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ABSTRACT This paper introduces a novel six-dimensional (6D) chaotic dynamic system characterized by the absence
of equilibrium points and the presence of hidden attractors. The study investigates the properties of this innovative
system, including the computation of Lyapunov exponents and the Lyapunov dimension. Through comprehensive computer
modeling in Matlab-Simulink, phase portraits of numerous hidden attractors are obtained, providing insight into the system’s
complex dynamics. To validate the theoretical findings, electronic circuits for the 6D chaotic system were designed and
implemented using Multisim software. The circuit simulations exhibit behavior consistent with the Matlab-Simulink models,
confirming the reliability of the proposed system’s dynamics. The paper further explores the synchronization of two identical
6D hyperchaotic systems using active control techniques. Numerical analyses compare the systems behavior before and
after control implementation, demonstrating the effectiveness of the active control method in achieving synchronization.
Additionally, the active control approach is applied to chaotic masking and decoding of various signals, highlighting its
potential in secure communication applications. We presented a novel application of the proposed 6D system as a source
of control input signals for independent navigation of multiple mobile robots, and the paths of robots become unpredictable.
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We investigated the influence of some external factors on the navigation of a chaotic wheeled mobile robot.

robot

INTRODUCTION

In recent years, chaos theory has witnessed remarkable advance-
ments, driving its integration into a wide array of engineering
disciplines. Applications now span lasers (Mengue et al. 2024),
power systems (Hunaish et al. 2021), oscillators (Shvets and Sirenko
2019), neural and genetic networks (Lin et al. 2022; Kozlovska
et al. 2024), cryptographic systems (Shahna 2023), and memris-
tive systems (Zhou et al. 2024). Stochastic approaches to chaotic
systems are also widely studied (Contreras-Reyes 2021). The foun-
dation for this progress was laid by Lorenz’s seminal discovery
of a three-dimensional (3D) chaotic system (Lorenz 1963), which
spurred extensive exploration of other chaotic systems. A pivotal
milestone in this journey was the introduction of the first four-
dimensional hyperchaotic system by Rossler (Rossler 1976), which
ignited widespread scientific interest in hyperchaos. Hyperchaotic
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systems, a subclass of nonlinear dynamic systems, exhibit more in-
tricate behavior than conventional chaotic systems. Characterized
by the presence of multiple positive Lyapunov exponents, these
systems display richer and more complex dynamics, significantly
expanding the possibilities for studying and leveraging chaos in
higher-dimensional phase spaces (Sprott 2023).

Chaotic systems are usually classified into two types: self-
excited attractors, whose basins of attraction intersect with equilib-
rium points, and hidden attractors, whose basins do not intersect
any equilibrium point (Leonov et al. 2015). The discovery of hid-
den attractors in (Leonov et al. 2011) has significant advancements
in contemporary nonlinear science, opening new avenues for re-
search. A hallmark of many complex dynamical systems is the
phenomenon of multistability, where multiple attractors coexist
within the same system. This behavior allows a nonlinear dy-
namical system to exhibit two or more attractors simultaneously,
depending on the initial conditions. Recent findings suggest a
strong correlation between the multistability of a system and the
presence of hidden attractors. The intricate interplay between co-
existing attractors and multistability has garnered considerable
attention, with extensive investigations in the literature (Lai et al.
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2017; Bayani et al. 2019; Lai et al. 2019; Ma et al. 2021).

In recent years, there has been a growing interest in developing
hyperchaotic models in higher dimensions (Liu et al. 2019). The
challenge of constructing high-dimensional systems with multiple
positive Lyapunov exponents while minimizing the number of
terms and maximizing the Kaplan-Yorke dimension represents a
promising area for research. A critical consideration in this en-
deavor is adherence to the simplicity criteria proposed by Sprott
(Sprott 2023). Although systems with numerous terms can exhibit
highly intricate dynamics, prioritizing simpler systems often fa-
cilitates practical implementation. Such streamlined models have
demonstrated significant potential in applications including chaos
control, synchronization, encryption, and optimization. By strik-
ing a balance between complexity and simplicity, researchers can
unlock new possibilities for leveraging high-dimensional hyper-
chaotic systems across diverse domains.

Recent years have seen growing interest in the study of six-
dimensional (6D) nonlinear systems, which remain considerably
less explored than their lower-dimensional counterparts. Recent
reviews of 6D dynamical systems (Al-Azzawi and Al-Obeidi 2021;
Al-Obeidi and Al-Azzawi 2022; Michael Kopp and Andrii Kopp
2022; Al-Azzawi and Al-Obeidi 2023; Kopp et al. 2023) (see Table
1) with dissipative properties reveal that these systems typically
comprise 12 or more terms and often include at least two quadratic
nonlinear terms. Previous research (Kopp and Samuilik 2024)
presented a 6D dynamical system containing merely 11 terms, rep-
resenting the most parsimonious formulation documented among
existing 6D systems (according to references cited in (Kopp and
Samuilik 2024)). Expanding on this work, we propose a novel 6D
hyperchaotic system distinguished by its streamlined architecture
and minimal number of nonlinear components.

Table 1 Recent 6D dynamical systems reported in the literature

Reference Total  Nonlinear  tanh Nature

Al-Azzawi and Al-Obeidi (2021) 17 2 No Dissipative
Aziz and Al-Azzawi (2022) 13 3 No Dissipative
Al-Talib and Al-Azzawi (2022) 12 4 No Dissipative
Al-Obeidi and Al-Azzawi (2022) 17 3 No Dissipative
Michael Kopp and Andrii Kopp (2022) 17 2 No Dissipative
Al-Talib and Al-Azzawi (2023) 12 4 No Dissipative
Al-Azzawi and Al-Obeidi (2023) 17 3 No Dissipative
Kopp et al. (2023) 21 4 No Dissipative
Khattar et al. (2024) 12 4 No Dissipative
Kopp and Samuilik (2024) 11 4 No Dissipative
This work 13 2 1 Dissipative

Significantly, the existing literature lacks any 6D system incorpo-
rating a single conventional nonlinearity based on the hyperbolic
tangent function. This function, which has been widely employed
in chaotic systems including Hopfield neural networks (HNNs)
(Lin et al. 2023; Chen et al. 2023), presents considerable potential
for advancing chaos theory. The integration of this nonlinearity
into our proposed system highlights its capacity to enhance un-
derstanding of high-dimensional chaotic dynamics and extend the
range of practical applications.
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This manuscript is organized into the following sections. The
Introduction provides an overview of the current state of research
on high-dimensional chaotic systems and highlights the motiva-
tions behind this study. In Section 2, we present the derivation of
a novel 6D hyperchaotic dynamical system using state feedback
control. Section 3 explores the dynamic characteristics of the pro-
posed 6D nonlinear system. We analyze fixed points, compute the
Lyapunov spectrum, and determine the Lyapunov dimension. A
computational model of the system is implemented in the Matlab-
Simulink environment to validate its dynamics. In Section 4, we
design an electronic circuit for the hyperchaotic chaos generator
using the Multisim environment. The circuit’s operation is sim-
ulated, and the results are compared with those obtained from
Matlab-Simulink. Section 5 extends the analysis to the numer-
ical synchronization of two identical 6D hyperchaotic systems
using the active control method. Section 6 also discusses practical
applications of synchronized chaotic signals in communication,
emphasizing chaotic signal masking techniques. In Section 7, we
simulate the navigation of a wheeled robot, where control inputs
are derived from the system’s dynamics. The Conclusions section
concludes by summarizing the key findings and implications of
this study.

Figure 1 Two-wing butterfly attractors of system (1) for a = 0.55
and initial conditions x1(0) = x2(0) = x3(0) = 1.

A MATHEMATICAL MODEL OF THE NEW PROPOSED 6D
DYNAMIC SYSTEM

Most multidimensional dynamic systems discussed in the litera-
ture are commonly derived by extending three-dimensional sys-
tems, which serve as the initial framework for observing chaotic
behavior. In this section, we introduce a method for constructing
a novel six-dimensional dynamical system based on a modified
Lorenz system (Elwakil et al. 2002), in which the signum function is
replaced with the hyperbolic tangent function, as described below:

dx

d—tl =a(—x1 +x7)

dx

th = 7x3tanhx1 (1)
dx

o =l

The tanh function is widely employed in chaotic systems research
(e.g., (Lin et al. 2022; Zhou et al. 2024)) due to its smooth, bounded
nature and straightforward circuit implementation. The chaotic
attractors of system (1) display a different topology compared to
those of the standard Lorenz system. Specifically, in system (1),
the chaotic attractors form phase portraits resembling two-winged
butterflies (see Figure 1). Following the methodology of Binouse et
al. (Binous and Zakia 2008), the Lyapunov exponents (LEs) were
calculated as:

LE; =0.11096, LE, ~0, LE3;= —0.67751.
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The presence of a positive Lyapunov exponent confirms that sys-
tem (1) exhibits chaotic behavior. The Kaplan-Yorke (or Lyapunov)
dimension is approximately Dgy ~ 2.188. By introducing a new
state variable,x4, and utilizing the linear feedback control method,
we construct a relatively simple four-dimensional (4D) dynamic
system with seven terms, described as follows:

ax
dt

dx
i —xstanh xq

ddt @)
X3

e lxi[ —1
dX4
dt
The system (2) demonstrates that the system consists of seven
terms, including a nonlinear term involving the hyperbolic tan-
gent (x3tanh x7), a term with the absolute value function (|x1]),
a constant term (= 1), and four linear terms associated with the
state variables x1, x2, x4, interconnected through the positive pa-
rameters a and b. For parameter values a = 0.62 and b = 0.55,
with initial conditions x1(0) = x,(0) = x3(0) = x4(0) = 1, the
Lyapunov exponents are calculated as:

=a(—x1+x2) + x4

= —bx1

LE; =0.1385, LE; = 0.0201, LEs = 0.0076 ~ 0, LE; = —0.7864.

This confirms that system (2) exhibits hyperchaotic behavior, as
indicated by the presence of two positive Lyapunov exponents.
The Kaplan-Yorke (Lyapunov) dimension is approximately Dgy ~
3.212.

To develop a six-dimensional (6D) hyperchaotic model from
equation (2), the system’s dimensionality must be increased. By
applying state feedback control, linear control terms can be intro-
duced for the new state variables x5 and x¢, in accordance with
the equations provided in our paper (Michael Kopp and Andrii
Kopp 2022), as follows:

d.X5 - dx6

W = —X5 +Cx1 +dX6, W
where ¢, d, ¢, f are constant defined parameters. By coupling equa-
tions (2) and (3), we obtain a new 6D system, which is expressed
as follows:

= —Xg —exy — fuxs, 3)

dx1
dt
de
dt
dX3
dt
dX4
dt
dX5
dt
dx6
dt
The system (4) reveals that the system comprises thirteen terms: a
nonlinear term involving the hyperbolic tangent (x3 tanh x1), an
absolute value term (|x1]), a constant term (= 1), and ten linear
terms related to the state variables x1, x5, x4, X5, X¢.

=a(—x1 +x2) + x4
= —xgtanh xq
=[r|-1

= —bx1

—X5 + cx1 + dxg

= —Xg —exy — fXx5
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Figure 2 Lyapunov exponents for system (4).

DYNAMICAL ANALYSIS AND MATLAB-SIMULINK MODEL

It is straightforward to verify that system (4) exhibits symmetry
about the x3-axis and remains invariant under the transformation
(21, x2, 3, X4, X5, %) — (—x1, —X2, X3, —X4, —X5, —Xg). The dissi-
pative nature of system (4) is also evident, which supports the
formation of attracting sets, commonly referred to as attractors.
The critical points of the system (4) are determined by solving the

I

X, e X, o /
/

i o
0 05 1.0 5 2. 0.0 03 0 15 20
a a

Figure 3 Bifurcation diagrams for x; and x3 components of sys-
tem (4).

system of equations:

a(—=xX1+x%)+x=0
—X3tanhx; =0

x| -1=0

—bx1 =0
—X5+cX1+dxXg =0
—Xg—eXy — fX5=0

©)

We solve the equations (5) under the assumption that a, b, c,d, e, f
are non-zero parameters. This leads to X; = 0 from the fourth
equation. Substituting this value into the third equation results
in the contradictory expression —1 = 0, which indicates that no
equilibrium points exist for the system. As a result, all attractors
generated by system (4) are hidden, making standard methods,
such as the Shil'nikov theorem, unsuitable for explaining its chaotic
dynamics (Silva 1993).

In this study, we show that system (4) exhibits hyperchaotic
behavior when the system parameters are chosen as follows:

a=083,b=085c=821,d=2,e=2465f =01, (6)
and the initial conditions (ICs)

x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = x(0) = 1.~ ()
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The Lyapunov exponents of the new system (4) are computed
numerically for the parameter values (6) and the initial conditions
(7), yielding the following results:

LE; = 0.1508, LE, = 0.0170, LE3 = 0.0029 ~ 0, LE4 = —0.9413,

LEs = —1.0324, LEg = —1.0270. 8)

With two positive Lyapunov exponents, LE; and LE;, system (4)
is confirmed to exhibit hyperchaotic behavior. Furthermore, the
negative sum of the Lyapunov exponents, Z 1 LE; = —2.83 <0,
further supports that the hyperchaotic system (4) is dissipative.
The Kaplan-Yorke dimension of the proposed hyperchaotic system
(4) is calculated as explained in (Frederickson et al. 1983):

1 < 0.1707
—F+—— VY LE; =3+ ——* ~ 31813, 9
Y=ot |LEg 11| 1; 09413 ©)

where ¢ is determined from the conditions

4 3
) LE; >0 = ) LE; =0.1707. (10)
i=1 i=1

Here ¢ is the number of first non-negative exponents Lyapunov
in the spectrum. The Kaplan-Yorke fractional dimension offers an
estimate of the fractal dimension of a strange attractor in a dynami-
cal system. The accuracy of the calculated Lyapunov exponents for
the hyperchaotic system (4) with parameter a = 0.83 is validated
by the fulfillment of the following condition (Singh and Roy 2016):

i —i (dx’) = —283. (11)

Figure 2 depicts the dynamics of the Lyapunov exponents, as
described in expression ().

To investigate parameter-dependent dynamics, we constructed
bifurcation diagrams by varying parameter a € [0, 2] while keeping
other parameters fixed at b = 0.85,c = 8.21,d =2,e = 24.65, f =
0.1. System (4) was numerically integrated using Mathematica
with initial conditions (7). Figure 3 shows bifurcation diagrams
plotting the x; and x3 components versus parameter a. The di-
agrams reveal two symmetric branches of attractors — a lower
(left) and an upper (right) branch — that exhibit mirror symmetry
with respect to each other. As a increases, both branches undergo
period-doubling cascades at identical parameter values, transi-
tioning from periodic oscillations through quasi-periodic states
toward chaotic regimes. This symmetry and synchronized bifur-
cation structure demonstrate the coexistence of dual attractors
throughout the parameter range.

It is also valuable to analyze the time series data for the new
6D dynamic system (4) with parameter values (6) and initial con-
ditions (7). In dynamic systems, time series data illustrates how
the system evolves over time. By examining the time series, we
can observe the behavior of the state variables x; (i = 1,2,3,4,5,6)
over time, as shown in Figure 4. The random and complex depen-
dence of the variables x; on time ¢ is clearly evident. As depicted
in Figure 4, the dynamic variables x;, x4, x5, X¢ exceed the power
supply limits of the operational amplifiers. To resolve this, the
variables in the dynamic system (4) are rescaled as x; = 20X>,
x4 = 20Xy, x5 = 1000X5, and xg = 500X, while keeping x; = X3
and x3 = X3 unchanged. This transformation yields the following
rescaled hyperchaotic system (4):
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Figure 4 Temporal diagrams for variables xq, x3, X3, X4, X5, X¢.
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Figure 5 Diagram of the Matlab-Simulink model. In the dia-
gram, the variables X, Y, Z, U, V, W correspond to the variables
X1, Xy, X3, X4, X5, X¢ of system (12).

X

Ttl = 0.83(— X1 4 20X,) + 20X,

"% — _0.05Xstanh X,

dx

T; =X/ -1

@ (12)
4

224 _00425%

o = —0.0425,

% = — X5 +0.00821X; + Xg

dx,

T: = —Xs —0.986X, — 0.2X5

For this system, the initial conditions (7) are also transformed as
follows:

X1(0) =1, X(0) = 0.05, X3(0) =1, X,4(0) = 0.05,
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X5(0) = 0.001, X¢(0) = 0.002. (13)

Systems (4) and (12) are equivalent, as the linear transformation
merely rescales the variables without affecting the underlying
physical properties or dynamics of the nonlinear system. The
chaotic attractors of the system of equations (12) were obtained
through numerical simulations conducted in MATLAB-Simulink.
For this purpose, a MATLAB-Simulink model of the chaotic oscil-
lation generator corresponding to system (12) was utilized. The
model consists of interconnected blocks for signal amplification,
summation, subtraction, multiplication, integration.

The gain blocks encode the fixed parameter values of system
(12). The MATLAB-Simulink model diagram for the 6D hyper-
chaotic system (12) is presented in Figure 5. Numerical simula-
tions of this model reveal the solutions of the transformed equa-
tions (12) with initial conditions (), illustrated as phase portraits
of hidden attractors in the X1 X3, X2X3, Xl X2, X1 X4, X2X5, X3X6
planes, as shown in Figure 6. Notably, the range of the dynamic
variables X3, Xy, X5, X¢ has significantly decreased compared to
those shown in Figure 4. This reduction makes it feasible to im-
plement electronic circuits using operational amplifiers, which are
constrained to the standard voltage range of —15V to +15V.

S b b o w s

Figure 6 Hidden attractors of the new 6D rescaled system (12) in
different planes: a) X1 X3, b) X2 X3, c) X1Xp, d)X1Xy, €) X2 X5, f)
X3Xe-

ELECTRONIC CIRCUIT DESIGN

In this section, we implement the theoretical model of the new
hyperchaotic system (12) using electronic circuits. Utilizing Kirch-
hoff’s laws for electrical circuits, the electrical analog of the system
(12) can be expressed as follows:

cdth _ W W U
Yt T Ru R Rp
o @ __ Ustanhly
2 dat - R21K
c dus _ || v,
Miaas R L I L X

dt Rsi  Rap (14)
cduy
4 dat o R41
s U W Us
dt ~ Rs;  Rs; Ry
Qs _ U Uy us
°dt Rei Rex Res

where V}, is a stable DC voltage source to implement the con-
stant (=1) in a system (14), R;; are resistors (i,j) = 1,2,3,4,5,6,
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Figure 7 Circuit modules implemented based on a system of
equations (15): a) X1, b) X, ¢) X3, d) X4, e) X5, f) Xe.

vop — tanh
——

tanh(X,)

R,=R =R ,=R,=R,=10k R,=0.52k

R,=R,=1k
Q,=0,=MPS 2222 R,

100k

Figure 8 Circuit scheme for realization of hyperbolic tangent
function.

_ 10kQ

Figure 9 Schematic diagram for the implementation of function
absolute value | - |.

U;(7) are voltage values, C; are capacitors, and K is a scaling co-
efficient for the multiplier. We choose the normalized resistor
as Ry = 100kQ) and the normalized capacitor as Cy = 1InF (Yu
et al. 2008). Then the time constant is equal to tgp = RoCy =
10~%s. We rescale the state variables of the system (14) as fol-
lows U; = UpXy, Uy = UpXp, Uz = UpXs, Uy = UpXy, Us =
UpXs5, U = UpXg, K = LIOK/, and T = tyt. Next, we can write
equations (14) in a dimensionless form. After substituting Ry,
Ci=Cy=C3=C4=Cs=Cg =Cp,and K = 10 into (14) and
comparing the numerical values with the output voltages of the
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system (11), we get the resistor values as follows:

Xy 100k ~ 100k~ 100k <
I T A
X, 100k N
T 7R4'10X3tanhX1
dX; 100k - , 100k
il Sl A
~ ° ¥ (15)
Xy _ 100k
At~ Ry 1
dXs 100k ~ 100k ~ = 100k -
TR O R T R, e
dXe 100k o 100k o 100k o
6 R - — Xy - ——X
dat R “° R ™% Ry

where
Ry = 120.48kQ), R, = 6.024kQ), R3 = 5k(), R4 = 200kQ),

Rs = Rg = Rg = Ry = Ry; = 100kQ),
Ry = 2.353MQ, Ry = 12.18MQ), Ry = 101.42kQ), Ry3 = 500kQ).

Figure 7 illustrates the analog circuit modules corresponding to the
equations in system (15). These circuits are built using standard
components, including resistors (R), capacitors (C), diodes (D1
and D2, 1N4001), a multiplier (M1, AD633), operational amplifiers
(A1-A24, TLO84ACN), and a supply voltage of +15V.

Figure 10 Phase portraits of the new 6D hyperchaotic system as
generated in Multisim oscilloscopes: a) X1 X, b) XoX3,¢) X1 X,
d) X1Xy, e) X2 X5, f) X3X.

[ 10 20 30 40 50
Frequency (Hz)

Figure 11 Power spectrum of the chaotic signal X; for system
(12).
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A constant voltage source, V,, = 1V, is used to implement
a constant value of 1. The electronic circuit designed to realize
the hyperbolic tangent function is widely applied in studies in-
volving the dynamics of memristive Hopfield neural networks
(see, for example, (Deng et al. 2024)). As shown in Figure 8, the
equivalent circuit for the inverting hyperbolic tangent function
consists of two MPS2222 transistors (Q1 and Q2), two TLO84ACN
operational amplifiers, a current source (Iy = 1.1mA), and sev-
eral resistors. The operational amplifiers perform subtraction and
input inversion, while the transistors implement the exponential
function. The absolute value function (| - |) is realized through a
conventional electronic circuit that utilizes operational amplifiers
(Sedra and Smith 1998), as shown in Figure 9. The phase portraits
shown in Figure 10 reveal a remarkable similarity between the re-
sults from Matlab-Simulink simulations (Figure 6) and those from
Multisim simulations (Figure 10). To assess the frequency char-
acteristics relevant to the TL084 implementation, we performed
spectral analysis of the chaotic signals. The power spectrum of the
X1 (see Figure 11) component reveals that the dominant frequency
content lies in the range (0.01-10 Hz). The TL084 operational am-
plifier, with its 3 MHz gain-bandwidth product, slew rate of 13
V /us, and low input offset voltage, is well-suited for this relatively
low-frequency chaotic dynamics, providing a bandwidth margin
exceeding 10°. This ensures faithful reproduction of the attrac-
tor without frequency-dependent distortion. Transistor switching
speeds in the tanh implementation circuit are adequate for the sys-
tem’s time scales.For higher-frequency implementations or faster
chaotic dynamics, operational amplifiers with higher bandwidth
(e.g., AD844 or OPA699) can be used.
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Figure 12 Synchronization error dynamics for 6D hyperchaotic
drive and response systems.

CONTROL AND SYNCHRONIZATION TECHNIQUES FOR A
NOVEL HYPERCHAOTIC SYSTEM

The development of a new chaotic generator based on 6D nonlin-
ear dynamic equations requires an investigation into its synchro-
nization capabilities to ensure practical applicability. This section
presents the use of the active control method (Jung et al. 2019; Bhat
and Shikha 2019) for synchronizing two identical 6D hyperchaotic
systems. We select system (12) as the drive system, while the
response system is described as follows:

Y,
dd{l = 0.83(—Y; +20Y,) +20Y; + 111
dy.
{772 = —0.05Y3tanh Y; + 1>
dY.
7: =M|-1+us
dy. "
T: = —0.0425Y; + uy
dY;
675 = —Y5 +0.00821Y; + Ys + us
dY,
7: = —Ys —0.986Ys — 0.2Y5 + 16
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Here, Yi,Y5,Y3,Yy, Y5, Yy are the state variables, while
uy, U, Uz, Ug, Us, Ug, Uy represent the active controllers to be de-
fined later. The objective is to achieve synchronization between
the drive and response systems despite different initial conditions.
The state error for each variable is defined as e;(#) = Y;(t) — X;(¢),
wherei =1,2,3,4,5, 6. By subtracting the drive system (12) from
the response system (16), we derive the following error system:

é1 = 0.83(—eq 4 20e3) + 20e4 + 1y

é = —0.05(Ystanh Y1 — Xstanh X;) + up
é3 =] — X1 +us 17
éy, = —0.0425e1 + uy

é5 = —es + 0.00821e; + e + us5

66 = —eg — 0.986e4 — 0.2¢5 + ug

To achieve synchronization of the novel 6D hyperchaotic systems,

the next step is to define active control functions that ensure the
error system reaches asymptotic stability. The following active
control functions have been selected:

0.5 —X, 30 —
0.4 —Y, —y
0.3 2.0
0.2 1o
g 01 .
g 0 0
-0.1 2
02 -1.0
03 20
0.4
10 15 0 5 0 15 20 0 3 0 15 20
Time (sec) Time (sec) Time (sec)
3.0
—X, —X
L5 v 25 —,
2.0
L 1.0 s
] £
205 % 1.0
0.5
0 0
0 20 20 0 5 10 15

510 15 5 0 15 -
Time (sec) Time (sec) Time (sec)

Figure 13 Synchronization of state variables for 6D hyperchaotic
drive-response systems.

11 = —eg + 0.83(ey — 20ep) — 20e4

—ey + 0.05(Ystanh Y7 — X3tanh X7)
uz = —e3 — (V1] = [X1])

—ey + 0.0425¢4

us = —eg — 0.00821eq

ug = 0.986¢4 + 0.2e5

Us

(18)

Uy

Using the expressions for the active control functions, we derive
the dynamic equations of the error system, which are given as
follows:

61 = —e1
ér) = —ep
=0 (19)
é‘4 = —€4
é5 = —¢€5
é‘6 = —€¢

Thus, the application of the proposed active control functions (18)
reduced the error system to a linear form. For convenience, we
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Figure 14 Time evolution of synchronization errors with con-
troller activation and deactivation.

express (19) in matrix form as follows:

é1 -1 0 0 0 0 0 ||e&
é) 0 -1 0 0 0 0 ||leé&
G|_| 0 0 -1 0 0 0 |le 0
é4 0 0 0 -1 0 0 ||e
és 0 0 0 0 -1 0 ||e
é6 0 0 0 0 0 -1/||e

A straightforward verification confirms that all eigenvalues of
the state matrix (20) are negative. Therefore, based on the Routh-
Hurwitz criterion, the error system is stable, guaranteeing synchro-
nization between the drive system (12) and the response system
(16).

To numerically verify synchronization, we utilized the nonlin-
ear equations (12) and (16. The initial conditions for the drive
system (12) were set as follows:

X;(0) =1, X,(0) = 0.05, X3(0) =1, X4(0) = 0.05,

X5(0) = 0.001, X¢(0) = 0.002, (1)

and the response system was initialized with:
Y;(0) =15, Y5(0) = 1.55, Y3(0) = 2.5, Y4(0) = 1.55,

Y5(0) = 1.501, Y¢(0) = 1.502. (2)

The error curves shown in Figure 12 demonstrate the synchro-
nization process between the drive and response systems, with
synchronization errors ¢; exponentially converging to zero over
time. Moreover, Figure 13 illustrates the state behaviors of both
systems, revealing rapid trajectory convergence and confirming
the successful synchronization of the hyperchaotic systems.

To enhance the visualization of synchronization via the active
control method, we chose a relatively large delay time of t = 740
seconds. The active controllers were activated at t = 740 sec-
onds, and Figure 14 shows the time evolution of the error states.
The simulation results indicate that when the controllers were
off (t < 740s), the synchronization errors of the six states exhib-
ited chaotic behavior, indicating the absence of synchronization.
However, once the controllers were switched on (+ > 740s), all syn-
chronization error states rapidly converged to zero. These results
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Figure 15 a) Information signal M(t), b) transmitted chaotic
signal 5(t), c) recovered signal M (f), d) error in the information
signal M(t) — M (t).

confirm the effectiveness of the active controllers (18) in synchro-
nizing two identical 6D hyperchaotic systems, even when starting
from different initial conditions.

ACTIVE CONTROL METHOD FOR CHAOTIC MASKING AND
DECODING OF VARIOUS SIGNALS

In this section, we explore the practical application of the new 6D
hyperchaotic system in the field of secure communication (Yang
et al. 2023; Ozpolat and Gulten 2024). Achieving full synchro-
nization is crucial for the effectiveness of the proposed secure
communication technology. We employ an active control method
to synchronize two identical 6D hyperchaotic systems that start
with different initial conditions. The encrypted signal S(t) is math-
ematically represented as the sum of the information M(t) and the
chaotic signal X;. Following this, the transmission equation can
be readily derived from (11) in the form presented below:

% = 0.83(=S(t) +20X7) + 20X,

dﬁ == 70.05X3tanh Xl

dt

aX

= =Xl

X (23)
4 _ —

—p = 004255(t)

% = —Xs5 4 0.008215(t) 4 X¢

% = —Xg —0.986Xs — 0.2X5

For successful decryption of the signal, it is essential that the state
variable Y] at the receiving end is synchronized with X;. As a
result, the equation for the receiving part is derived from (16) and
takes the following form:

% = 083(—51(t) + ZOYZ) + 20Y4 + 1

% = —0.05Ystanh Y7 + up

ay:

7: =M[-1+us

dy. @4)
d—t“ = —0.042551 (t) + 114

% = —Y5 4+ 0.008215, (t) + Yg + us

dYe

ar = —Yy —0.986Y, — 0.2Y5 4 ug, S1 (t) = M(t) +Y
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Figure 16 Encryption and decryption of additional message
types under ideal transmission: (a)-(c) square-wave input; (d)-(f)
sawtooth input.

Secure communication under ideal transmission conditions
Clearly, the decrypted signal M; (t) is computed as follows:

My () = S(t) = Ya(8) = M(t) + X1 (t) = Vi (t) = M(t) —eq.

It is evident that as the error e; approaches zero, successful signal
recovery becomes achievable.

Figure 15 displays the results of a secure communication sim-
ulation involving a harmonic information signal represented by
M(t) = 3sin(0.2¢) (refer to Figure 15a). After the encryption pro-
cess, the information signal is transformed into a chaotic state, as
illustrated in Figure 15b. This transformation effectively conceals
the original signal and ensures secure transmission. In Figure 15¢,
the information signal is promptly restored to its original form
following decryption. Figure 15d illustrates the signal error wave-
form resulting from the reconstruction of the information signal,
which resembles the error observed in the active control synchro-
nization method discussed in the previous subsection. Notably,
the error decreases and approaches zero after approximately 5
seconds.

To comprehensively evaluate the encryption and decryption
performance of the proposed scheme, additional types of infor-
mation signals were considered besides the standard sinusoidal
waveform. Specifically, three representative test signals were ana-
lyzed:

a) square-wave (meander) signal, representing binary or digital
information streams;

b) sawtooth waveform, simulating linearly varying, non-stationary
data;

c) real data, including short textual or amplitude-modulated mes-
sages (e.g., "HELLO CHAQOS").

The results obtained for all signal types confirm the universality
of the proposed encryption-decryption mechanism. In each case,
the original message was efficiently transformed into a complex
chaotic waveform, exhibiting no visible resemblance to the original
signal in either the time or frequency domains. After decryption,
the recovered signals matched their original forms with negligible
distortion. Numerical evaluation of the recovery accuracy under
ideal transmission conditions showed that the mean absolute re-
construction error remained below 103, while the normalized cor-
relation coefficient between the transmitted and recovered signals
exceeded 0.999. These values confirm the nearly perfect synchro-
nization and decoding performance of the system in the absence
of noise.

Figures 16 and 17 present additional examples of encrypted and
decrypted signals obtained for different types of information mes-
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Figure 17 Encryption and decryption of additional message
types under ideal transmission conditions: (g)-(i) noisy sinu-
soidal waveform input; (j)-(I) message “HELLO CHAOS” input.

sages. Figures 16(a-c) correspond to the encryption of rectangular
(square-wave) signals, whereas Figures 16(d-f) show the results for
sawtooth waveforms. Figures 17(g-i) illustrate the encryption and
subsequent recovery of an analog message represented by a noisy
sinusoidal waveform,

M(t) = Asin(wt) + n(t),

where A = 2 is the signal amplitude, w = 0.2 rad/s is the angular
frequency, and n(t) denotes additive white Gaussian noise with
zero mean and standard deviation o, = 0.5. Such a waveform
emulates a realistic analog transmission channel subject to random
fluctuations. Figures 17(j-1) demonstrate an example of text trans-
mission, where the message “HELLO CHAOS” is first converted
into its ASCII code representation (a binary vector) and then sup-
plied as a stepwise waveform, with each character occupying a
fixed time segment. At the receiver side, the decoded signal is
converted back from the recovered waveform to binary values,
then to ASCII symbols, successfully reconstructing the original
text “HELLO CHAOS.”

Figures 16 and 17 confirm that, in all tested cases, the proposed
chaotic masking and demasking procedure accurately preserves
the essential structure of the transmitted information, demonstrat-
ing reliable and lossless recovery under ideal (noise-free) transmis-
sion conditions.

Testing of secure message transmission under various signal
types and channel conditions

In this subsection, we evaluate the performance of the proposed
secure communication scheme for different types of messages
transmitted through noisy and fading channels. The same types
of input signals as in the previous subsection were considered.
The following models were used to simulate the communication
channel:

* AWGN (Additive White Gaussian Noise) represents additive
white Gaussian noise typical of most physical communication
channels.

¢ Channel fading describes temporal variations of the signal
amplitude caused by multipath propagation and transient
obstructions.

The transmission efficiency was evaluated using the output signal-
to-noise ratio (SNR), calculated as

2
SNRout = 10logp = LS (25)
1

(si —8)%
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where s; is the original signal and §; is the signal recovered after
transmission and decryption. To quantify the preservation of the
signal structure, the correlation coefficient between the original
and recovered signals was computed as

__ Lisi—9)E -9
V(s =925 — 92 (26)

The results of numerical experiments are summarized in Table 2.

P

Table 2 Performance of signal recovery for different input types
under channel noise simulation. The correlation value indicates
the similarity between the original and recovered signals, with 1
corresponding to perfect reconstruction

Signaltype @ Channel InSNR(dB) OutSNR (dB) Corr.
Sinusoidal AWGN 20 19.8 0.998
Sinusoidal AWGN 10 9.5 0.960
Sinusoidal Fading 15 14.2 0.950

Square-wave AWGN 20 19.2 0.995

Square-wave AWGN 10 9.1 0.950

Square-wave Fading 15 13.8 0.920

Sawtooth AWGN 20 18.5 0.920
Sawtooth AWGN 10 8.6 0.850
Sawtooth Fading 15 12.5 0.820
Real data AWGN 20 19.6 0.997
Real data AWGN 12 11.5 0.950
Real data Fading 15 13.7 0.930

The analysis of the obtained results shows that:

¢ For sinusoidal and square-wave signals, the correlation re-
mains high (> 0.95) for SNR levels above 10 dB, indicating
excellent recovery quality.

¢ Sawtooth signals are more sensitive to noise, with correlation
values decreasing to 0.82-0.92 under moderate noise levels.

* Real data messages can still be correctly decrypted at SNR
levels around 12 dB, confirming the practical robustness of
the proposed system.

¢ Under channel fading, short-term SNR drops occur; however,
the adaptive synchronization mechanism allows the signal to
be accurately reconstructed once the channel exits weak-signal
phases.

Thus, comprehensive testing under different signal types and
channel models confirms the high efficiency of the proposed secure
transmission scheme and its robustness to both noise and fading
effects.

CHAOS-BASED TRAJECTORY CONTROL FOR TWO-
WHEELED ROBOTS

This section explores the application of a novel hyperchaotic sys-
tem (12) for controlling a two-wheeled mobile robot. The robot’s
kinematic model is based on a typical differential drive configura-
tion with two degrees of freedom. It features two active, parallel,
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and independently controlled wheels, along with a third passive
wheel (Lynch and Park 2017). Output signals from the chaotic
system (12) can be utilized as control commands for the mobile
robot’s motor. By leveraging chaotic algorithms, the robot achieves
diverse movement patterns, effectively avoiding previously ex-
plored areas and maximizing territorial coverage efficiency. To
validate the simulation results of the movement routes, a phys-
ical prototype of the robot is usually developed using Arduino
microcontrollers (Vaidyanathan et al. 2017). The chaotic motion dy-
namics are implemented via software-based motor control, demon-
strating the practical feasibility of the proposed approach. For
practical applications, it is also essential to integrate obstacle detec-
tion algorithms using data from sensors such as ultrasonic devices.
Integrating chaotic dynamics with the motion of a mobile robot
requires combining the equations of the chaotic system with the
robot’s kinematic or dynamic model. The following outlines a step-
by-step process for constructing these integrated equations. Let
the navigation equations of the mobile robot, based on a kinematic
model, be represented by a system of equations (see, for example,
(Nwachioma and Perez-Cruz 2021)):

ax

i v(t) cos(O(F))

ay .

T v(t) sin(O(t)) (27)
de

@ e

where {X(t),Y(t)} is the robot’s position on the plane, v(f) =
(vr(t) + v;(t)) /2 is the linear velocity of the robot, v,(t) is linear
velocity of the right wheel, v;(t) is linear velocity of the left wheel,
w(t) = (v,(t) —v;(t))/L is angular velocity, and L is distance be-
tween the two wheels, © is the orientation angle. For a differential
drive robot, each wheel is independently controlled by a speed
signal generated by the chaotic system, thereby enabling a clearer
demonstration of the chaotic dynamics.

Let the linear velocities of the right and left wheels, v, () and
vy (t), respectively, be replaced by chaotic signals X;, corresponding
to the phase portraits of hidden attractors shown in Figure 6:

or(t) X1 X Xq X1 Xo X3
= ’

(4] (f) X3 X3 Xz X4 X5 X6

(28)

~
~

To Workspaced

To Workspacet Productd  integrators  To Workspace?
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r

To Workspace

o Workspace5

Productt  ntegralor
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Figure 18 Matlab-Simulink diagram of a chaotic mobile robot
based on the system of equations (28). In the diagram, the vari-
ables P, Q, S correspond to the variables X, Y, ® of system (29).
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Figure 19 Workspace coverage trajectory of the chaotic mo-
bile robot for system (29) with different chaotic signals on
wheels (vy, v)): a) (X1, X3), b) (X2, X3), ¢) (X1, X2), d) (X1, Xa),
e) (XZI XS)/ f) (X3/ X6)

The resulting equations for the chaotic mobile robot are then
given by:

"% = 0.83(— X1 +20X,) +20X4
d% — _0.05X3tanh X;
dXs
7 - |X1‘ -1
X,
= —00425%,
dXs
= X5+ 0.00821X; + X (29)
% = —Xg — 0.986X; — 0.2X5

dX  ( Xu(t) + Xu(t)

= <f cos(®(t))
A (Xu() + Xu(t)

= ( > sin(©(t))
40 _ Xu(t) = Xu(t)

dt L

wheren = (1,2,1,1,2,3) and m = (3,3,2,4,5, 6) are indices. Equa-
tion system (29) describes the navigation of a mobile robot based
on the 6D hyperchaotic system (12), with initial conditions speci-
fied in (). We developed a Matlab-Simulink model for an efficient
numerical simulation of system (29), as Figure 18 illustrates. The
Subsystem in Figure 18 contains the Matlab-Simulink diagram
of the hyperchaotic system (12) as in Figure 5. The initial condi-
tions and the value of the parameter L for the kinematic part of
equations (29) are defined as follows:

X(0) = Y(0) = Z(0) =0, L=0.08. (30)

Figure 19 presents the trajectories of the mobile robot in the X — Y
plane of the workspace, obtained from the Matlab-Simulink simula-
tion of the model shown in Figure 18. These trajectories correspond
to various chaotic signals applied to the robot’s wheels as defined
by expression (28). Thus, through the wireless transmission of
chaotic signals from multidimensional dynamic systems, such as
via Bluetooth or Wi-Fi, it is possible to enable the independent
navigation of multiple mobile robots, resulting in unpredictable
robot trajectories.

Let us examine how changes in the initial conditions of the
kinematic component of equations (29) influence the trajectory of a
chaotic mobile robot. For this analysis, we consider the case where
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Figure 20 Workspace coverage trajectories of the chaotic mobile
robot for system (29) with different ICs.

Figure 21 Matlab-Simulink diagram of a mobile robot under
impact encrypted signals.

a signal pair (X3, X3) is applied to the robot’s wheels. The results,
obtained using the Matlab-Simulink model, are presented in Figure
20. The trajectories corresponding to the initial conditions defined
by (30) are shown in blue in Figures 20a-20c. The trajectories
for (X(0),Y(0),©(0)) = (0.3,0.3,0) are shown in red in Figure
20b, while those for (X(0),Y(0),®(0)) = (1,1,0) are depicted in
Figure 20c. As illustrated in Figure 20c, the robot’s trajectory in the
X — Y plane (highlighted in red) shows significant deviation from
the previous trajectory (highlighted in blue) only when the initial
conditions undergo a substantial change.

Controlling a mobile robot with combined signals

Consider the scenario where a mixed signal, composed of the
additive sum of chaotic and harmonic components, is applied to
the mobile robot’s right and left wheels. This type of signal, defined
as an encrypted signal, was previously introduced in subsection
5.2. The encrypted signal applied to the right wheel can then be
expressed in the following form:

X1(t) + Asin(wt), (31)

where A and w are the amplitude and frequency of the useful
signal, respectively. The encrypted signal for the left wheel is
written similarly, with the harmonic component incorporating a
phase shift of 77/2:

X3(t) + Asin (wt + g) = X3(t) + Acos(wt). (32)
Figure 21 presents the Matlab-Simulink model used to simulate the
trajectory of a mobile robot under the influence of an encrypted sig-
nal. Computer simulations of the Matlab-Simulink model (Figure
21) produced the trajectories of the mobile robot in the workspace
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Figure 22 Trajectories of the mobile robot covering the
workspace under the influence of a combined signal with vary-
ing harmonic signal frequencies: a) w = 0.02;b) w = 0.2;¢)
w=1

Figure 23 Matlab-Simulink diagram of a mobile robot under
impact an external circularly polarized wave.

for various values of the useful signal frequency, as shown in Fig-
ure 22. In this scenario, the amplitude of the harmonic signal was
kept constant at A = 10, with a simulation time of T = 10000 s.
The simulation results revealed that as the frequency of the har-
monic signal increases, the boundaries of the workspace expand,
and the robot’s trajectory becomes increasingly unpredictable.

The impact of external factors on the chaotic trajectory of a
mobile robot

In this subsection, we simulate the effects of external factors —
both deterministic and random — on the trajectory of a chaotic
mobile robot using the Matlab-Simulink environment. Let us first
investigate the effect of an external circularly polarized wave per-
turbation, which transforms the kinematic equations for the X and
Y components in the system (29) into the following form:

LZ—): = (M) cos(®(t)) + Ay sin (Qt + g)
o _ (Rl a0

o ' ) sin(O()) + A1 sin(Qt),  (33)

where A and Q) are the amplitude and frequency of the circularly
polarized wave perturbation.

For simplicity, the amplitude A; is set to A; = 1 during nu-
merical calculations. The Matlab-Simulink diagram from Figure
18, modified to account for the influence of an external circularly
polarized wave, is shown in its transformed form in Figure 23.
Simulation results of the diagram in Figure 23 indicate that as

the frequency of the external wave disturbance decreases, the
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Figure 24 Trajectories of the mobile robot covering the
workspace under the influence of an external circularly polar-
ized wave with varying frequencies: a) O = 1;b) Q = 0.1;¢)

O =0.01.

L

‘Subsystem

Figure 25 Matlab-Simulink diagram of a mobile robot under
impact from external random perturbations.

Figure 26 Visual representation of external random perturba-
tions with help from the Scope block.

800

600

400

200

5000

4000

3000

2000

1000

Figure 27 Trajectories of the mobile robot covering the
workspace under the influence of an external random pertur-

bations.
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boundaries of the workspace expand, and the robot’s trajectory
becomes more deterministic as shown in Figure 24.

Next, we examine the impact of external random perturbations
on the trajectory of a chaotic mobile robot. Assuming the random
process follows a Gaussian (normally distributed) signal, the kine-
matic equations for the X and Y components in system (29) are
modified as follows:

% B (M) cos(O(t)) + &(t)

. (M) sin(0(1)) +&(1), (34)
where &(t) is a Gaussian random process. The Matlab-Simulink
diagram for this process is shown in Figure 25.

The Scope block from the diagram in Figure 25 provides a
visual representation of the random process as shown in Figure
26. During the simulation of the diagram in Figure 25, we varied
the Mean value in the Random Number blocks. The simulation
results for different Mean values are shown in Figure 27: a) 0.01,
b) 0.1, and c) 0.5. It is observed that as the mean values increase,
the working space boundaries of the chaotic mobile robot expand
significantly, resulting in a more predictable movement trajectory.

CONCLUSION

In this paper, we introduced a novel 6D hyperchaotic system with
13 terms, incorporating absolute value and hyperbolic tangent
functions. This compact 6D system structure has not previously
been reported in the literature. A key feature of the system is the
absence of equilibrium points, enabling the generation of hidden
attractors. All Lyapunov exponents were calculated, with their
sum confirming the system’s dissipativity through the divergence
of its phase flow. For the hyperchaotic behavior, the Kaplan-Yorke
dimension was also established. Phase portraits of multiple hid-
den attractors were obtained through computer modeling of the
6D hyperchaotic system in Matlab-Simulink. Furthermore, an
electronic circuit implementation of the system was developed in
Multisim 14, with simulation results closely matching those from
Matlab-Simulink. Finally, synchronization between two identical
6D hyperchaotic systems was achieved using the active control
method. This approach was successfully applied to the chaotic
masking and decoding of various signal types, including harmonic,
square-wave, sawtooth, and real data signals, demonstrating re-
liable and secure communication performance under different
channel conditions.

The Matlab-Simulink models developed for a chaotic mobile
robot based on a novel 6D dynamic system demonstrate potential
for a wide range of engineering applications. Simulation results
reveal that chaotic signals generated by the multidimensional dy-
namic system can enable independent navigation of multiple mo-
bile robots, which can be applied to tasks such as search operations,
firefighting, and patrol missions. Furthermore, we demonstrated
that employing a mixed (encrypted) signal enhances control over
the robot’s trajectory, ensuring more effective and secure naviga-
tion. We also investigated the influence of external factors on the
kinematics of the chaotic mobile robot, including circularly po-
larized waves and random disturbances. The results show that
increasing the frequency of wave disturbances makes the robot’s
trajectory more deterministic while significantly expanding the
boundaries of its working space. Similarly, an increase in the inten-
sity of random noise also results in an expanded working space
and a more predictable movement trajectory.

Future research directions include investigating the influence
of non-Gaussian noise (Contreras-Reyes 2021) on both individ-
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ual chaotic robot trajectories and collective flocking dynamics in
multi-agent robotic systems, with potential applications to robust
navigation under uncertainty. Moreover, the newly proposed 6D
hyperchaotic system will be further explored for its applications in
image encryption and decryption.
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