across the molecular graph. This enables the model to 
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capture atomic-level relationships and structural dependencies crucial for DDI prediction. 

Within the graph convolution layer, the node embeddings are projected into a 128-dimensional 

vector space, applying a nonlinear transformation with the ReLU activation function. This step 

allows the model to learn high-level molecular representations, where each atom is represented 

as a 128-dimensional feature vector. The transformed node features collectively encode the 

entire molecular graph, ensuring that the extracted representations preserve essential chemical 

and topological properties. To model drug interactions, the feature representations of the two 

drug molecules are concatenated, forming a joint feature vector that captures potential 

interactions. This concatenation step integrates both local atomic features and global molecular 

structures, enabling the model to learn patterns indicative of interaction likelihood. The 

combined feature vector is then passed through a fully connected feedforward network 

consisting of three dense layers with 256, 128, and 64 neurons, each followed by the ReLU 

activation function. These layers allow the model to refine the learned representations and 

capture more complex interaction relationships. Finally, a single neuron output layer with a 

sigmoid activation function produces a probability score indicating the likelihood of an 

interaction between the two drugs, making the model suitable for binary classification tasks. 

The Adam optimizer is employed for parameter optimization, with a learning rate set to 0.001, 

determined experimentally as the optimal value. The model is trained using the binary cross-

entropy loss function, which effectively handles class imbalances and ensures stable 

convergence. The hyperparameters of the developed GCN architecture are provided in Table 2. 

Table 2. Hyperparameters of the designed GCN architecture. 

Hyperparameter Value 

GCN Layer  128-128 

Dense Layer Neuron Number 256, 128, 64 

Learning Rate 0.001 

Optimization Algorithm Adam 

Activation Functions ReLU, Sigmoid 

Loss Function Binary Cross-entropy 
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4 EXPERIMENTAL RESULTS 

4.1 Performance Metrics  

The classification performance of the developed GCN-based deep learning model is 

comprehensively evaluated through various performance metrics. The model's performance 

was assessed during the training and validation phases using evaluation metrics such as 

accuracy, precision, and area under the ROC curve (AUC). Precision helps measure the 

proportion of positive predictions made by the model that are actually correct. AUC quantifies 

the model's ability to distinguish between positive and negative classes, representing the trade-

off between the true positive rate and false positive rate. Accuracy, which evaluates the overall 

prediction correctness of the model, expresses the proportion of correct predictions across all 

instances. However, due to the class imbalance in the dataset, the accuracy metric alone may 

not fully reflect the model's performance. Therefore, Cohen's kappa coefficient was also used. 

This metric is particularly useful for imbalanced datasets and measures the agreement between 

the model's predictions and the true labels, accounting for chance. The kappa coefficient ranges 

from -1 to +1, with 0 indicating no agreement beyond chance. Additionally, the zero-one loss 

metric, which directly measures the error rate, represents the proportion of incorrect predictions 

made by the model. This metric indicates how many instances the model misclassifies out of 

the total and provides insight into the model's generalization capability. 

4.2 Model Training and Validation 

The data sets were randomly divided into training and evaluation. The proposed model 

was run under the same conditions for each data set. All steps of the proposed method were 

implemented using Python-based open-source libraries. The experiments used a single NVIDIA 

GeForce GTX 3070 GPU machine with Intel Core i7-11700H CPU @ 4.90 GHz and 32 GB 

RAM. In model training, the data set was randomly divided into training and validation data in 

a 7:3 ratio. The validation data of the model was selected without applying the SMOTE method 

and was obtained from the data that was not processed during the training process. The model 

parameters were measured and recorded at each epoch during training. Early stopping was used 

during model training. The training was completed in a maximum of 100 epochs. The model 

weights, updated after each training step, were saved for use in the validation process. As a 

result, the best-performing weights, based on validation performance, were selected and used 

in the final model deployment. The model's performance during training is illustrated in Figure 

2. 
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Figure 2. Performance metrics of the model during training. 

 

The training loss value starts at 0.309873 and decreases steadily throughout the epochs, 

reaching 0.043219 at epoch 100. This decrease confirms that the model is learning the training 

data gradually, and its predictions are becoming more precise. This continuous decrease in the 

loss function indicates that the optimisation algorithm works effectively and that the model 

parameters are updated in the appropriate direction. Training accuracy, which refers to the rate 

at which the model correctly classifies the training data, was 0.905307 in the first epoch. This 

value indicates that the model initially shows a strong classification performance. The accuracy 

value increased continuously in the following epochs and reached 0.986721 at epoch 100. This 

increase suggests that the model's accuracy has become more consistent in positively predicting 

data. The precision metric measures the proportion of positive predictions made by the model 

that are actually correct. The precision, which started at 0.910889 in the first epoch, gradually 

increased during the training period and reached 0.990274 in the 100th epoch. This result shows 

that the model successfully correctly predicts positive class instances, and the false positive are 

reduced. Finally, the AUC value is an important metric that evaluates the model's ability to 

discriminate classes. The AUC value, which was 0.601326 at the beginning of the training 

period, increased steadily throughout the training, reaching 0.994136 at epoch 100. This shows 

that the model's ability to distinguish between positive and negative classes has improved 

significantly. The overall evaluation of these metrics during the training process indicates that 

the model's learning capability has effectively improved and adapted to the training data. A 

similar trend was observed during the validation process. The model's performance on the 

validation data is shown in Figure 3. 
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Figure 3. Performance metrics of the model during validation. 

The validation step is critical to assess the generalisation ability of the model and its 

performance on unprecedented data. Validation loss, measuring the model's prediction errors 

on validation data, was recorded as 0.279408 in the first epoch. Although it showed a general 

decreasing trend during the training period, it decreased to 0.147460 at epoch 20 and fluctuated 

thereafter. However, by the 100th epoch, it decreased to 0.052584. This shows that the model 

successfully learns and generalises from the validation data but sometimes runs the risk of 

overfitting. Validation accuracy measures the correct classification rate of the model on the 

validation data. This value, which started at 0.912877 in the first epoch, generally increased 

during the training process and reached 0.983959 in the 100th epoch. This increase confirms 

that the model successfully classifies the validation data and has a good generalisation 

capability. Validation precision indicates how many of the model's false positive predictions on 

the validation data are positive, was set at 0.913406 in the first epoch and increased to 0.987654 

in the 100th epoch. This result shows that the model successfully correctly predicted the 

positive class in the validation data, and the false positive predictions decreased. Validation 

AUC, which measures the model's success in discriminating classes on the validation data, 

started at 0.673383 in the first epoch and increased to 0.990869 in the 100th epoch. This 

increase reveals that the model's ability to discriminate classes in the validation data has 

continuously improved, and its generalisation ability has increased. In addition to these data, 

Cohen's Kappa value started at 0.892480. It reached 0.98, indicating that the model agreed 

significantly in its predictions. In contrast, the zero-one loss value decreased from 0.016906 to 

less than 0.01, indicating that the misclassification rate of the model decreased. When these 

metrics are evaluated, it is observed that the model performs well during the validation process. 

The optimal results achieved in both the training and validation phases are presented in Table 

3. 
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Table 3. Model training and validation results. 

Metric Loss Accuracy Precision AUC 
Cohen 

Kappa 

Zero-One 

Loss 

Training  0.043219 0.986721 0.990274 0.994136 0.904540 0.014344 

Validation  0.052584 0.983959 0.987654 0.990869 0.892480 0.016906 

4.3 GUI Design 

A user-friendly interface for predicting DDIs has been designed. The interface is 

developed in Python using the PyQt library. It allows users to enter drug names, view the 

molecular structures of drugs in 2D, display SMILES strings and predict potential interaction 

types. The main objective is to make the deep learning-based model accessible to a broader user 

base for DDIs prediction. The application is designed to help even users who are not drug 

interaction experts easily understand complex interactions. The home screen of the GUI 

designed for CNS-DDI is given in Figure 4.  

 

Figure 4. Home screen of the GUI designed for CNS-DDI. 

The designed GUI allows drug interactions to be analyzed using graph-based neural 

networks. The GUI allows the user to provide the names of two different drugs or their SMILES 

representations as input. Provided that the user provides the names of the drug pairs, the GUI 

searches for these drug names in the DrugBank dataset and finds the SMILES strings of the 

drugs. The SMILES strings are then translated into graph format. The graph forms and other 
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physical properties of the drug molecules are applied as input to the deep learning model 

developed in this study. The interactions of the input drug pairs are then predicted by the model. 

The main components of the interface include input fields where drug names or SMILES strings 

can be entered, a component that visualizes the two-dimensional molecular structures of drugs, 

and an output section that presents the predicted drug-drug interaction in textual form. For 

molecular visualization, the RDKit library was used to generate high-resolution 2D molecular 

drawings directly from SMILES codes. After entering the relevant drugs, the user can click on 

the “Predict” button to view the interaction predicted by the model. Prediction results are shown 

under the “Predicted Interaction” heading. All these features make the application a valuable 

tool for both academic research and practical applications in the field of drug interactions. 

Figure 5 shows an example of a drug interaction predicted using the developed CNS-DDI 

method. Figure 5 shows the interaction results of two drugs that were not used for model 

development during the testing and training process. In this way, the GUI, which receives the 

names of the drugs or SMILES strings as input, predicts the type of interaction.  

 

Figure 5. GUI was developed for CNS related DDI prediction and is an example of 

interaction. 

In addition, a control mechanism has been added to determine the correctness and 

validity of the SMILES strings and drug names given as input in the designed GUI. If the 

SMILES string of a drug is typed in the input panel, the algorithm first checks the molecular 

validity of this SMILES string and then predicts the interaction of these two drugs. Similarly, 
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if the user provides the drug name as input, the interface checks the drug name from the 

DrugBank database and then obtains the SMILES string from the DrugBank database. In case 

the SMILES string or the drug name is invalid, the CNS-DDI model does not predict and 

notifies the user. Figure 6 shows an example of an invalid SMILES string to illustrate this 

situation.  

 

Figure 6. Screenshot of the GUI warning the user if the drug name or SMILES string is 

invalid. 

5 CONCLUSION 

In this study, a novel deep learning method is developed to predict drug interactions 

affecting the central nervous system. The proposed method models the molecular structures of 

drugs using a graph-based approach and integrates this structural data with relational 

information from interaction networks. This approach aims to learn interaction patterns and 

make reliable DDIs predictions by considering the atomic-level properties of drugs and their 

neighborhood relationships. The methodology used in the study includes CNS-related drug 

interaction data from the DrugBank database and SMILES strings representing the chemical 

structures of these drugs. In the DrugBank dataset, drug pairs without SMILES strings or 

physicochemical properties were removed from the selected data after text mining. Then 

SMILES strings were standardized with tokenization and padding techniques to make them 

suitable for the input format of the model. Additional properties of drug molecules, such as 

molecular weights, logP values and monoisotopic mass, were also included in the input data to 
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improve the model's performance. The developed GCN-based model is designed to address the 

molecular structure of drugs as a graph structure to increase the understanding of the complex 

patterns and interactions in the molecular structure. The model achieved 98.67% accuracy, 

99.03% precision, and 0.994 AUC during the training process. The model performed similarly 

well in the validation step, reaching 98.40% accuracy, 98.77% precision and 0.991 AUC. In 

addition, Cohen's Kappa coefficient, which measures the model's success compared to chance-

based predictions, was calculated as 0.904 in training and 0.892 in validation, indicating that 

the model achieved significant agreement in its predictions. The loss of zero one was 0.014 in 

training and 0.017 in validation, proving that the model's misclassification rate is extremely 

low. These results show that the model can make highly accurate and reliable predictions on 

both training and validation data. Another important outcome of the study is a GUI application 

designed to make the developed model usable by a wider user community. The proposed 

method provides a more comprehensive analysis than existing methods by simultaneously 

modelling the molecular structure of drugs and their relational structure in interaction networks. 

The model, which has high accuracy rates, can make reliable DDIs predictions and is expected 

to contribute significantly to future drug discovery studies. The developed model and GUI are 

valuable for academic research and practical applications. It aims to improve the model further 

and increase its generalizability by using different data sets and deep learning architectures. 

Future research will focus on increasing the scope and accuracy of the models. Improving the 

predictive ability for more diverse drug pairs involving different interaction mechanisms is a 

priority. In particular, it is planned to integrate additional data layers to model the relationships 

of drugs with protein targets such as metabolizing enzymes, transporters, receptors, etc. that 

influence their pharmacokinetic and pharmacodynamic profiles. This may involve the use of 

more sophisticated machine learning techniques, such as graph-based deep learning 

architectures with attention mechanisms or graph-based deep learning architectures that 

combine molecular representations with relevant biological information. In addition, the 

potential of deep learning for the discovery of new chemical entities with targeted effects on 

the CNS is being exploited. In particular, approaches such as computationally designing and 

screening molecules with desired properties using generative deep learning models will be 

evaluated. Such advances are expected to contribute to both the refinement of deep learning 

models and the development of new CNS therapies. 
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