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Abstract   Öz 

This study investigates land use and land cover (LULC) 

changes in the Tunçbilek open-pit coal mine and its 

surroundings, a region experiencing intense mining activity 

in western Türkiye. Understanding LULC dynamics is 

crucial for assessing the long-term environmental impacts 

of surface mining operations and supporting sustainable 

land management. High-resolution PlanetScope imagery 

from 2016 and 2021 was used in conjunction with two 

supervised machine learning algorithms Maximum 

Likelihood Classification (MLC) and Support Vector 

Machine (SVM) to detect temporal changes in six land 

cover classes. The results show that SVM outperformed 

MLC in classification accuracy. The kappa values for MLC 

were 0.73 (2016) and 0.72 (2021), whereas SVM achieved 

0.87 and 0.84, respectively. SVM also provided higher user 

and producer accuracy rates, particularly for the forest and 

planted classes. Between 2016 and 2021, notable land cover 

transitions were observed, including a 6.83% increase in 

cultivated lands and a 7.9% decrease in barren land. The 

mining area itself expanded by approximately 1.39%. 

These results highlight the effectiveness of machine 

learning-based remote sensing methods in monitoring 

LULC changes and contribute to a better understanding of 

the environmental impacts of mining activities in complex 

and sensitive landscapes. 

 Bu çalışma, Batı Anadolu’da yoğun madencilik 

faaliyetlerinin yürütüldüğü bir bölge olan Kütahya’daki 

Tunçbilek açık ocak kömür madeni ve çevresindeki arazi 

kullanım ve örtü (LULC) değişimlerini incelemektedir. 

Yüzey madenciliği operasyonlarının uzun vadeli çevresel 

etkilerinin değerlendirilmesi ve sürdürülebilir arazi 

yönetiminin desteklenmesi açısından LULC dinamiklerinin 

anlaşılması büyük önem taşımaktadır. Bu amaçla, 2016 ve 

2021 yıllarına ait yüksek çözünürlüklü PlanetScope uydu 

görüntüleri kullanılmış ve zamansal değişimlerin tespiti 

için Maksimum Olabilirlik Sınıflandırması (MLC) ile 

Destek Vektör Makineleri (SVM) olmak üzere iki 

denetimli makine öğrenme algoritması uygulanmıştır. Elde 

edilen sonuçlara göre, sınıflandırma doğruluğu açısından 

SVM, MLC’ye kıyasla daha yüksek performans 

göstermiştir. MLC için kappa katsayıları 2016 yılında 0.73, 

2021 yılında ise 0,72 olarak belirlenirken; SVM için bu 

değerler sırasıyla 0.87 ve 0.84 olarak hesaplanmıştır. 

Özellikle orman ve ekili alan sınıflarında SVM, kullanıcı 

ve üretici doğruluklarında daha yüksek başarı elde etmiştir. 

2016–2021 yılları arasında tarım alanlarında %6.83’lük bir 

artış, çıplak toprak alanlarında ise %7.9’luk bir azalma 

gözlemlenmiştir. Madencilik alanı ise yaklaşık %1.39 

oranında genişlemiştir. Bu bulgular, LULC değişimlerinin 

izlenmesinde makine öğrenmesi tabanlı uzaktan algılama 

yöntemlerinin etkinliğini ortaya koymakta ve karmaşık, 

hassas peyzajlarda madencilik faaliyetlerinin çevresel 

etkilerinin daha iyi anlaşılmasına katkı sağlamaktadır. 

Keywords: Change detection, Machine learning, Mining 

site, MLC, Planet Scope, Remote sensing, SVM  

 Anahtar kelimeler: Değişim tespiti, Makine öğrenmesi, 

Maden sahası, MLC, Planet Scope, SVM, Uzaktan 

algılama 

1. Introduction 

Today's rapid economic and technological development 

has led to an increase in the demand for both mineral 

resources and energy, which in turn has led to the rise in the 

market for underground resources [1-5]. Coal from 

underground resources is one of the most critical energy 

resources due to its low cost and abundance compared to 

other resources both in the world and in our country, 

especially in terms of electricity energy demand [1, 6-8]. 

Two main mining methods are employed for the extraction 

of coal and other mineral resources: underground and surface 

mining methods [9-12]. Coal mining is commonly carried 

out using open pit mining, which is carried out on the earth's 

surface [13-14]. The extraction of coal through open-pit 

mining inevitably entails the removal of overlying rock and 

soil material. This process results in alteration of the 
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surrounding vegetation, water bodies and geography, and 

some instances, it also affects settlements [15-21]. Given the 

above impacts of opencast mining activities, Mining sites 

must be continuously monitored. This is vital for the 

sustainability of mining operations as it allows a precise 

understanding of the long-term environmental and land 

cover impacts and how changes to the surface are shaped 

over time [22]. This monitoring process enables the extent of 

soil erosion, vegetation loss, water resources status, and land 

use change to be revealed. It can be helpful for early 

detection of disaster risks such as landslides and subsidence 

[23]. Therefore, continuous and regular monitoring of these 

changes is necessary to support sustainable mining practices 

and minimize potential risks [24].  

Traditional mining site monitoring techniques, such as 

topographic and photogrammetric surveys, are often time- 

and labour-intensive. Topographic measurements involve 

collecting elevation and landform data from various points 

on the site, requiring site visits and detailed measurements. 

Similarly, photogrammetric studies aim to create three-

dimensional terrain models using aerial or drone images. 

However, data collection and analysis processes for these 

techniques could be more laborious and time-consuming in 

mining areas with large surface areas. In this context, remote 

sensing methods utilizing satellite data offer a highly cost-

effective and beneficial approach for monitoring land use 

and land cover (LULC) changes across large geographical 

areas [22, 24-25]. Land cover refers to the uppermost layer 

of the Earth’s surface, such as water, vegetation, bare soil, 

urban infrastructure, or any other surface feature [26-28]. In 

contrast, land use classification aims to define the functional 

purpose of the land, such as recreation, wildlife habitat, 

agriculture, and similar uses [27, 29-30]. As natural and 

semi-natural habitats are continuously subjected to 

increasing pressure due to anthropogenic activities, 

monitoring the changes occurring in such areas has become 

a priority to ensure conservation and sustainable land use 

practices [31-35]. Quantifying the spatial and temporal 

patterns of LULC changes and their corresponding 

consequences is now recognized as a critical area of research 

in land change science [36]. 

Mining activities can significantly alter hydrological 

processes at various scales due to vegetation removal, 

canopy disruption, and modification of wetlands. The loss of 

vegetation cover and changes in soil infiltration capacity 

may considerably increase the flood generation potential of 

catchments, thereby leading to significant ecological 

consequences [20]. Furthermore, large-scale changes in 

surface materials can result degrading of the natural 

landscape’s aesthetic value [35]. The quantitative assessment 

of such LULC changes plays a crucial role in evaluating and 

managing the potential impacts of mining operations on 

natural systems. Among the various methods employed for 

monitoring open-pit mines, remote sensing-based LULC 

applications remain the most common and practical 

approach [37]. Today, various classification methods are 

used to investigate the temporal dynamics of LULC. In 

recent years, remote sensing scientists have increasingly 

adopted machine learning classification algorithms in LULC 

mapping studies, as these methods have gained significant 

prominence in the processing of remote sensing data [38]. 

Machine learning techniques offer potential for the effective 

and efficient classification of satellite imagery [39-44]. 

Among the key strengths of machine learning are its ability 

to process high-dimensional data, map classes with highly 

complex characteristics, accept diverse input prediction 

variables, and operate without requiring assumptions about 

data distributions (i.e., non-parametric behavior) [41]. These 

techniques have become especially important in LULC 

mapping due to their capability to handle large volumes of 

multispectral satellite data with high accuracy and 

efficiency. Consequently, they are widely used as effective 

tools in environmental change analyses [41, 45-47]. Beyond 

improving the detection of subtle environmental changes, 

these methods also support timely decision-making in 

sustainable mining operations. Numerous studies conducted 

both globally and within Türkiye the setting of this research 

have demonstrated that machine learning methods facilitate 

more frequent updates and continuous monitoring in 

dynamic environments such as open-pit mining areas and 

generally yield high classification accuracies [48-53]. 

In this study, land use and land cover (LULC) changes in 

the Tunçbilek open-pit coal mine and its surrounding areas 

located within the borders of Tavşanlı district in Kütahya 

province were investigated using high-resolution 

PlanetScope imagery and supervised machine learning 

classification algorithms. The study focuses on detecting and 

analyzing the spatial and temporal surface changes caused by 

mining activities over five years. While numerous studies 

have explored LULC changes using remote sensing, limited 

research has mainly focused on the detailed analysis of the 

long-term environmental effects of open-pit coal mining in 

Türkiye using high-resolution PlanetScope satellite imagery 

combined with advanced machine learning techniques. This 

presents a significant scientific gap, particularly in the 

context of sustainable mining and environmental monitoring. 

By addressing this gap, the present study aims to 

demonstrate the effectiveness of this integrated approach in 

mapping and tracking mining-induced land cover 

transformations with high spatial detail, thereby contributing 

to the development of more accurate and timely monitoring 

frameworks for environmentally sensitive regions. 

Specifically, this study leverages the 3-meter-high spatial 

resolution of PlanetScope imagery to enable more precise 

detection of fine-scale surface changes caused by mining 

activities, offering an advantage over studies using medium-

resolution data. Furthermore, by focusing on the Tunçbilek 

mining site, the research aims to provide an in-depth analysis 

of the regional environmental impacts, ultimately 

contributing valuable insights for the development of more 

effective monitoring systems and sustainable mining 

practices in similar ecological contexts.  

2. Material and methods 

Remote sensing (RS) and Geographic Information 

System (GIS) tools are widely utilized in the mining industry 

for various purposes, including mineral exploration, 

modeling and monitoring, mine planning and environmental 
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impact assessment [22-24]. The methodology of the present 

study is outlined in Figure 1, commencing with data 

acquisition and extending to the mapping of the LULC of the 

mine pit and its immediate surroundings using the MLC and 

SVM methods. Accuracy assessment was conducted 

afterwars to validate the classification outcomes and to 

ascertain which of the two classification mechanisms 

exhibited superior accuracy. 

2.1 Study area 

The Tunçbilek open-pit coal mine is located in the 

Tavşanlı district of Kütahya province, in the northern part of 

the Aegean region in Western Türkiye, approximately 62 km 

from the center of Kütahya (Figure 2). The region stands out 

due to its significant lignite reserves, playing a strategic role 

in providing energy for industry. Coal production in the 

Tunçbilek Basin began in 1924, and it was transferred to the 

Turkish Coal Enterprises (TKİ) in 1940. Today, coal 

production continues through both open-pit and underground 

mining methods, with approximately 80% of production 

coming from open-pit mining [27, 54]. 

The Tunçbilek mining site has undergone significant 

environmental pressures due to decades of mining activities, 

leading to changes in the region's ecological balance. The 

area surrounding the mine is a mixture of agricultural lands, 

forests, and settlements, making it essential to monitor the 

impacts of mining on the land use and land cover (LULC) 

over a wider geographical area. Furthermore, the fact that 

open-pit mining predominates in this site results in more 

pronounced environmental issues, such as surface 

deformation, vegetation loss, and the alteration of water 

resources. 

In this context, the Tunçbilek mining site and its 

surrounding area were chosen for this study due to their high 

potential for monitoring environmental impacts, as well as 

the fact that this site has been an active and significant open-

pit mining operation in Türkiye for many years. 

Additionally, the limited number of studies conducted in this 

area presents an opportunity to fill the gap in the literature, 

thereby enhancing the contributions of this research. 

2.2 Data acquisition 

To map, identify and evaluate the LULC in Tunçbilek 

Open Pit and its immediate vicinity, this study employs 

Planet Scope satellite imagery, which is distinguished by its 

significant divergence from conventional free satellite data 

due to its high resolution. Planet operates the largest fleet of 

Earth observation satellites, with a current total of 200 

satellites in orbit. This extensive satellite network provides 

global coverage, offering high spatial and temporal 

resolution imagery [55-56]. The Planet Scope constellation 

presently encompasses three generations of remote sensing 

satellites: Dove Classic, Dove-R and SuperDoves. The Dove 

Classic, launched in 2016, carries a 4-band (RGB-NIR) 'PS2' 

sensor with a ground sampling distance (GSD) of 

approximately 3.7 m (Table 1). 

 

 

Figure 1. The following flowchart illustrates the general 

methodology employed in this study 

 

 

Figure 2. Generalized view of the study area and 

settlements around its vicinity 

 

These data provided free of charge under an educational 

use license from Planet Lab Inc. website. Planet Scope 

satellite data are downloaded in a ready-to-use format in the 

form of quad-band images (Red, Green, Blue and Near 

infrared), i.e. without any pre-processing (Figure 3) [29, 56]. 

These characteristics make Planet Scope satellite data a 

unique resource for studying heterogeneous urban 

landscapes (Table 1). 
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Figure 3. True-color PlanetScope satellite images of the study area acquired in 2016 and 2021, generated using the standard 

RGB bands. 

 

Table 1. Details of Planet Scope images used in the study 

Year Acquisition Date Bands Used Instrument Spatial Resolution 

2021 02/08/2021 Band 1(Blue, 455-515 nm), Band 2 (Green, 500-590 nm), Band 3 (Red, 590-670 

nm), Band 4 (Near-Infrared, 780-860 nm) 

Dove Classic 3 meters 

2016 11/08/2016 Band 1(Blue, 455-515 nm), Band 2 (Green, 500-590 nm), Band 3 (Red, 590-670 

nm), Band 4 (Near-Infrared, 780-860 nm) 

Dove Classic 3 meters 

2.3 Data processing 

A four-step approach was used to analyze land use 

changes in the Tunçbilek Open Pit Coal Mine according to 

the workflow summarised in Figure 1. The flowchart 

includes data collection, image classification, accuracy 

analysis, and evaluation of changes in land use classes over 

the years. As part of Step 1, PlanetScope images taken half a 

decade apart from 2016 to 2021 were used, ensuring cloud 

cover was less than 5%. These images, with a spatial 

resolution of approximately 3 meters, cover the entire study 

area. Notably, PlanetScope imagery is delivered as Analysis 

Ready Data (ARD), having already undergone preprocessing 

steps such as orthorectification, radiometric calibration, and 

basic atmospheric correction. Therefore, no additional 

preprocessing steps were required before the analysis. 

LULC classification was performed using ArcGIS Pro by 

defining training samples for each of the six land cover 

classes. The classification method employed both Maximum 

Likelihood Classification (MLC) and Support Vector 

Machine (SVM) algorithms. This step leveraged the 

advanced classification tools and capabilities of ArcGIS Pro 

to optimise accuracy and efficiency, enabling accurate 

identification of land cover types and changes over time. The 

classified raster images were first converted to polygon 

format to facilitate the calculation of each land use area. This 

conversion allowed for more precise measurements and 

enabled the identification of specific land use changes over 

time. Statistical summaries of these changes were then 

generated, providing insight into the extent and nature of 

land use dynamics in the study area. In addition, centrally 

connected polygons were identified and included in the 

calculations and change analysis to distinguish the open pit 

mine from other land use features. This methodology 

allowed for accurate identification and reliable 

quantification of land use changes. 

2.4 Supervised classification 

This study employs the Maximum Likelihood 

Classification (MLC) and Support Vector Machine (SVM) 

techniques to detect land use and land cover (LULC) changes 

resulting from mining activities in and around the surface 
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mining area. MLC is a classical supervised classification 

algorithm that relies on the statistical distribution of spectral 

data and has been extensively applied in remote sensing 

studies, particularly for LULC mapping [57-59]. However, 

in complex and heterogeneous environments such as open-

pit mining areas, spectral overlap between different land 

cover classes is highly probable, can affect classification 

accuracy. 

To address such complexities, SVM has been introduced 

as an advanced machine learning algorithm capable of 

modeling non-linear decision boundaries. It offers strong 

generalization capabilities and high classification accuracy 

potential in high-dimensional datasets, such as multi-band 

satellite imagery. Therefore, this study applies both MLC as 

a fundamental benchmark and SVM to explore the 

advantages of machine learning approaches in this specific 

context. 

In supervised image classification, all pixels in raster data 

are categorized into predefined classes based on spectral 

characteristics. Both MLC and SVM have been widely 

utilized for the classification of surface mining areas [22-24, 

60-62], with SVM particularly demonstrating improved 

classification accuracy in various studies [44]. 

MLC is a widely used supervised classification method 

applied in the classification of remotely sensed data [63-64]. 

Training data in MLC is used to generate a class signature 

based on variance and covariance. The algorithm assumes a 

normal distribution of each class instance in the 

multidimensional space, where the number of dimensions is 

equal to the number of bands in the image [64]. The 

probability that a pixel belongs to a specific class is 

computed using the multivariate normal distribution, as 

shown in Equation (1). 

 

𝐷 = 𝑙𝑛(𝑎𝑐) − [0.5 ∗ 𝑙𝑛(|𝐶𝑜𝑣𝑐|)]
− [0.5𝑥(𝑋 − 𝑀𝑐]𝑇𝑥(𝐶𝑜𝑣𝑐

−1)𝑥(𝑋
− 𝑀𝑐)] 

(1) 

 

SVM, based on statistical learning theory, is one of the 

most advanced and highly accurate supervised machine 

learning techniques, such as object-oriented image 

classification and fuzzy classifiers [36–38]. SVM is effective 

in classifying high-dimensional data, making it suitable for 

complex datasets in land cover, vegetation, and urban studies 

[65-67]. SVM aims to build a model that predicts the target 

value of data occurrences in the test set given only their 

attributes. 

The primary objective of SVM is to find an optimal 

hyperplane that separates classes with the maximum margin. 

SVM is a non-parametric classifier capable of handling both 

linearly and non-linearly separable data efficiently [68]. 

If the training dataset consists of k samples represented 

as {(xi,yi)}, where xi ∈ ℝⁿ and yi ∈ {−1, +1}, the classes are 

said to be linearly separable if there exists a vector w and a 

scalar b such that the inequalities given in Equation (2) and 

Equation (3) define the optimal separating hyperplane. 

 
(𝑊 𝑥 𝑋𝑖 + 𝑏) ≥ +1 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑦𝑖 = +1 (2) 

 

(𝑊 𝑥 𝑋𝑖 + 𝑏) ≤ −1 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ yi = −1 (3) 

 

In practical remote sensing applications, it is frequently 

observed that the available datasets are not always linearly 

separable. To address this complexity, SVM utilizes kernel 

functions to project the input data into a higher-dimensional 

feature space where linear separation becomes feasible. 

Among the various kernel functions commonly used such as 

linear, polynomial, sigmoid, and radial basis function (RBF) 

the RBF kernel is frequently preferred in land use/land cover 

(LULC) classification tasks due to its strong generalization 

ability and its effectiveness in handling complex, non-linear 

class boundaries. Previous studies have reported that the 

RBF kernel provides reliable and high classification 

accuracy in a variety of LULC applications [69-74]. For this 

reason, the RBF kernel was selected in this study. The RBF 

kernel is defined in Equation (4) as follows: 

 

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝑒𝑥𝑝 (−𝛾 ∥ 𝑋𝑖 − 𝑋𝑗 ∥)2 (4) 

 

The parameter γ, which is specific to the kernel, has been 

demonstrated to exert a significant influence on the outcome 

of a single training example. It is evident that a reduced γ 

value engenders a more refined decision boundary, whilst an 

augmented one facilitates more intricate separations. The 

performance of the SVM classifier is contingent on the 

selection of both γ and the regularization parameter C, which 

governs the trade-off between achieving a low training error 

and a large margin. To ensure optimal classification 

performance, these parameters were fine-tuned using a grid-

search method with k-fold cross-validation. Grid-search 

aims to find the best performing parameter set by 

systematically testing different combinations of γ and C 

values within specified ranges. Cross-validation, on the other 

hand, allows us to estimate the generalization ability of the 

model by evaluating its performance on different subsets of 

the data. In the context of multi-class classification problems 

in this study, the one-against-one strategy was employed, 

whereby binary classifiers were trained between every 

possible pair of classes. 

In supervised classification, training samples are used to 

identify each class based on user-defined criteria. This study 

chose the National Land Cover Database 2011 to identify 

land cover classes (Table 2) [74-76]. In this study, six land 

cover classes were selected from the NLCD2011 

classification scheme based on their spatial prevalence in the 

study area and their spectral separability in the PlanetScope 

imagery. Classes such as wetlands, shrublands, and 

grasslands were excluded due to their limited representation 

within the study region and the potential for spectral 

confusion with other dominant classes at the 3-meter spatial 

resolution. The selected classes Mining site, Water, 

Developed, Barren, Forest, and Planted/Cultivated represent 

the most significant land cover types relevant to the scope 

and objectives of this study. The classified Planet Scope 

images are presented in Figure 4, respectively. 

 

 

 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 11(2): xxx-xxx NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(3), 1001-1013 

R. U. Acar, E. Zengin, A. S. Öngen 
 

 

1006 

Table 2. Land classes and descriptions used in the study 

No Class Name Description 

1 Mining Site The area where mining activities are carried out 

2 Water 
Surface water and artificial lakes within the mining 

site 

3 Developed Settlements and roads 

4 Barren 
Bare and barren land is not included in the forest 
class 

5 Forest Tree-covered areas 

6 Planted Arable land 

2.5 Accuracy assessment and change detection 

After land use classification, it is imperative to evaluate 

the accuracy and reliability of the classified images to detect 

and quantify any mapping or classification errors. Various 

techniques have been developed to evaluate the accuracy of 

such classifications [24, 77-79]. In this study, confusion 

matrix, which is a widely used accuracy assessment method, 

was used and overall (OA), producer (PA) and user 

accuracies (UA) and k coefficient values were calculated for 

different classes [80-83]. In this study, reference data 

containing 101 points for six land use classes were randomly 

generated using ArcGIS Pro software and the method was 

applied. The estimated and actual reference values of land 

use maps produced with MLC and SVM methods for the 

years 2016 and 2021 were compared. Ground truth reference 

data were derived through visual interpretation of high-

resolution Google Earth imagery, which provided temporally 

corresponding scenes to the PlanetScope data. Reference 

points were selected based on clearly distinguishable land 

cover features and cross-checked with prior studies and 

official land use information to ensure consistency and 

accuracy. Change detection involves assessing the 

differences in land cover using images obtained from Planet 

Scope images on selected dates using the applied 

classification methods [84].  After spatial change 

classification, raster data were converted into polygons in 

ArcGIS to calculate the area covered by each class in the 

mining site and its vicinity in 2016 and 2021. Then, the 

change developed in the mining site and its vicinity was 

calculated and a spatial layer was created to visualize the 

differences between the two time periods (Figures 3-4). 

The accuracy metrics were computed using the following 

equations Equation (5), (6), (7): The most common method 

of quantifying agreement is known as the 'one-against-one' 

(OA) approach. This is indicated by the percentage of pixels 

that will be correctly categorised. Overall Accuracy (OA) 

was calculated as: 

 

𝑂𝐴 = (∑ 𝑋𝑖𝑖/𝑁)
𝑞

𝑖=1
𝑥100 (5) 

 

In this formula, the total number of classes is represented 

by q, the total number of pixels by N, and the corrected 

classified pixels, i.e. the diagonal ones, by Xii. 

Producer Accuracy (PA) for each class i was calculated 

as 

 

𝑃𝐴 = (𝑋𝑖𝑖/𝑁𝑖+)𝑥100 (6) 

𝑈𝐴 = (𝑋𝑖𝑖/𝑁+𝑖)𝑥100 (7) 

 

where Ni+ is the marginal sum of the rows and N+i is the 

marginal sum of the columns. 

The k coefficient, expressed by Equation 8, is used to 

measure the ratio between the actual and predicted stochastic 

agreement when the classifier is random. 

 

𝑘 = (𝑁 ∑ 𝑋𝑖𝑖 − ∑ 𝑁𝑖+𝑁+𝑖

𝑞

𝑖=1
)/(𝑁2

𝑞

𝑖=1

− ∑ 𝑁𝑖+𝑁+𝑖)
𝑞

𝑖=1
 

(8) 

 

3. Results and discussion 

In this study, two supervised classification methods were 

evaluated on the 2016 and 2021 datasets as shown in Figure 

4 and given in Table 3, and six different land use classes were 

successfully determined using these techniques. 

Firstly, the six distinct land use categories were 

successfully identified through the implementation of the 

MLC technique. A subsequent evaluation of the results 

obtained in both 2016 and 2021 revealed that in 2016, the 

forest class dominated the study area with 38.36%, while in 

2021 barren class became the most dominant class with 

35.38%.  The mining site class accounted for 13.00% in 2016 

and 12.17% in 2021. The distribution of all other land use 

classes is presented in Table 3. The visual interpretation of 

the outputs generated by the method revealed that it 

produced classification errors in both years, in the form of 

overestimation of agricultural land by confusing it with 

barren land and slopes within the mine. This error was 

attributed to the similar spectral reflectance of these classes. 

 

Table 3. Land use and land cover change analysis between 

2016 and 2021 based on svm and mlc classification 

techniques 
 

MLC (%)  SVM (%)  

Class Name 2016 2021 Change 2016 2021 Change 

Mining Site 13.00 12.17 -0.83 13.06 14.45 1.39 

Water 0.73 2.22 1.50 2.41 2.38 -0.04 

Developed 3.34 1.37 -1.96 2.48 1.20 -1.28 

Barren 28.44 35.38 6.94 25.20 17.29 -7.90 

Forest 38.36 28.84 -9.52 39.36 40.36 1.00 

Planted 16.13 20.00 3.87 17.49 24.31 6.83 

 

When the classification results obtained with the SVM 

classification method are analyzed, it is seen that the forest 

class is the most dominant in the field with an area of 39.36% 

and 40.36% in both 2016 and 2021, respectively (Table 3 and 

Figure 4). In 2016, the area allocated to coal mining 

accounted for 13.06% of the total area, while in 2021, this 

figure increased by 18% over the five-year period, covering 

approximately 14.5% of the study area. The distribution of 

other land use classes, including wasteland, surface water, 

agricultural land and settlements, is presented in Table 3.  
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Visual interpretation of the classification results revealed 

higher classification accuracy with the SVM method 

compared to the MLC method. The inconsistency in 

classification success can be attributed to various factors 

such as image quality, image resolution, classification errors, 

software errors and handling errors. In order to check the 

accuracy of the maps created after the classification methods, 

the maps classified with the MLC and SVM methods created 

for the years 2016 and 2021 were subjected to accuracy 

analysis. In order to evaluate the accuracy of these classified 

maps in ArcGIS Pro, after the classification using all 

classifiers, user accuracy (UA) (also referred to as recall), 

producer accuracy (PA) (precision), and the k coefficient 

were calculated (Table 4). Although the water class offers 

variable accuracy percentages in terms of UA and PA for the 

SVM and MLC classifiers of the methods applied here, 

respectively, it offers the lowest values together with the 

developed class, while the forest class generally has the 

highest accuracy values. The situation experienced in water 

and forest land may probably be due to the lack of a clear 

spectral signal that expresses the developed class, which 

represents the construction areas, and therefore it seems to 

mix with the mining area slope areas in places. Wetlands, on 

the other hand, gave low values in accuracy due to the 

reflections they make and the areas similar to the slopes of 

the mountains in places. In addition, the k coefficient used in 

the cluster analysis was also calculated. The k coefficient is 

used to measure the ratio between the actual and predicted 

stochastic agreement if the classifier is random. 

When the classification results obtained with the SVM 

classification method are analyzed, it is seen that the forest 

class is the most dominant class in the field with an area of 

39.36% and 40.36% in both 2016 and 2021, respectively 

(Table 3 and Figure 4). In 2016, the area allocated to coal 

mining accounted for 13.06% of the total area, while in 2021, 

this figure increased by 18% over the five-year period, 

covering approximately 14.5% of the study area. The 

distribution of other land use classes, including wasteland, 

surface water, agricultural land and settlements, is presented 

in Table 3. 

Visual interpretation of the classification results revealed 

higher classification accuracy with the SVM method 

compared to the MLC method. The inconsistency in 

classification success can be attributed to various factors 

such as image quality, image resolution, classification errors, 

software errors and handling errors. In order to check the 

accuracy of the maps created after the classification methods, 

the maps classified with the MLC and SVM methods created 

for the years 2016 and 2021 were subjected to accuracy 

analysis. In order to evaluate the accuracy of these classified 

maps in ArcGIS Pro, after the classification using all 

classifiers, overall accuracy (OA), user accuracy (UA) (also 

referred to as recall), producer accuracy (PA) (precision), 

and the k coefficient were calculated (Table 4, 5). Although 

the water class offers variable accuracy percentages in terms 

of UA and PA for the SVM and MLC classifiers of the 

methods applied here, respectively, it offers the lowest 

values together with the developed class, while the forest 

class generally has the highest accuracy values. The situation 

experienced in water and forest land may probably be due to 

the lack of a clear spectral signal that expresses the 

developed class, which represents the construction areas, and 

therefore it seems to mix with the mining area slope areas in 

places. Wetlands, on the other hand, gave low values in 

accuracy due to the reflections they make and the areas 

similar to the slopes of the mountains in places. In addition, 

the k coefficient used in the cluster analysis was also 

calculated. The k coefficient is used to measure the ratio 

between the actual and predicted stochastic agreement if the 

classifier is random. 

The k coefficient is categorized as shown. The meanings 

of the kappa values ranging from -1 to 1 are given in (Table 

6) [85]. According to the results obtained, the SVM classifier 

surpassed the MLC by providing higher classification 

accuracy for each class. The kappa value for MLC was 

determined as 0.73 in 2016 and 0.72 in 2021, and for SVM, 

it was determined as 0.87 in 2016 and 0.84 in 2021. 

 

Table 4. Accuracy assessment using confusion matrix generated from test training samples for Planet Scope Dove Classic images 

based on MLC and SVM techniques 

 2016 2021 

 MLC SVM MLC SVM 

Class Name 
User's 

Accuracy 

% 

Producer's 

Accuracy 

% 

User's 

Accuracy 

% 

Producer's 

Accuracy 

% 

User's 

Accuracy 

% 

Producer's 

Accuracy 

% 

User's 

Accuracy 

% 

Producer's 

Accuracy 

% 

Mining Site 80 60 100 82.25 59.09 86.66 85.71 85.71 

Water 60 100 100 100 80 100 40 100 

Developed 50 71.43 60 100 44.44 57.14 60 85.72 

Barren 63.75 66.66 100 78.12 76.19 61.53 100 89.47 

Forest 97.14 94.44 100 100 100 92.1 97.5 90.7 

Planted 84 77.77 52.94 90 77.59 77.59 95.83 85.19 
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Figure 4. Land cover change map of the study area from 2016 to 2021 

 

Table 5. Overall Accuracy and Kappa Statistics for 2016 and 

2021 Classifications 

 MLC SVM 

Year 
Overall 

Accuracy 

% 

k  

Coefficient 

Overall 

Accuracy 

% 

k  

Coefficent 

2016 79 0.73 89 0.84 
2021 78 0.72 87 0.87 

 

It is seen that there is a difference of approximately 10% 

between the two methods. It is seen that SVM is in the "very 

good" range because it remains between 0.81 and 1, while 

for MLC, although the values are low, they remain between 

the "good" range of 0.61 and 0.80. In this study, SVM not 

only outperformed MLC in classifying all linearly separable 

classes but also achieved superior results when training 

classes with different spectral reflectance(s). 

As a result of the accuracy assessment, images classified 

by SVM reported higher accuracy for both 2006 and 2016, 

so images classified by SVM were used to detect changes 

after classification over the years. According to the results 

obtained, there was an increase in the mining site, forest and 

agricultural land classes and a decrease in the water, 

residential areas and barren land class in 2021 compared to 

2016. While the most significant decrease among land 
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classes was experienced in barren land, the greatest increase 

occurred in agricultural lands (Table 7). 

 

Table 6. k  Coefficient Values and Interpretation 

Interpretation Value Range 

Very Good 0.81 - 1.00 

Good 0.61 - 0.80 

Moderate 0.41 - 0.60 

Fair 0.21 - 0.40 

Poor -1.00 - 0.20 

 

Table 7. Land cover changes Tunçbilek mining site and its 

vicinity (hectare(ha)) 

 2016 2021 2021-2016 

Class Name 
hectar 

(ha) 
% hectar (ha) % 

Change 

(%) 

Mining Site 4309.27 13.06 4973.38 14.45 1.39 

Water 796.39 2.41 818.03 2.38 -0.04 

Developed 816.83 2.48 412.91 1.20 -1.28 

Barren 8310.90 25.20 5950.32 17.29 -7.90 

Forest 12982.24 39.36 13888.59 40.36 1.00 

Planted 5767.96 17.49 8366.08 24.31 6.83 

 

These changes may have occurred as a result of the 

interaction between various anthropogenic and 

environmental factors. The observed increase in cultivated 

areas (+6.83%) could be associated with local land 

conversion initiatives or a rising demand for agricultural 

production in response to socioeconomic pressures. The 

noticeable decrease in barren land (−7.90%) might be related 

to land rehabilitation efforts, afforestation activities, or the 

expansion of agricultural use into previously unused areas. 

The slight increase in forest cover (+1.00%) could be 

explained by natural regeneration processes or potential 

afforestation programs, particularly in less disturbed regions. 

The reduction in developed areas (−1.28%) may reflect the 

relocation of settlements or abandonment of minor built-up 

zones due to the expansion of mining operations. These 

spatial change patterns reflect a complex interplay between 

human activities and ecological processes in the Tunçbilek 

mining region. In future studies, these drivers could be 

explored in greater detail by integrating socioeconomic data 

and field-based observations. 

4. Conclusion and Suggestions 

In our study, the land use/land cover (LULC) changes 

that occurred within a short period (five years) over a 

relatively small area (approximately 35 hectares) in the 

Tavşanlı district of Kütahya, western Türkiye a region 

known for intensive mining activity were investigated using 

remote sensing methods. Unlike many comparable studies in 

the literature that rely on freely available medium-resolution 

satellite data (e.g., Landsat, Sentinel), this study employed 

high-resolution PlanetScope imagery (3 m), which enhanced 

image sharpness, facilitated the selection of training points, 

and contributed to higher classification accuracy. 

Similar to the findings of [47, 86-89] our results show 

that Support Vector Machine (SVM) performs better than 

Maximum Likelihood Classification (MLC), particularly in 

cases where land cover classes exhibit overlapping spectral 

characteristics. Confusion matrix-based accuracy 

assessment revealed that SVM yielded higher overall 

accuracy and outperformed MLC in classifying individual 

categories such as forest and cultivated land, consistent with 

previous comparative studies in heterogeneous landscapes. 

Moreover, this study provides a more localized 

perspective by applying machine learning techniques to a 

small-scale mining site. It demonstrates the applicability of 

these methods in limited geographic extents with reduced 

computational demands, making them practical for rapid 

land cover monitoring. While many previous studies have 

examined land cover dynamics over large regions using 

medium-resolution imagery, our approach highlights the 

potential for detailed temporal analysis using very high-

resolution satellite data (3 m), which is particularly suitable 

for monitoring land cover change in small-scale surface 

mining areas. 

According to our findings, a ~1.5% expansion in mining 

land was observed, while the dominant land cover class 

(forest) remained stable, indicating limited encroachment 

into ecologically sensitive zones. These findings can inform 

local-scale reclamation planning, and the methodological 

framework can be extended to other sites with similar 

characteristics. 

In conclusion, this study complements and extends 

previous research by showcasing how the integration of 

high-resolution satellite imagery with advanced 

classification methods like SVM offers a reliable, repeatable, 

and scalable approach for monitoring land use dynamics, 

particularly in regions undergoing rapid landscape 

transformation due to mining. Future research could further 

enhance this methodology by integrating different data 

sources (e.g., multi-temporal images, radar, or hyperspectral 

data) and exploring alternative machine learning algorithms 

to achieve a more comprehensive understanding of land 

cover changes and improve classification robustness for 

environmental monitoring in mining areas. 
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