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Abstract

This study investigates land use and land cover (LULC)
changes in the Tungbilek open-pit coal mine and its
surroundings, a region experiencing intense mining activity
in western Tiirkiye. Understanding LULC dynamics is
crucial for assessing the long-term environmental impacts
of surface mining operations and supporting sustainable
land management. High-resolution PlanetScope imagery
from 2016 and 2021 was used in conjunction with two
supervised machine learning algorithms Maximum
Likelihood Classification (MLC) and Support Vector
Machine (SVM) to detect temporal changes in six land
cover classes. The results show that SVM outperformed
MLC in classification accuracy. The kappa values for MLC
were 0.73 (2016) and 0.72 (2021), whereas SVM achieved
0.87 and 0.84, respectively. SVM also provided higher user
and producer accuracy rates, particularly for the forest and
planted classes. Between 2016 and 2021, notable land cover
transitions were observed, including a 6.83% increase in
cultivated lands and a 7.9% decrease in barren land. The
mining area itself expanded by approximately 1.39%.
These results highlight the effectiveness of machine
learning-based remote sensing methods in monitoring
LULC changes and contribute to a better understanding of
the environmental impacts of mining activities in complex
and sensitive landscapes.

Keywords: Change detection, Machine learning, Mining
site, MLC, Planet Scope, Remote sensing, SVM

1. Introduction

Today's rapid economic and technological development
has led to an increase in the demand for both mineral
resources and energy, which in turn has led to the rise in the
market for underground resources [1-5]. Coal from
underground resources is one of the most critical energy
resources due to its low cost and abundance compared to
other resources both in the world and in our country,
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Bu c¢alisma, Bati Anadolu’da yogun madencilik
faaliyetlerinin yiriitiildiigii bir bolge olan Kiitahya’daki
Tungbilek ac¢ik ocak komiir madeni ve ¢evresindeki arazi
kullanim ve ortii (LULC) degisimlerini incelemektedir.
Yiizey madenciligi operasyonlarinin uzun vadeli ¢evresel
etkilerinin  degerlendirilmesi ve siirdiiriilebilir arazi
yonetiminin desteklenmesi agisindan LULC dinamiklerinin
anlagilmasi biiyiik 6nem tasimaktadir. Bu amagla, 2016 ve
2021 yillarina ait yiiksek ¢oziiniirliiklii PlanetScope uydu
goriintiileri kullanilmis ve zamansal degisimlerin tespiti
icin Maksimum Olabilirlik Simiflandirmast (MLC) ile
Destek Vektor Makineleri (SVM) olmak iizere iki
denetimli makine 6grenme algoritmasi uygulanmistir. Elde
edilen sonuglara gore, siniflandirma dogrulugu agisindan
SVM, MLC’ye kiyasla daha yiliksek performans
gostermistir. MLC icin kappa katsayilar1 2016 yilinda 0.73,
2021 yilinda ise 0,72 olarak belirlenirken; SVM i¢in bu
degerler sirasiyla 0.87 ve 0.84 olarak hesaplanmistir.
Ozellikle orman ve ekili alan siniflarinda SVM, kullanici
ve Uretici dogruluklarinda daha yiiksek basari elde etmistir.
2016-2021 yillar1 arasinda tarim alanlarinda %6.83’liik bir
artig, ¢iplak toprak alanlarinda ise %7.9’luk bir azalma
gozlemlenmistir. Madencilik alan1 ise yaklasik %1.39
oraninda genislemistir. Bu bulgular, LULC degisimlerinin
izlenmesinde makine 6grenmesi tabanli uzaktan algilama
yontemlerinin etkinligini ortaya koymakta ve karmasik,
hassas peyzajlarda madencilik faaliyetlerinin ¢evresel
etkilerinin daha iyi anlagilmasina katki saglamaktadir.

Anahtar kelimeler: Degisim tespiti, Makine 6grenmesi,
Maden sahasi, MLC, Planet Scope, SVM, Uzaktan
algilama

especially in terms of electricity energy demand [1, 6-8].
Two main mining methods are employed for the extraction
of coal and other mineral resources: underground and surface
mining methods [9-12]. Coal mining is commonly carried
out using open pit mining, which is carried out on the earth's
surface [13-14]. The extraction of coal through open-pit
mining inevitably entails the removal of overlying rock and
soil material. This process results in alteration of the
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surrounding vegetation, water bodies and geography, and
some instances, it also affects settlements [15-21]. Given the
above impacts of opencast mining activities, Mining sites
must be continuously monitored. This is vital for the
sustainability of mining operations as it allows a precise
understanding of the long-term environmental and land
cover impacts and how changes to the surface are shaped
over time [22]. This monitoring process enables the extent of
soil erosion, vegetation loss, water resources status, and land
use change to be revealed. It can be helpful for early
detection of disaster risks such as landslides and subsidence
[23]. Therefore, continuous and regular monitoring of these
changes is necessary to support sustainable mining practices
and minimize potential risks [24].

Traditional mining site monitoring techniques, such as
topographic and photogrammetric surveys, are often time-
and labour-intensive. Topographic measurements involve
collecting elevation and landform data from various points
on the site, requiring site visits and detailed measurements.
Similarly, photogrammetric studies aim to create three-
dimensional terrain models using aerial or drone images.
However, data collection and analysis processes for these
techniques could be more laborious and time-consuming in
mining areas with large surface areas. In this context, remote
sensing methods utilizing satellite data offer a highly cost-
effective and beneficial approach for monitoring land use
and land cover (LULC) changes across large geographical
areas [22, 24-25]. Land cover refers to the uppermost layer
of the Earth’s surface, such as water, vegetation, bare soil,
urban infrastructure, or any other surface feature [26-28]. In
contrast, land use classification aims to define the functional
purpose of the land, such as recreation, wildlife habitat,
agriculture, and similar uses [27, 29-30]. As natural and
semi-natural habitats are continuously subjected to
increasing pressure due to anthropogenic activities,
monitoring the changes occurring in such areas has become
a priority to ensure conservation and sustainable land use
practices [31-35]. Quantifying the spatial and temporal
patterns of LULC changes and their corresponding
consequences is now recognized as a critical area of research
in land change science [36].

Mining activities can significantly alter hydrological
processes at various scales due to vegetation removal,
canopy disruption, and modification of wetlands. The loss of
vegetation cover and changes in soil infiltration capacity
may considerably increase the flood generation potential of
catchments, thereby leading to significant ecological
consequences [20]. Furthermore, large-scale changes in
surface materials can result degrading of the natural
landscape’s aesthetic value [35]. The quantitative assessment
of such LULC changes plays a crucial role in evaluating and
managing the potential impacts of mining operations on
natural systems. Among the various methods employed for
monitoring open-pit mines, remote sensing-based LULC
applications remain the most common and practical
approach [37]. Today, various classification methods are
used to investigate the temporal dynamics of LULC. In
recent years, remote sensing scientists have increasingly
adopted machine learning classification algorithms in LULC

mapping studies, as these methods have gained significant
prominence in the processing of remote sensing data [38].
Machine learning techniques offer potential for the effective
and efficient classification of satellite imagery [39-44].
Among the key strengths of machine learning are its ability
to process high-dimensional data, map classes with highly
complex characteristics, accept diverse input prediction
variables, and operate without requiring assumptions about
data distributions (i.e., non-parametric behavior) [41]. These
techniques have become especially important in LULC
mapping due to their capability to handle large volumes of
multispectral satellite data with high accuracy and
efficiency. Consequently, they are widely used as effective
tools in environmental change analyses [41, 45-47]. Beyond
improving the detection of subtle environmental changes,
these methods also support timely decision-making in
sustainable mining operations. Numerous studies conducted
both globally and within Tiirkiye the setting of this research
have demonstrated that machine learning methods facilitate
more frequent updates and continuous monitoring in
dynamic environments such as open-pit mining areas and
generally yield high classification accuracies [48-53].

In this study, land use and land cover (LULC) changes in
the Tuncbilek open-pit coal mine and its surrounding areas
located within the borders of Tavsanl district in Kiitahya
province  were investigated using  high-resolution
PlanetScope imagery and supervised machine learning
classification algorithms. The study focuses on detecting and
analyzing the spatial and temporal surface changes caused by
mining activities over five years. While numerous studies
have explored LULC changes using remote sensing, limited
research has mainly focused on the detailed analysis of the
long-term environmental effects of open-pit coal mining in
Tiirkiye using high-resolution PlanetScope satellite imagery
combined with advanced machine learning techniques. This
presents a significant scientific gap, particularly in the
context of sustainable mining and environmental monitoring.
By addressing this gap, the present study aims to
demonstrate the effectiveness of this integrated approach in
mapping and tracking mining-induced land cover
transformations with high spatial detail, thereby contributing
to the development of more accurate and timely monitoring
frameworks for environmentally sensitive regions.
Specifically, this study leverages the 3-meter-high spatial
resolution of PlanetScope imagery to enable more precise
detection of fine-scale surface changes caused by mining
activities, offering an advantage over studies using medium-
resolution data. Furthermore, by focusing on the Tungbilek
mining site, the research aims to provide an in-depth analysis
of the regional environmental impacts, ultimately
contributing valuable insights for the development of more
effective monitoring systems and sustainable mining
practices in similar ecological contexts.

2. Material and methods

Remote sensing (RS) and Geographic Information
System (GIS) tools are widely utilized in the mining industry
for various purposes, including mineral exploration,
modeling and monitoring, mine planning and environmental
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impact assessment [22-24]. The methodology of the present
study is outlined in Figure 1, commencing with data
acquisition and extending to the mapping of the LULC of the
mine pit and its immediate surroundings using the MLC and
SVM methods. Accuracy assessment was conducted
afterwars to validate the classification outcomes and to
ascertain which of the two classification mechanisms
exhibited superior accuracy.

2.1 Study area

The Tungbilek open-pit coal mine is located in the
Tavsanl district of Kiitahya province, in the northern part of
the Aegean region in Western Tiirkiye, approximately 62 km
from the center of Kiitahya (Figure 2). The region stands out
due to its significant lignite reserves, playing a strategic role
in providing energy for industry. Coal production in the
Tungbilek Basin began in 1924, and it was transferred to the
Turkish Coal Enterprises (TKI) in 1940. Today, coal
production continues through both open-pit and underground
mining methods, with approximately 80% of production
coming from open-pit mining [27, 54].

The Tungbilek mining site has undergone significant
environmental pressures due to decades of mining activities,
leading to changes in the region's ecological balance. The
area surrounding the mine is a mixture of agricultural lands,
forests, and settlements, making it essential to monitor the
impacts of mining on the land use and land cover (LULC)
over a wider geographical area. Furthermore, the fact that
open-pit mining predominates in this site results in more
pronounced environmental issues, such as surface
deformation, vegetation loss, and the alteration of water
resources.

In this context, the Tungbilek mining site and its
surrounding area were chosen for this study due to their high
potential for monitoring environmental impacts, as well as
the fact that this site has been an active and significant open-
pit mining operation in Tirkiye for many years.
Additionally, the limited number of studies conducted in this
area presents an opportunity to fill the gap in the literature,
thereby enhancing the contributions of this research.

2.2 Data acquisition

To map, identify and evaluate the LULC in Tungbilek
Open Pit and its immediate vicinity, this study employs
Planet Scope satellite imagery, which is distinguished by its
significant divergence from conventional free satellite data
due to its high resolution. Planet operates the largest fleet of
Earth observation satellites, with a current total of 200
satellites in orbit. This extensive satellite network provides
global coverage, offering high spatial and temporal
resolution imagery [55-56]. The Planet Scope constellation
presently encompasses three generations of remote sensing
satellites: Dove Classic, Dove-R and SuperDoves. The Dove
Classic, launched in 2016, carries a 4-band (RGB-NIR) 'PS2'
sensor with a ground sampling distance (GSD) of
approximately 3.7 m (Table 1).

Data Acquisition

l

Planet Scope
Dove Classic Data
2016 and 2021

|

Image Classification

|
l |

Support Vector
Machine

| |
l

Accuracy Assesment

|

Monitoring Change
Detection

Maximum Likelihood

Figure 1. The following flowchart illustrates the general
methodology employed in this study
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Figure 2. Generalized view of the study area and
settlements around its vicinity

These data provided free of charge under an educational
use license from Planet Lab Inc. website. Planet Scope
satellite data are downloaded in a ready-to-use format in the
form of quad-band images (Red, Green, Blue and Near
infrared), i.e. without any pre-processing (Figure 3) [29, 56].
These characteristics make Planet Scope satellite data a
unique resource for studying heterogeneous urban
landscapes (Table 1).
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Figure 3. True-color PlanetScope satellite images of the study area acquired in 2016 and 2021, generated using the standard

RGB bands.

Table 1. Details of Planet Scope images used in the study

Year  Acquisition Date Bands Used Instrument Spatial Resolution

2021 02/08/2021 Band 1(Blue, 455-515 nm), Band 2 (Green, 500-590 nm), Band 3 (Red, 590-670  Dove Classic 3 meters
nm), Band 4 (Near-Infrared, 780-860 nm)

2016 11/08/2016 Band 1(Blue, 455-515 nm), Band 2 (Green, 500-590 nm), Band 3 (Red, 590-670  Dove Classic 3 meters

nm), Band 4 (Near-Infrared, 780-860 nm)

2.3 Data processing

A four-step approach was used to analyze land use
changes in the Tungbilek Open Pit Coal Mine according to
the workflow summarised in Figure 1. The flowchart
includes data collection, image classification, accuracy
analysis, and evaluation of changes in land use classes over
the years. As part of Step 1, PlanetScope images taken half a
decade apart from 2016 to 2021 were used, ensuring cloud
cover was less than 5%. These images, with a spatial
resolution of approximately 3 meters, cover the entire study
area. Notably, PlanetScope imagery is delivered as Analysis
Ready Data (ARD), having already undergone preprocessing
steps such as orthorectification, radiometric calibration, and
basic atmospheric correction. Therefore, no additional
preprocessing steps were required before the analysis.

LULC classification was performed using ArcGIS Pro by
defining training samples for each of the six land cover
classes. The classification method employed both Maximum
Likelihood Classification (MLC) and Support Vector
Machine (SVM) algorithms. This step leveraged the

advanced classification tools and capabilities of ArcGIS Pro
to optimise accuracy and efficiency, enabling accurate
identification of land cover types and changes over time. The
classified raster images were first converted to polygon
format to facilitate the calculation of each land use area. This
conversion allowed for more precise measurements and
enabled the identification of specific land use changes over
time. Statistical summaries of these changes were then
generated, providing insight into the extent and nature of
land use dynamics in the study area. In addition, centrally
connected polygons were identified and included in the
calculations and change analysis to distinguish the open pit
mine from other land use features. This methodology
allowed for accurate identification and reliable
quantification of land use changes.

2.4 Supervised classification

This study employs the Maximum Likelihood
Classification (MLC) and Support Vector Machine (SVM)
techniques to detect land use and land cover (LULC) changes
resulting from mining activities in and around the surface
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mining area. MLC is a classical supervised classification
algorithm that relies on the statistical distribution of spectral
data and has been extensively applied in remote sensing
studies, particularly for LULC mapping [57-59]. However,
in complex and heterogeneous environments such as open-
pit mining areas, spectral overlap between different land
cover classes is highly probable, can affect classification
accuracy.

To address such complexities, SVM has been introduced
as an advanced machine learning algorithm capable of
modeling non-linear decision boundaries. It offers strong
generalization capabilities and high classification accuracy
potential in high-dimensional datasets, such as multi-band
satellite imagery. Therefore, this study applies both MLC as
a fundamental benchmark and SVM to explore the
advantages of machine learning approaches in this specific
context.

In supervised image classification, all pixels in raster data
are categorized into predefined classes based on spectral
characteristics. Both MLC and SVM have been widely
utilized for the classification of surface mining areas [22-24,
60-62], with SVM particularly demonstrating improved
classification accuracy in various studies [44].

MLC is a widely used supervised classification method
applied in the classification of remotely sensed data [63-64].
Training data in MLC is used to generate a class signature
based on variance and covariance. The algorithm assumes a
normal distribution of each class instance in the
multidimensional space, where the number of dimensions is
equal to the number of bands in the image [64]. The
probability that a pixel belongs to a specific class is
computed using the multivariate normal distribution, as
shown in Equation (1).

D = In(a,) —[0.5 * In(|Cov,|)]
—[0.5x(X — M ]"x(Cov;Dx(X (1)
- Mc)]

SVM, based on statistical learning theory, is one of the
most advanced and highly accurate supervised machine
learning techniques, such as object-oriented image
classification and fuzzy classifiers [36—38]. SVM is effective
in classifying high-dimensional data, making it suitable for
complex datasets in land cover, vegetation, and urban studies
[65-67]. SVM aims to build a model that predicts the target
value of data occurrences in the test set given only their
attributes.

The primary objective of SVM is to find an optimal
hyperplane that separates classes with the maximum margin.
SVM is a non-parametric classifier capable of handling both
linearly and non-linearly separable data efficiently [68].

If the training dataset consists of k samples represented
as {(xi,yi)}, where x; € Rr and y; € {-1, +1}, the classes are
said to be linearly separable if there exists a vector w and a
scalar b such that the inequalities given in Equation (2) and
Equation (3) define the optimal separating hyperplane.

(W x X; + b) = +1 overall training samples with y; = +1 (2)

(W x X; + b) < —1 overall training samples withy; = —1 (3)

In practical remote sensing applications, it is frequently
observed that the available datasets are not always linearly
separable. To address this complexity, SVM utilizes kernel
functions to project the input data into a higher-dimensional
feature space where linear separation becomes feasible.
Among the various kernel functions commonly used such as
linear, polynomial, sigmoid, and radial basis function (RBF)
the RBF kernel is frequently preferred in land use/land cover
(LULC) classification tasks due to its strong generalization
ability and its effectiveness in handling complex, non-linear
class boundaries. Previous studies have reported that the
RBF Kkernel provides reliable and high classification
accuracy in a variety of LULC applications [69-74]. For this
reason, the RBF Kkernel was selected in this study. The RBF
kernel is defined in Equation (4) as follows:

K(X:,X;) = exp(—y | X; — X; I)? 4

The parameter y, which is specific to the kernel, has been
demonstrated to exert a significant influence on the outcome
of a single training example. It is evident that a reduced y
value engenders a more refined decision boundary, whilst an
augmented one facilitates more intricate separations. The
performance of the SVM classifier is contingent on the
selection of both y and the regularization parameter C, which
governs the trade-off between achieving a low training error
and a large margin. To ensure optimal classification
performance, these parameters were fine-tuned using a grid-
search method with k-fold cross-validation. Grid-search
aims to find the best performing parameter set by
systematically testing different combinations of y and C
values within specified ranges. Cross-validation, on the other
hand, allows us to estimate the generalization ability of the
model by evaluating its performance on different subsets of
the data. In the context of multi-class classification problems
in this study, the one-against-one strategy was employed,
whereby binary classifiers were trained between every
possible pair of classes.

In supervised classification, training samples are used to
identify each class based on user-defined criteria. This study
chose the National Land Cover Database 2011 to identify
land cover classes (Table 2) [74-76]. In this study, six land
cover classes were selected from the NLCD2011
classification scheme based on their spatial prevalence in the
study area and their spectral separability in the PlanetScope
imagery. Classes such as wetlands, shrublands, and
grasslands were excluded due to their limited representation
within the study region and the potential for spectral
confusion with other dominant classes at the 3-meter spatial
resolution. The selected classes Mining site, Water,
Developed, Barren, Forest, and Planted/Cultivated represent
the most significant land cover types relevant to the scope
and objectives of this study. The classified Planet Scope
images are presented in Figure 4, respectively.

1005



NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(3), 1001-1013
R. U. Acar, E. Zengin, A. S. Ongen

Table 2. Land classes and descriptions used in the study

No Class Name Description

1 Mining Site  The area where mining activities are carried out
Surface water and artificial lakes within the mining
site

Settlements and roads

Bare and barren land is not included in the forest

2 Water

3 Developed

4 Barren

class
5 Forest Tree-covered areas
6 Planted Arable land

2.5 Accuracy assessment and change detection

After land use classification, it is imperative to evaluate
the accuracy and reliability of the classified images to detect
and quantify any mapping or classification errors. Various
techniques have been developed to evaluate the accuracy of
such classifications [24, 77-79]. In this study, confusion
matrix, which is a widely used accuracy assessment method,
was used and overall (OA), producer (PA) and user
accuracies (UA) and k coefficient values were calculated for
different classes [80-83]. In this study, reference data
containing 101 points for six land use classes were randomly
generated using ArcGIS Pro software and the method was
applied. The estimated and actual reference values of land
use maps produced with MLC and SVM methods for the
years 2016 and 2021 were compared. Ground truth reference
data were derived through visual interpretation of high-
resolution Google Earth imagery, which provided temporally
corresponding scenes to the PlanetScope data. Reference
points were selected based on clearly distinguishable land
cover features and cross-checked with prior studies and
official land use information to ensure consistency and
accuracy. Change detection involves assessing the
differences in land cover using images obtained from Planet
Scope images on selected dates using the applied
classification methods [84]. After spatial change
classification, raster data were converted into polygons in
ArcGIS to calculate the area covered by each class in the
mining site and its vicinity in 2016 and 2021. Then, the
change developed in the mining site and its vicinity was
calculated and a spatial layer was created to visualize the
differences between the two time periods (Figures 3-4).

The accuracy metrics were computed using the following
equations Equation (5), (6), (7): The most common method
of quantifying agreement is known as the 'one-against-one'
(OA) approach. This is indicated by the percentage of pixels
that will be correctly categorised. Overall Accuracy (OA)
was calculated as:

04 = (Z;xﬂ /N x100 ©)

In this formula, the total number of classes is represented
by q, the total number of pixels by N, and the corrected
classified pixels, i.e. the diagonal ones, by Xii.

Producer Accuracy (PA) for each class i was calculated
as

PA = (X;;/N;1)x100 (6)

UA = (X;;/N4;)x100 )

where Ni. is the marginal sum of the rows and N.; is the
marginal sum of the columns.

The k coefficient, expressed by Equation 8, is used to
measure the ratio between the actual and predicted stochastic
agreement when the classifier is random.

q q
k=N Xg= ) NiNy)/(N?
i=1 (Ll—l (8)
- ) 1Ni+N+i)

i=

3. Results and discussion

In this study, two supervised classification methods were
evaluated on the 2016 and 2021 datasets as shown in Figure
4 and givenin Table 3, and six different land use classes were
successfully determined using these techniques.

Firstly, the six distinct land use categories were
successfully identified through the implementation of the
MLC technique. A subsequent evaluation of the results
obtained in both 2016 and 2021 revealed that in 2016, the
forest class dominated the study area with 38.36%, while in
2021 barren class became the most dominant class with
35.38%. The mining site class accounted for 13.00% in 2016
and 12.17% in 2021. The distribution of all other land use
classes is presented in Table 3. The visual interpretation of
the outputs generated by the method revealed that it
produced classification errors in both years, in the form of
overestimation of agricultural land by confusing it with
barren land and slopes within the mine. This error was
attributed to the similar spectral reflectance of these classes.

Table 3. Land use and land cover change analysis between
2016 and 2021 based on svm and mlc classification
techniques

MLC (%) SVM (%)
Class Name 2016 2021 Change 2016 2021 Change
Mining Site  13.00  12.17 -0.83 13.06 1445 139

Water 0.73 2.22 150 241 238 -0.04
Developed 3.34 1.37 -1.96 248 120 -1.28
Barren 2844  35.38 6.94 2520 1729 -7.90
Forest 38.36 28.84 -9.52 39.36 40.36 1.00
Planted 16.13  20.00 3.87 1749 2431 6.83

When the classification results obtained with the SVM
classification method are analyzed, it is seen that the forest
class is the most dominant in the field with an area of 39.36%
and 40.36% in both 2016 and 2021, respectively (Table 3 and
Figure 4). In 2016, the area allocated to coal mining
accounted for 13.06% of the total area, while in 2021, this
figure increased by 18% over the five-year period, covering
approximately 14.5% of the study area. The distribution of
other land use classes, including wasteland, surface water,
agricultural land and settlements, is presented in Table 3.
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Visual interpretation of the classification results revealed
higher classification accuracy with the SVM method
compared to the MLC method. The inconsistency in
classification success can be attributed to various factors
such as image quality, image resolution, classification errors,
software errors and handling errors. In order to check the
accuracy of the maps created after the classification methods,
the maps classified with the MLC and SVM methods created
for the years 2016 and 2021 were subjected to accuracy
analysis. In order to evaluate the accuracy of these classified
maps in ArcGIS Pro, after the classification using all
classifiers, user accuracy (UA) (also referred to as recall),
producer accuracy (PA) (precision), and the k coefficient
were calculated (Table 4). Although the water class offers
variable accuracy percentages in terms of UA and PA for the
SVM and MLC classifiers of the methods applied here,
respectively, it offers the lowest values together with the
developed class, while the forest class generally has the
highest accuracy values. The situation experienced in water
and forest land may probably be due to the lack of a clear
spectral signal that expresses the developed class, which
represents the construction areas, and therefore it seems to
mix with the mining area slope areas in places. Wetlands, on
the other hand, gave low values in accuracy due to the
reflections they make and the areas similar to the slopes of
the mountains in places. In addition, the k coefficient used in
the cluster analysis was also calculated. The k coefficient is
used to measure the ratio between the actual and predicted
stochastic agreement if the classifier is random.

When the classification results obtained with the SVM
classification method are analyzed, it is seen that the forest
class is the most dominant class in the field with an area of
39.36% and 40.36% in both 2016 and 2021, respectively
(Table 3 and Figure 4). In 2016, the area allocated to coal
mining accounted for 13.06% of the total area, while in 2021,
this figure increased by 18% over the five-year period,
covering approximately 14.5% of the study area. The
distribution of other land use classes, including wasteland,

surface water, agricultural land and settlements, is presented
in Table 3.

Visual interpretation of the classification results revealed
higher classification accuracy with the SVM method
compared to the MLC method. The inconsistency in
classification success can be attributed to various factors
such as image quality, image resolution, classification errors,
software errors and handling errors. In order to check the
accuracy of the maps created after the classification methods,
the maps classified with the MLC and SVM methods created
for the years 2016 and 2021 were subjected to accuracy
analysis. In order to evaluate the accuracy of these classified
maps in ArcGIS Pro, after the classification using all
classifiers, overall accuracy (OA), user accuracy (UA) (also
referred to as recall), producer accuracy (PA) (precision),
and the k coefficient were calculated (Table 4, 5). Although
the water class offers variable accuracy percentages in terms
of UA and PA for the SVM and MLC classifiers of the
methods applied here, respectively, it offers the lowest
values together with the developed class, while the forest
class generally has the highest accuracy values. The situation
experienced in water and forest land may probably be due to
the lack of a clear spectral signal that expresses the
developed class, which represents the construction areas, and
therefore it seems to mix with the mining area slope areas in
places. Wetlands, on the other hand, gave low values in
accuracy due to the reflections they make and the areas
similar to the slopes of the mountains in places. In addition,
the k coefficient used in the cluster analysis was also
calculated. The k coefficient is used to measure the ratio
between the actual and predicted stochastic agreement if the
classifier is random.

The k coefficient is categorized as shown. The meanings
of the kappa values ranging from -1 to 1 are given in (Table
6) [85]. According to the results obtained, the SVM classifier
surpassed the MLC by providing higher classification
accuracy for each class. The kappa value for MLC was
determined as 0.73 in 2016 and 0.72 in 2021, and for SVM,
it was determined as 0.87 in 2016 and 0.84 in 2021.

Table 4. Accuracy assessment using confusion matrix generated from test training samples for Planet Scope Dove Classic images

based on MLC and SVM techniques

2016 2021
MLC SVM MLC SVM
User's Producer’s User's Producer’s User's Producer’s User's Producer’s
Class Name Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
% % % % % % % %
Mining Site 80 60 100 82.25 59.09 86.66 85.71 85.71
Water 60 100 100 100 80 100 40 100
Developed 50 71.43 60 100 44.44 57.14 60 85.72
Barren 63.75 66.66 100 78.12 76.19 61.53 100 89.47
Forest 97.14 94.44 100 100 100 92.1 97.5 90.7
Planted 84 77.77 52.94 90 77.59 77.59 95.83 85.19
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Figure 4. Land cover change map of the study area from 2016 to 2021

Table 5. Overall Accuracy and Kappa Statistics for 2016 and
2021 Classifications

MLC SVM
Overall K Overall K
Year ACC(;I)’ acy Coefficient ACC;I)’ acy Coefficent
2016 79 0.73 89 0.84
2021 78 0.72 87 0.87

It is seen that there is a difference of approximately 10%
between the two methods. It is seen that SVM is in the "very
good" range because it remains between 0.81 and 1, while
for MLC, although the values are low, they remain between

the "good" range of 0.61 and 0.80. In this study, SVM not
only outperformed MLC in classifying all linearly separable
classes but also achieved superior results when training
classes with different spectral reflectance(s).

As a result of the accuracy assessment, images classified
by SVM reported higher accuracy for both 2006 and 2016,
so images classified by SVM were used to detect changes
after classification over the years. According to the results
obtained, there was an increase in the mining site, forest and
agricultural land classes and a decrease in the water,
residential areas and barren land class in 2021 compared to
2016. While the most significant decrease among land
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classes was experienced in barren land, the greatest increase
occurred in agricultural lands (Table 7).

Table 6. k Coefficient Values and Interpretation

Interpretation Value Range
Very Good 0.81-1.00
Good 0.61-0.80
Moderate 0.41 - 0.60
Fair 0.21-0.40
Poor -1.00 - 0.20

Table 7. Land cover changes Tungbilek mining site and its
vicinity (hectare(ha))

2016 2021 2021-2016
Class Name hfﬁ;?r % hectar (ha) % Cfg;:\)ge
Mining Site ~ 4309.27 13.06 4973.38 14.45 1.39
Water 796.39 241 818.03 2.38 -0.04
Developed 816.83 2.48 41291 1.20 -1.28
Barren 8310.90 25.20 5950.32 17.29 -7.90
Forest 12982.24 39.36  13888.59 40.36 1.00
Planted 5767.96 17.49 8366.08 2431 6.83

These changes may have occurred as a result of the
interaction  between  various  anthropogenic  and
environmental factors. The observed increase in cultivated
areas (+6.83%) could be associated with local land
conversion initiatives or a rising demand for agricultural
production in response to socioeconomic pressures. The
noticeable decrease in barren land (—7.90%) might be related
to land rehabilitation efforts, afforestation activities, or the
expansion of agricultural use into previously unused areas.
The slight increase in forest cover (+1.00%) could be
explained by natural regeneration processes or potential
afforestation programs, particularly in less disturbed regions.
The reduction in developed areas (—1.28%) may reflect the
relocation of settlements or abandonment of minor built-up
zones due to the expansion of mining operations. These
spatial change patterns reflect a complex interplay between
human activities and ecological processes in the Tungbilek
mining region. In future studies, these drivers could be
explored in greater detail by integrating socioeconomic data
and field-based observations.

4. Conclusion and Suggestions

In our study, the land use/land cover (LULC) changes
that occurred within a short period (five years) over a
relatively small area (approximately 35 hectares) in the
Tavsanl district of Kiitahya, western Tiirkiye a region
known for intensive mining activity were investigated using
remote sensing methods. Unlike many comparable studies in
the literature that rely on freely available medium-resolution
satellite data (e.g., Landsat, Sentinel), this study employed
high-resolution PlanetScope imagery (3 m), which enhanced
image sharpness, facilitated the selection of training points,
and contributed to higher classification accuracy.

Similar to the findings of [47, 86-89] our results show
that Support Vector Machine (SVM) performs better than
Maximum Likelihood Classification (MLC), particularly in
cases where land cover classes exhibit overlapping spectral
characteristics.  Confusion ~ matrix-based  accuracy
assessment revealed that SVM yielded higher overall
accuracy and outperformed MLC in classifying individual
categories such as forest and cultivated land, consistent with
previous comparative studies in heterogeneous landscapes.

Moreover, this study provides a more localized
perspective by applying machine learning techniques to a
small-scale mining site. It demonstrates the applicability of
these methods in limited geographic extents with reduced
computational demands, making them practical for rapid
land cover monitoring. While many previous studies have
examined land cover dynamics over large regions using
medium-resolution imagery, our approach highlights the
potential for detailed temporal analysis using very high-
resolution satellite data (3 m), which is particularly suitable
for monitoring land cover change in small-scale surface
mining areas.

According to our findings, a ~1.5% expansion in mining
land was observed, while the dominant land cover class
(forest) remained stable, indicating limited encroachment
into ecologically sensitive zones. These findings can inform
local-scale reclamation planning, and the methodological
framework can be extended to other sites with similar
characteristics.

In conclusion, this study complements and extends
previous research by showcasing how the integration of
high-resolution  satellite  imagery  with  advanced
classification methods like SVM offers a reliable, repeatable,
and scalable approach for monitoring land use dynamics,
particularly in regions undergoing rapid landscape
transformation due to mining. Future research could further
enhance this methodology by integrating different data
sources (e.g., multi-temporal images, radar, or hyperspectral
data) and exploring alternative machine learning algorithms
to achieve a more comprehensive understanding of land
cover changes and improve classification robustness for
environmental monitoring in mining areas.
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