DOKUZ DÜĞÜM NOKTALI GENEL DÖRTGEN ELEMANLAR İÇİN HERMIT INTERPOLASYON FONKSİYONLARININ TÜRETİLMESİ

Evaluation of Hermit Interpolation Functions for General Quadrilateral Elements with Nine Nodes

> Mehmet İREN^{*} Mahmut TURAN^{**}

ÖZET

Sürekli ortamların sonlu elemanlar yöntemiyle analizi interpolasyon fonksiyonları yardımıyla olmaktadır. Bu interpolasyon fonksiyonlarından genel olarak düğüm noktalarında ∓l değerini alan parametrik koordinatlarda yazılmış Lanrange tipinde olanları, sonlu elemanlar yönteminde daha sık kullanılırlar. Ancak ince plak ve kabukların analizinde Kirchoff modeli kullanılacaksa kullanılan interpolasyon fonksiyonları, eleman düğüm noktalarında yer değiştirmenin kendisinin olduğu kadar yer değiştirmenin türevlerini de (kesit dönmelerinin de) düğüm noktalarında sağlaması gerekir. Bu yüzden Hermitien interpolasyon fonksiyonları bu amaç için uygundur.

ABSTRACT

The continuum has been analysed by finite element method using interpolation functions. In general Lagrangian type interpolation functions written at parametric coordinates which have the values $\mp l$ at nodes are used in finite element analysis. However, if Kirchoff's model will be used in thin plate and shell analyses, these interpolation functions must confirm displacement functions and their derivatives (section rotations) at the element nodes. Therefore, Hermitien interpolasyon functions are convenient for this purpose.

Anahtar kelimeler: İnterpolasyon, Hermitien, Sonlu eleman, Dörtgen eleman.

Key words :Interpolation, Hermitien, Finite element, Quadrilateral element.

^{*} BAÜ. Mühendislik Fakültesi Balıkesir

^{**} DP.Ü Mühendislik Fakültesi Kütahya

1. GİRİŞ

Plaklar ve kabuklar üzerinde çok sayıda çalışmalar yapılmıştır. Sonlu elemanlar metodunun ve bilgisayarların gelişmesiyle bu konudaki problemler daha kapsamlı ve ayrıntılı olarak ele alınmış, analitik çözümün pek çok halde imkansız ya da çok zor olması sebebiyle statik ve dinamik haller için yaklaşık çözümler geliştirilmeye çalışılmıştır.

Plakların eğilme sırasındaki davranışını açıklamak için Mindlin ve Kirchhoff modelleri kullanılmaktadır.(R. D. Cook, 1994) Bunlardan Mindlin modeli kalın plaklardaki davranışı, Kirchhoff modeli ise ince plaklardaki davranışı daha iyi açıklar.

Akışkanlar mekaniğinde hız alanının elde edilmesi için potansiyel akım fonksiyonunun türevine ihtiyaç duyulması ya da ince plakların analizinde kullanılan Kirchhoff tipi elemanlarda, deplasman fonksiyonunun türevleri ile birlikte tanımlanmasının lüzumu Hermite fonksiyonlarının kullanılmasını ihtiyaç haline getirir. (G. F. Pinder, 1982 ve R. D. Cook., at all, 1989)

Hermite fonksiyonlarıları, spline fonksiyonlardır. Bunlar fonksiyonların elemanlar arasındaki değerlerinin olduğu kadar bu fonksiyonların arzu edilen mertebeden türevlerinin sürekliliğini de dikkate alır. Bu özellik çözümün bir aşamasından sonra türev alma yoluyla ikinci aşamanın elde edilmesi gerektiği durumlarda özellikle cazip olmaktadır. E. O. Frind (1977) alan problemlerinde Hermitien tipteki isoparametrik sonlu elemanları incelemiştir. Bu çalışmada iki boyutlu, kuvadritik elemanları için Hermite interpolasyon fonksiyonlarının parametrik koordinatlarda elde edilme şekli sunulmuştur.

2. DÖRTGEN ELEMANLAR

Şekil 1 Bir Dörtgen Elemanda Kartezyen ve Parametrik Eksenlerdeki Durumu.

Sonlu elemanlar metodunda kullanılan elemanlar bir, iki, ya da üç boyutlu olabilirler. Boyut sayısı sistemin geometrisi ile ilgilidir. Bu geometri icinde sistemin sınırlarını tanımlayan yüzey ya da çizgilerin doğrusal olup olmamasına bağlı olarak bu elemanlar avnı zamanda lineer veva eğrisel sınırlı da olabilirler. Eleman sınırlarının eğrisel olması ve elemanın eğrisel bir yüzeye sahip olması durumunda bu tür elemanlar, 9 düğüm noktalı, eğrisel kenarlı ve uzavda bir yüzey tanımlayan elemanlardır. Bu elemanın kartezyen ve parametrik eksenlerdeki durumu Şekil 1 de görülmektedir.

3. HERMIT FONKSİYONLARI

Hermit fonksiyonları birer interpolasyon fonksiyonlarıdır. Bu interpolasyon fonksiyonları, asıl fonksiyonları düğüm noktalarında sağladıkları kadar, bu fonksiyonların istenilen mertebeden türevlerini de düğüm noktalarında sağlarlar. Buna göre herhangi bir fonksiyon eleman içinde,

$$w = \left[H_{00_i}\right] \left\{w_i\right\} + \left[H_{10_i}\right] \left\{\frac{\partial w_i}{\partial s}\right\} + \left[H_{01_i}\right] \left\{\frac{\partial w_i}{\partial t}\right\} + \left[H_{11_i}\right] \left\{\frac{\partial^2 w_i}{\partial s \partial t}\right\} \cdots i = 1, 2, 3, \dots n$$

(1)

ile verilir. Burada w eleman içindeki alan değişkeni, $\{w_i\}$ alan değişkeninin eleman

düğüm noktalarındaki değerini ihtiva eden vektör, $\left\{\frac{\partial w_i}{\partial s}\right\}$, $\left\{\frac{\partial w_i}{\partial t}\right\}$, $\left\{\frac{\partial^2 w_i}{\partial s \partial t}\right\}$ alan

değişkenin parametrik değişkenlere göre kısmî türevlerinin eleman düğüm noktalarındaki değerini ihtiva eden vektör, *s* ve *t* parametrik koordinatların değişkenleri, $\begin{bmatrix} H_{00_i} \end{bmatrix} \begin{bmatrix} H_{10_i} \end{bmatrix} \begin{bmatrix} H_{01_i} \end{bmatrix} \begin{bmatrix} H_{11_i} \end{bmatrix}$ Hermitien interpolasyon fonksiyonlarını ihtiva eden matristır.

4. DOKUZ DÜĞÜM NOKTALI DÖRTGEN ELEMAN İÇİN HERMİT FOKSİYONLARININ ELDE EDİLMESİ

Eleman tipinin dörtgen olduğu durumlarda eleman geometrisi parametrik koordinatlarda tanımlanırsa, bu koordinatların değişkenleri olan s ve t nin eleman üzerindeki düğüm noktalarında aldığı değerler,

1 numaralı düğüm noktasında	s = -1	t = -1	
2 numaralı düğüm noktasında	s = 0	t = -1	
3 numaralı düğüm noktasında	s = 1	t = -1	
4 numaralı düğüm noktasında	s = 1	t = 0	
5 numaralı düğüm noktasında	s = 1	t = 1	(2)
6 numaralı düğüm noktasında	s = 0	t = 1	
7 numaralı düğüm noktasında	s = -1	t = 1	
8 numaralı düğüm noktasında	s = -1	t = 0	
9 numaralı düğüm noktasında	s = 0	t = 0	

şeklindedir. (1) denkleminde görülen H_{00_i} H_{10_i} H_{01_i} H_{11_i} öyle fonksiyonlardır ki, düğüm noktası numarası *j* olmak üzere (3), (4), (5) ve (6) daki şartları sağlarlar.

Düğüm noktası	H_{00i}	∂H_{00_i}	∂H_{00_i}	$\partial^2 H_{00i}$
J		∂s	∂t	∂s∂t
i = j	1	0	0	0
$i \neq j$	0	0	0	0

(3)

Düğüm noktası j	<i>H</i> _{10<i>i</i>}	$\frac{\partial H_{10i}}{\partial s}$	$\frac{\partial H_{10i}}{\partial t}$	$\frac{\partial^2 H_{10i}}{\partial s \partial t}$
i = j	0	1	0	0
<i>i ≠ j</i>	0	0	0	0

Düğüm noktası j	H _{01i}	$\frac{\partial H_{01i}}{\partial s} \ .$	$\frac{\partial H_{01i}}{\partial t}$	$\frac{\partial^2 H_{01i}}{\partial s \partial t}$
i = j	0	0	1	0
$i \neq j$	0	0	0	0

Düğüm noktası j	H _{11i}	$\frac{\partial H_{11i}}{\partial s}$	$\frac{\partial H_{11i}}{\partial t}$	$\frac{\partial^2 H_{11i}}{\partial s \partial t}$
i = j	0	0	0	1
$i \neq j$	0	0	0	0

(6)

(4)

(5)

Dokuz düğüm noktalı bir dörtgen elemanda bu şartları sağlayan genel fonksiyon, her bir düğüm noktasında dört serbestlik derecesi dikkate alınarak 36 adet katsayıdan meydana gelmelidir.

$$H_{00} = \left(\alpha_{1}s^{5} + \beta_{1}s^{4} + \chi_{1}s^{3} + \delta_{1}s^{2} + \varepsilon_{1}s + \phi_{1}\right)\left(\alpha_{2}t^{5} + \beta_{2}t^{4} + \chi_{2}t^{3} + \delta_{2}t^{2} + \varepsilon_{2}t + \phi_{2}\right)$$
(7)

$$H_{10} = \frac{\partial}{\partial s}\left[\left(\alpha_{1}s^{5} + \beta_{1}s^{4} + \chi_{1}s^{3} + \delta_{1}s^{2} + \varepsilon_{1}s + \phi_{1}\right)\left(\alpha_{2}t^{5} + \beta_{2}t^{4} + \chi_{2}t^{3} + \delta_{2}t^{2} + \varepsilon_{2}t + \phi_{2}\right)\right]$$
(8)

$$H_{01} = \frac{\partial}{\partial t}\left[\left(\alpha_{1}s^{5} + \beta_{1}s^{4} + \chi_{1}s^{3} + \delta_{1}s^{2} + \varepsilon_{1}s + \phi_{1}\right)\left(\alpha_{2}t^{5} + \beta_{2}t^{4} + \chi_{2}t^{3} + \delta_{2}t^{2} + \varepsilon_{2}t + \phi_{2}\right)\right]$$
(9)

$$H_{01} = \frac{\partial}{\partial t}\left[\left(\alpha_{1}s^{5} + \beta_{1}s^{4} + \chi_{1}s^{3} + \delta_{1}s^{2} + \varepsilon_{1}s + \phi_{1}\right)\left(\alpha_{2}t^{5} + \beta_{2}t^{4} + \chi_{2}t^{3} + \delta_{2}t^{2} + \varepsilon_{2}t + \phi_{2}\right)\right]$$

$$H_{11} = \frac{\partial}{\partial s \partial t} \left[\left(\alpha_1 s^5 + \beta_1 s^4 + \chi_1 s^3 + \delta_1 s^2 + \varepsilon_1 s + \phi_1 \right) \left(\alpha_2 t^5 + \beta_2 t^4 + \chi_2 t^3 + \delta_2 t^2 + \varepsilon_2 t + \phi_2 \right) \right]$$
(10)

(7) denklemi 36 adet katsayıyı verebilecek bir fonksiyondur. Bu fonksiyonda $\alpha_1, \beta_1, \chi_1, \delta_1, \varepsilon_1, \phi_1, \alpha_2, \beta_2, \chi_2, \delta_2, \varepsilon_2, \phi_2$ (3), (4), (5) ve (6) şartlarını sağlayacak şekilde hesaplanması gereken katsayılardır. Parantezler açıldıktan sonra ortaya çıkan denklem tipine ait katsayıların adedi 36 tane olup bunların hesaplanması daha kolaydır. Yukarıda kapalı olarak verilen denklemlerin açık hali, **Tablo 1.a, 1.b, 1.c** ve **1.d** de görülmektedir. Bu tabloda görülen a_i katsayıları sözü edilen hesaplanacak katsayılardır. Şimdi her bir düğüm için *s* ve *t* değerleri yazılarak her bir düğüm noktası için H_{00i} H_{10i} H_{01i} H_{11i} ifadeleri elde edilir. 36 bilinmeyenli 36 denklem çözülerek elde edilen bu ifadeler kapalı formda, **Tablo 2.a** ve **2.b** de verilmiştir. Elde edilen bu interpolasyon fonksiyonlarının örnek olarak seçilen 1, 2, 4 ve 9 numaralı düğüm noktalarındaki örnek grafikleri de **Şekil 2a ve Şekil 2b** de gösterilmiştir.

TABLO 1.a 7 Denkleminin Açık Hali

			+	+	+	+	+	
			$a_{21}t^5$	a_{26t}^4	$a_{30}t^3$	$a_{33}t^2$	$a_{35}t$	a_{36}
		+	+	+	+	+	+	
		$a_{15}st^5$	$a_{20}st^4$	$a_{25}st^3$	$a_{29}st^2$	a32St	$a_{34S}{}^{I}$	
	+	+	+	+	+	+		 A summary support and a signal for the state
	$a_{10}s^2t^5$	$a_{14}S^2t^4$	$a_{19}s^2t^3$	$a_{24}s^2t^2$	$a_{28}s^2t$	$a_{3l}S^2$		
	+ +	+	+	+	+			
۰. ۲	$a_{6}s^{3}t^{4}$	$a_{13}s^3t^3$	a1853t	$a_{23}S^3t$	a_{27S}^{3}			
+ -	+ +	+	+	+				
a _{3S} ⁴ t ⁵ 4.4	$a_5S^{4}t^{3}$	$a_{12}s^4t^2$	$a_{17}s^4t$	a_{22S}^{4}				
+ + -	+ +	+	+					
$a_1 s^5 t^5$ $a_2 s^5 t^4$	$a_{4S} t$ $a_{7S} t^2$	$a_{IIS}^{2}t$	ales					
II								
H_{00}								

TABLO 1.b 8 Denkleminin Açık Hali

					+	+	+	+	+	
And an other strength of					0	0	0	0	0	0
				+	+	+	+	+	+	
				$a_{15}t^5$	$a_{20}t^4$	$a_{25}t^3$	$a_{29}t^2$	$a_{32}t$	a_{34}	
			+	+	+	+	+	+		
			$2a_{10}st^{5}$	$2a_{14}St^4$	$2a_{19}st^{3}$	$2a_{24}st^2$	$2a_{28}st$	$2a_{3l}s$		
		+	+	+	+	+	+			
		$3a_6s^2t^5$	$3a_9s^2t^4$	$3a_{13}s^2t^3$	$3a_{18}s^2t^2$	$3a_{23}s^{2}t$	$3a_{27}s^2$			
	+	+	+	+	+	+				and a second second
	$4a_3s^3t^5$	$4a_5s^3t^4$	$4a_{8S}{}^{3}t^{3}$	$4a_{12}s^3t^2$	$4a_{17}s^3t$	$4a_{22}S^{3}$				
+	+	+	+	+	+					
$5a_1s^4t^5$	$5a_{2}S^{4}t^{4}$	$5a_{4S}^{4}t^{3}$	$5a_{7}s^{4}t^{2}$	$5a_{11}s^4t$	$5a_{16}s^{4}$					
and the second se										
H_{10}										

TABLO 1.c 9 Denkleminin Açık Hali

	1			-				-		-	-
						+	+	+	+	+	
						Sant ⁴	$4a_{26}t^3$	$3a_{30}t^2$	$2a_{33}t$	a_{35}	0
					+	+	+	+	+	+	
					5a, est ⁴	$4a_{nst}^{3}$	3a2558t2	2a295t	Cl 32S	0	
				+	+	+	+	+	+		
	-			$5a_{1\alpha}s^2t^4$	$4a_{14}S^2t^3$	3a195272	$2a_{24}S^2t$	a_{28S}^{2}	0		
			+	+	+	+	+	+			
			$5a_{6S}^{3}t^{4}$	$4a_{9S}^{3}t^{3}$	$3a_{13}s^3t^2$	$2a_{18}s^{3}t$	$a_{23}S^3$	0			
		+	+	+	+	+	+				
		$5a_3S^4t^4$	$4a_5S^4t^3$	$3a_{8S}^{4}t^{2}$	$2a_{12}S^4t$	a_{I7S}^4	0				
	+	+	+	+	+	+					
	$5a_1s^5t^4$	$4a_2s^5t^3$	$3a_{4S}^{5}t^{2}$	$2a_{7}s^{5}t$	a_{IIS}	0					
	11										
And the second se	H_{01}										
-				and the second se	-			and in case of the local division of the loc			

TABLO 1.d 10 Denkleminin Açık Hali

					+	+	+	+	+	
					0	0	0	0	0	0
				+	+	+	+	+	+	
				$5a_{15}t^4$	$4a_{20}t^3$	$3a_{25}t^2$	$2a_{29t}$	a_{32}	0	
			+	+	+	+	+	+		
			$I0a_{10}st^4$	$8a_{14}st^3$	$6a_{19}st^{2}$	$4a_{24}st$	$2a_{28S}$	0		
		+	+	+	+	+	+			
		$15a_{6}s^{2}t^{4}$	$I2a_{9}s^2t^3$	$9a_{13}s^2t^2$	$6a_{18}s^2t$	3a2352	0			
	+	+	+	+	+	+				
	$20a_{3S}^{3}t^{4}$	$16a_5s^3t^3$	$12a_{8S}{}^{3}t^{2}$	$8a_{12}s^3t$	$4a_{17S}$	0				
+	+	+	+	+	+					
$25a_{1S}^{4}t^{4}$	$20a_{2}S^{4}t^{3}$	$I5a_{4}S^{4}f^{2}$	$10a_{7}S^{4}t$	$5a_{11}s^4$	0					
Ш										
H_{11}										

TABLO 2.a Elde Edilen Hermitine İnterpolasyon Fonksiyonları

	1357		
$H_{00_i} = \left[\frac{1}{4}\left(-3s_is^5 - 2s^4 + 5s_is^3 + 4s^2\right)\right] \left[\frac{1}{4}\left(-3t_it^5 - 2t^4 + 5t_it^3 + 4t^2\right)\right]$	1, 0, 0, 0, 1 = 1	$S_i = -1, +1, +1, -1$	$t_i = -1, -1, +1, +1$
$H_{00i} = \left(s^4 - 2s^2 + 1\right) \left[\frac{1}{4}\left(-3t_it^5 - 2t^4 + 5t_it^3 + 4t^2\right)\right]$	<i>i</i> = 2,6		$t_i = -1, +1$
$H_{00_i} = \left[\frac{1}{4} \left(-3s_i s^5 - 2s^4 + 5s_i s^3 + 4s^2\right)\right] \left(t^4 - 2t^2 + 1\right)$	<i>i</i> = 4,8	$S_i = +1, -1$	
$H_{00_i} = \left(s^4 - 2s^2 + 1\right)\left(t^4 - 2t^2 + 1\right)$	<i>i</i> = 9		
$H_{10_i} = \left[\frac{1}{4} \left(s^5 + s_i s^4 - s^3 - s_i s^2\right)\right] \left[\frac{1}{4} \left(-3t_i t^5 - 2t^4 + 5t_i t^3 + 4t^2\right)\right]$	i = 1, 3, 5, 7	$s_i = -1, +1, +1, -1$	$t_i = -1, -1, +1, +1$
$H_{10_i} = \left(s^5 - 2s^3 + s\right) \left[\frac{1}{4} \left(-3t_i t^5 - 2t^4 + 5t_i t^3 + 4t^2\right)\right]$	<i>i</i> = 2,6	2) (7	$t_i = -1, +1$
$H_{10_i} = \left[\frac{1}{4} \left(s^5 + s_i s^4 - s^3 - s_i s^2\right)\right] \left(t^4 - 2t^2 + 1\right)$	<i>i</i> = 4,8	$s_i = +1, -1$	
$H_{10_i} = \left(s^5 - 2s^3 + s\right)\left(t^4 - 2t^2 + 1\right)$	<i>i</i> = 9		

TABLO 2.b Elde Edilen Hermitine Interpolasyon Fonksiyonları

$H_{01_i} = \left[\frac{1}{4} \left(-3s_i s^5 - 2s^4 + 5s_i s^3 + 4s^2\right)\right] \left[\frac{1}{4} \left(t^5 + t_i t^4 - t^3 - t_i t^2\right)\right]$	<i>i</i> = 1,3,5,7	$S_i = -1, +1, +1, -1$	$t_i = -1, -1, +1, +1$
$H_{01_i} = \left(s^4 - 2s^2 + 1\right) \left[\frac{1}{4}\left(t^5 + t_it^4 - t^3 - t_it^2\right)\right]$	<i>i</i> = 2,6		$t_i = -1, +1$
$H_{01_i} = \left[\frac{1}{4} \left(-3s_i s^5 - 2s^4 + 5s_i s^3 + 4s^2\right)\right] \left(t^5 - 2t^3 + t\right)$	<i>i</i> = 4,8	$s_i = +1, -1$	
$H_{01_t} = \left(s^4 - 2s^2 + 1\right)\left(t^5 - 2t^3 + t\right)$	<i>i</i> = 9		
$H_{11_i} = \left[\frac{1}{4}\left(s^5 + s_is^4 - s^3 - s_is^2\right)\right] \left[\frac{1}{4}\left(t^5 + t_it^4 - t^3 - t_it^2\right)\right]$	i = 1, 3, 5, 7	$S_i = -1, +1, +1, -1$	$t_i = -1, -1, +1, +1$
$H_{11_i} = \left[\frac{1}{2}\left(s^5 - 2s^3 + s\right)\right] \left[\frac{1}{2}\left(t^5 + t_it^4 - t^3 - t_it^2\right)\right]$	<i>i</i> = 2,6		$t_i = -1, +1$
$H_{11_i} = \left[\frac{1}{2}\left(s^5 + s_i s^4 - s^3 - s_i s^2\right)\right] \left[\frac{1}{2}\left(t^5 - 2t^3 + t\right)\right]$	<i>i</i> = 4,8	$s_i = +1, -1$	
$H_{11_i} = \left(s^5 - 2s^3 + s\right)\left(t^5 - 2t^3 + t\right)$	<i>i</i> = 9		
	and the second se		

192

5

grafik

grafik.

grafik

5- UYGULAMA

Merkezil denklemi

$$x^2 + y^2 + z^2 = 1$$

olan küre yüzeyinin z > 0 olmak üzere $x = \pm 0.5$ $y = \pm 0.5$ düzlemleri arasında kalan kısmı **Şekil 3** de görülmektedir. Bu küre yüzeyi parçası üzerindeki noktaların her *s* ve *t* değerine karşılık gelen *x*, *y* ve *z* değerleri ayrı ayrı analitik yoldan, Lagrange ve Hermit fonksiyonlarıyla elde edilmiş ve bu değerler **Tablo 3** de verilmiştir. Teorik değerlerden olan sapmalar **Tablo 4** de görülmektedir.

Şekil 3 Küre Yüzey Parçası

SONUÇ

İnce plak ve kabuk problemlerinde Mindlin tipi elemanlarının kullanılması mesh-locking denen hadiseye sebep olmaktadır(R. D. Cook., at all,1989). Yani plak inceldikçe, Kirchoff tipi elemanların kullanılması bu tür analizler için daha uygundur. Kirchhoff tipi elemanlarda interpolasyon fonksiyonlarının içinde asıl fonksiyonların türevlerinin de görülmesi gerekir. Bu ise Hermit interpolasyon fonksiyonlarının kullanılmasını gerektirir.

Tablo 4 den görüldüğü gibi Hermit tipi interpolasyon fonksiyonlarının, Lagrange tipi interpolasyon fonksiyonlarına göre seçilen teorik modele daha az uygun oldukları anlaşılmaktadır. Ancak ince tip plaklar ve kabukların sonlu elemanlar metodu ile çözümü için, interpolasyon fonksiyonlarının içinde fonksiyonların türevlerinin de görülmesi ihtiyacı sebebiyle Hermit interpolasyon fonksiyonlarının kullanılması gerekmektedir.

Ayrıca Şekil 2 de görülen grafik profillerinden anlaşılmaktadır ki H_{11_i} nin interpolasyon üzerine katkısı diğer fonksiyonlar yanında ihmal edilebilir seviyededir. Bu sebeple (1) denklemini

$$w = \left[H_{00_i}\right] \left\{w_i\right\} + \left[H_{10_i}\right] \left\{\frac{\partial w_i}{\partial s}\right\} + \left[H_{01_i}\right] \left\{\frac{\partial w_i}{\partial t}\right\}$$

şeklinde yazmak yaklaşık sonuç üzerinde etkili bir değişiklik göstermeyecektir.

0.816 0.866 0.808 0.840 0.859 0.859 0.808 0.763 0.858 0.889 0.858 0.816 0.763 0.840 0.763 0.889 0.808 0.858 0.945 0.898 0.945 0.70 0.914 0.898 0.70 0.763 0.951 06.0 06.0 0.92 0.92 HERMIT (Z)H 0.860 0.764 0.809 0.866 0.860 0.809 0.764 0.818 0.908 0.914 0.860 0.860 0.929 0.707 0.841 0.764 0.860 0.890 0.908 0.818 0.809 0.946 0.952 0.890 0.764 0.946 LAGRANGE 0.841 0.707 0.900 0.929 0.900 L(Z) 0.866 0.825 0.812 0.843 0.860 0.860 0.843 0.812 0.866 0.949 0.707 0.768 0.768 0.768 0.866 0.894 0.894 0.866 0.906 0.707 0.911 0.825 0.768 0.812 0.906 0.949 0.917 0.911 0.933 0.954 0.933 TEORIK T(Z) 0.000 -0.106 0.106 -0.106 -0.500 -0.409 -0.313 0.409 0.106 0.106 -0.211 0.211 0.313 0.500 -0.500 -0.409 -0.312 0.000 0.211 0.312 0.409 0.500 -0.500 -0.408 -0.106 -0.210 0.000 0.210 0.311 -0.211 -0.311 HERMIT (X)H 0.200 -0.500 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.300 0.400 -0.400 0.500 -0.500 -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 -0.500 0.100 0.200 0.500 -0.400 -0.300 -0.200 -0.100 0.000 0.300 LAGRANGE L (Y) 0.200 -0.500 -0.400-0.300 0.400 0.500 0.300 0.500 0.300 -0.200 -0.100 0.000 0.100 0.300 -0.500 -0.400 -0.200 -0.300 -0.100 0.000 0.100 0.200 0.400 -0.500 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.200 TEORIK T (Y) 0.500 0.500 0.500 0.500 0.409 0.500 0.500 0.500 0.500 0.500 0.500 0.409 0.408 0.408 0.313 0.312 0.310 0.309 0.500 0.407 0.407 0.408 0.408 0.409 0.409 0.311 0.309 0.309 0.310 0.311 0.407 HERMIT (X) H 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.400 0.400 0.400 0.400 0.400 0.300 0.300 0.400 0.400 0.400 0.400 0.300 0.300 LAGRANGE 0.400 0.300 0.300 0.300 0.300 0.400 0.300 L (X) 0.500 0.500 0.500 0.400 0.500 0.500 0.500 0.500 0.500 0.400 0.500 0.500 0.500 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 TEORIK T (X) -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000-1.000 -0.800 -0.800 -0.800 -0.800 -0.800 -0.800-0.800 -0.8.00 -0.800 -0.800 -0.800 -0.600 -0.600 -0.600 -0.600 -0.600 -0.600 -0.600 -0.600 -0.600 ы 0.200 -1.000 -0.600 -0.400 -0.200 0.600 -0.800 0.00.0 0.400 0.800 1.000 -1.000 -0.800 -0.600-0.400+0.200 0.000 0.200 0.400 0.600 0.600 0.800 1.000 -1.000 -0.800 -0.600 0.400 -0.400 -0.200 0.000 0.200 S

TABLO 3 Lagrange, ve Hermit fonksiyonlarıyla elde edilmiş değerler.

-
devam
\sim
3
0
B
-

t	I	TEORIK	LAGRANGE	HERMIT	TEORİK	LAGRANGE	HERMIT	TEORIK	LAGRANGE	HERMIT
a 000		T (X)	L (X)	H (X)	Т (Х)	T (X)	H(Y)	T(Z)	L(Z)	H(Z)
0.800	-0.600	0.300	0.300	0.312	0.400	0.400	0.408	0.866	0.860	0.858
1.000	-0.600	0.300	0.300	0.313	0.500	0.500	0.500	0.812	0.809	0 808
- T. UUU	-0.400	0.200	0.200	0.211	-0.500	-0.500	-0.500	0.843	0.841	0.840
-0.800	-0.400	0.200	0.200	0.211	-0.400	-0.400	-0.408	0.894	0.890	010.0
-0.600	-0.400	0.200	0.200	0.210	-0.300	-0.300	-0.310	0.933	0.929	0.927
-0.400	-0.400	0.200	0.200	0.209	-0.200	-0.200	-0.209	0.959	0.956	- 10 0.0
-0.200	-0.400	0.200	0.200	0.208	-0.100	-0.100	-0.105	0.975	0.973	0.070
0.000	-0.400	0.200	0.200	0.208	0.000	0.000	0.000	0.980	0 979	0.078
0.200	-0.400	0.200	0.200	0.208	0.100	0.100	0.105	0.975	0.973	0.010
0.400	-0.400	0.200	0.200	0.209	0.200	0.200	0.209	0.959	0.956	0.01.0 0.05.0
0.600	-0.400	0.200	0.200	0.210	0.300	0.300	0.310	0.933	0.929	0.927
0.800	-0.400	0.200	0.200	0.211	0.400	0.400	0.408	0.894	0.890	0.889
1.000	-0.400	0.200	0.200	0.211	0.500	0.500	0.500	0.843	0.841	0.840
000.1-	-0.200	0.100	0.100	0.106	-0.500	-0.500	-0.500	0.860	0.860	0.950
-0.800	-0.200	0.100	0.100	0.106	-0.400	-0.400	-0.407	0.911	0.908	706.0
-0.600	-0.200	0.100	0.100	0.106	-0.300	-0.300	-0.309	0.949	0.946	0.945
-0.400	-0.200	0.100	0.100	0.105	-0.200	-0.200	-0.208	0.975	0.973	0 972
-0.200	-0.200	0.100	0.100	0.105	-0.100	-0.100	-0.105	0.990	0 980	0 080
0.000	-0.200	0.100	0.100	0.105	0.000	0.000	0.000	0.995	1000 U	200°0
0.200	-0.200	0.100	0.100	0.105	0.100	0.100	0.105	066.0	0.980	080
0.400	-0.200	0.100	0.100	0.105	0.200	0.200	0.208	0.975	0.973	0.972
0.600	-0.200	0.100	0.100	0.106	0.300	0.300	0.309	0.949	0.946	0.945
0.800	-0.200	0.100	0.100	0.106	0.400	0.400	0.407	0.911	0.908	0.907
000 F	-0.200	0.100	0.100	0.106	0.500	0.500	0.500	0.860	0.860	0.859
000 U	0.000	0.000	0.000	0.000	-0.500	-0.500	-0.500	0.866	0.866	0.866
-0.800	0.000	0.000	0.000	0.000	-0.400	-0.400	-0.407	0.917	0.914	0.914
-0.600	0.000	0.000	0.000	0.000	-0.300	-0.300	-0.309	0.954	0.952	0.951
-0.400	0.000	0.000	0.000	0.000	-0.200	-0.200	-0.208	0.980	0.979	0.978
002.0-	0.000	0.000	0.000	0.000	-0.100	-0.100	-0.105	0.995	0.995	0.995
	0.00	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	1.000
0.2.0	0.000	0.000	0.000	0.000	0.100	0.100	0.105	0.995	0.995	0.995

		TEORIK	LAGRANGE	HERMIT	TEORIK	T.AGDANGP	UPDWTM			
S	FI	T (X)	L (X)	H (Y)	14/1		TTENATO	YTYOF.	LAGRANGE	HERMIT
0.400	0.000	000 0			(1) 1	(X) T	H(Y)	T(Z)	L(Z)	H(Z)
0.600				0.00	0.200	0.200	0.208	0.980	0.979	0.978
		0000	0.000	0.000	0.300	0.300	0.309	0.954	0.952	0.951
000		0.000	0.000	0.000	0.400	0.400	0.407	0.917	0.914	0.914
	0.000	0.000	0.000	0.000	0.500	0.500	0.500	0.866	0.866	0.866
	0.200	007.0-	-0.100	-0.106	-0.500	-0.500	-0.500	0.860	0.860	0.859
	0.200	-0.100	-0.100	-0.106	-0.400	-0.400	-0.407	0.911	0.908	0.907
000.0-	0.200	-0.100	-0.100	-0.106	-0.300	-0.300	-0.309	0.949	0 946	0 000
-0.400	0.200	-0.100	-0.100	-0.105	-0.200	-0.200	-0.208	0.975	0.973	0.070
-0.200	0.200	-0.100	-0.100	-0.105	-0.100	-0.100	-0.105	066.0	0.989	0.00
U. UUU	0.200	-0.100	-0.100	-0.105	0.000	0.000	0.000	0.995	1000 C	1000
0.200	0.200	-0.100	-0.100	-0.105	0.100	0.100	0.105	066.0	0.989	080
0.400	0.200	-0.100	-0.100	-0.105	0.200	0.200	0.208	0.975	0.973	0 070
0.600	0.200	-0.100	-0.100	-0.106	0.300	0.300	0.309	0.949	0 946	310.0
0.800	0.200	-0.100	-0.100	-0.106	0.400	0.400	0.407	0.911	0.908	200 0
1, 000	0.200	-0.100	-0.100	-0.106	0.500	0.500	0.500	0.860	0.860	0.850
000.1-	0.400	-0.200	-0.200	-0.211	-0.500	-0.500	-0.500	0 843	0 841	
-0.800	0.400	-0.200	-0.200	-0.211	-0.400	-0.400	-0.408	0.894		
-0.600	0.400	-0.200	-0.200	-0.210	-0.300	-0.300	-0 310	- CCO C		0.00
-0.400	0.400	-0.200	-0.200	-0.209	-0.200			0.00	0.929	0.92/
-0.200	0.400	-0.200	000 0-	0000	007-00	-0.200	-0.209	0.959	0.956	0.955
0.000	0.400	0000-	00000	0000	001.01	-0.100	-0.105	0.975	0.973	0.972
0.200	007.0	0000	007.0	807.0-	0.000	0.000	0.000	0.980	0.979	0.978
0.400	0.400	00000-	002.0-	807.0-	0.100	0.100	0.105	0.975	0.973	0.972
0.600	001.0	00000	007.01	-0.209	0.200	0.200	0.209	0.959	0.956	0.955
		007.0	002.0-	-0.210	0.300	0.300	0.310	0.933	0.929	0.927
1 000	004.0		002.0-	112.0-	0.400	0.400	0.408	0.894	0.890	0.889
-1.000		007.0	002.0-	112.0-	0.500	0.500	0.500	0.843	0.841	0.840
		0.000	-0.300	-0.313	-0.500	-0.500	-0.500	0.812	0.809	0.808
	0.000	-0.300	-0.300	-0.312	-0.400	-0.400	-0.408	0.866	0.860	0.858
		-0.300	-0.300	-0.311	-0.300	-0.300	-0.311	0.906	0.900	0.898
	0.000	-0.300	-0.300	-0.310	-0.200	-0.200	-0.210	0.933	0.929	0.927
0.4.0	0.000	-0.300	-0.300	-0.309	-0.100	-0.100	-0.106	0.949	0.946	0.945

TABLO 3 (devam)

		TEORIK	LAGRANGE	HERMIT	TEORIK	LAGRANGE	HERMIT	TEORİK	I.AGRANGE.	нгрмтт
S	H	T (X)	T (X)	H (X)	T (Y)	L (Y)	H (Y)	T (2)	1.77	1 112/11
0.000	0.600	-0.300	-0.300	-0.309	0.000	0.000	0.000	0.954	0 95.2	0 051
0.200	0.600	-0.300	-0.300	-0.309	0.100	00100	0 106	10000	300.0	
0.400	0.600	-0.300	-0.300	-0.310	0000			0.00	0.940	0.40
0.600	0 600			0 - C	000	0.2.00	012.0	0.333	0.929	0.927
			-0.00	112.0-	0.300	0.300	0.311	0.906	0.900	0.898
0.000	0.000	-0.300	-0.300	-0.312	0.400	0.400	0.408	0.866	0.860	0.858
T. UUU	0.600	-0.300	-0.300	-0.313	0.500	0.500	0.500	0.812	0.809	0.808
-1.000	0.800	-0.400	-0.400	-0.409	-0.500	-0.500	-0.500	0.768	0.764	0 763
-0.800	0.800	-0.400	-0.400	-0.409	-0.400	-0.400	-0.409	0.825	0.818	0 816
-0.600	0.800	-0.400	-0.400	-0.408	-0.300	-0.300	-0.312	0.866	0.860	0 1 0 C
-0.400	0.800	-0.400	-0.400	-0.408	-0.200	-0.200	-0.211	0.894	00000	
-0.200	0.800	-0.400	-0.400	-0.407	-0.100	-0.100	-0.106	0.911	0.908	200.0
0.000	0.800	-0.400	-0.400	-0.407	0.000	0.000	0.000	0.917	0.914	0.914
0.200	0.800	-0.400	-0.400	-0.407	0.100	0.100	0.106	0.911	0.908	700 0
0.400	0.800	-0.400	-0.400	-0.408	0.200	0.200	0.211	0.894	0890	088 0
0.600	0.800	-0.400	-0.400	-0.408	0.300	0.300	0.312	0.866	0.00	
0.800	0.800	-0.400	-0.400	-0.409	0.400	0.400	0.409	0.825	0.000	0.000
1.000	0.800	-0.400	-0.400	-0.409	0.500	0.500	0.500	0.768	01010	010.0
-1.000	1.000	-0.500	-0.500	-0.500	-0.500	-0.500		202.0	FO - 0	0.00
-0.800	1.000	-0.500	-0.500	-0.500	-0.400	0000-0-	000	076 0	-00	10/.0
-0.600	1.000	-0.500	-0.500	-0.500	-0 300		00100	0.10	0.000	0./03
-0.400	1.000	-0.500	-0.500				010.01	718.0	0.809	0.808
-0 200	1 000				0.00	-0.2.00	TT7.0-	U.843	0.841	0.840
000			- 0.00	002.0-	-0.100	-0.100	-0.106	0.860	0.860	0.859
	000 T	-0.500	-0.500	-0.500	0.000	0.000	0.000	0.866	0.866	0.866
0.200	T.000	-0.500	-0.500	-0.500	0.100	0.100	0.106	0.860	0.860	0.859
0.400	1.000	-0.500	-0.500	-0.500	0.200	0.200	0.211	0.843	0.841	0 840
0.600	1.000	-0.500	-0.500	-0.500	0.300	0.300	0.313	. 0.812	0.809	0.808
0.800	1.000	-0.500	-0.500	-0.500	0.400	0.400	0.409	0.768	0.764	0.763
1.000	1.000	-0.500	-0.500	-0.500	0.500	0.500	0.500	0.707	202.0	202 0

TABLO 3 (devam)

değerleri
hesaplanmış
sapmaların
olan
değerlerden
Teorik
4
0
F
H
L
L .

NOLLAR MULTAN					And a second secon	a second a second		And the second s
HATA [*]		0.000	0.747	000.0	747 U			
TOPLAM CERRICK					1 - 1 - 2		0.334	U.44/
					0.000		0.332	
***		0.000	0.000	0.000				0.447
ORTALAMA		0.000	0.000	000 0				
ORTALAMA					000.0		0.003	0.004
STANDART HATA"***		000 0						
		000		0.000	0.000		0.002	0.002
						And a second secon		Particular and American Statements
*	And a second sec			and a second second second second second second second second second second second second second second second				
		IN JA /E					and a second sec	

		and the second s				
	$\sum T(x) - L(x) $	$\sum T(x) - H(x) $	$\sum T(y) - L(y) $	$\sum \left T(x) - H(x) ight $	$\sum T(z) - L(z) $	$\sum T(z) - H(z) $
	C[m/ 1 1/ 1]					
	$\sum \left[I(x) - L(x) \right]$	$\sum [T(x) - H(x)]$	$\sum \left[T(y) - L(y) \right]$	$\sum ig[T(x) - H(x) ig]$	$\sum [T(z) - L(z)]$	$\cdot \sum \left[T(z) - H(z) \right]$
**						
	$\sum \left[T(x) - L(x) \right]$	$\sum \left[T(x) - H(x) \right]$	$\sum \left[T(y) - L(y) \right]$	$\sum [T(y) - H(y)]$	$\sum \left[T(z) - L(z) \right]$	$\sum [T(z) - H(z)]$
444	и	и	и	n	<i>u</i>	1
	$\sum T[T(x) - L(x)]^2$	$\sum T(x) - H(x)$	$\sum T(y) - L(y)$	$\sum \left[T(y) - H(y) \right]$	$\sum \left[T(z) - I(z) \right]$	$\sum \left \nabla [T(z) - H(z)]^2 \right $
	n - 1	V n-1	N n-1			$\left[\left(\tau \right) \tau \right] \left[\left(\tau \right) \tau \right] \tau \right] $
		the second s			1-11	- 4

KAYNAKLAR

E. O. Frind 1977, "An İsoparametrik Hermitien Finite Element for the Solution of Field Problems" Int. J. Numer. Methods Eng., II pp. 945-962,

R. D. Cook., D. S. Malkus, M. E. Plesha, 1989, "Concept and Aplications of Finite Element Analysis", Third Edition Jhon Wiley and Sons. pp 100

R. D. Cook, 1994, "Finite Element Modelling for Stress Anayisis", Jhon Wiley and Sons. pp 171-173

G. F. Pinder, 1982, "Numerical Solution of Partial Differental Equations Science and Engineering", Jhon Wiley and Sons. pp 68